
RFC 9690
Use of the RSA-KEM Algorithm in the Cryptographic
Message Syntax (CMS)

Abstract
The RSA Key Encapsulation Mechanism (RSA-KEM) algorithm is a one-pass (store-and-forward)
cryptographic mechanism for an originator to securely send keying material to a recipient using
the recipient's RSA public key. The RSA-KEM algorithm is specified in Clause 11.5 of ISO/IEC:
18033-2:2006. This document specifies the conventions for using the RSA-KEM algorithm as a
standalone KEM algorithm and the conventions for using the RSA-KEM algorithm with the
Cryptographic Message Syntax (CMS) using KEMRecipientInfo as specified in RFC 9629. This
document obsoletes RFC 5990.

Stream: Internet Engineering Task Force (IETF)
RFC: 9690
Obsoletes: 5990
Category: Standards Track
Published: February 2025
ISSN: 2070-1721
Authors: R. Housley

Vigil Security
S. Turner
sn3rd

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9690

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Housley & Turner Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9690
https://www.rfc-editor.org/rfc/rfc5990
https://www.rfc-editor.org/info/rfc9690
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. RSA-KEM Algorithm Rationale

1.2. RSA-KEM Algorithm Summary

1.3. CMS KEMRecipientInfo Processing Summary

1.4. Conventions and Definitions

1.5. ASN.1

1.6. Changes Since RFC 5990

2. Use of the RSA-KEM Algorithm in CMS

2.1. Mandatory To Implement

2.2. RecipientInfo Conventions

2.3. Certificate Conventions

2.4. SMIMECapabilities Attribute Conventions

3. Security Considerations

4. IANA Considerations

5. References

5.1. Normative References

5.2. Informative References

Appendix A. RSA-KEM Algorithm

A.1. Originator's Operations: RSA-KEM Encapsulate()

A.2. Recipient's Operations: RSA-KEM Decapsulate()

Appendix B. ASN.1 Syntax

B.1. Underlying Components

B.2. ASN.1 Module

Appendix C. SMIMECapabilities Examples

Appendix D. RSA-KEM CMS Enveloped-Data Example

D.1. Originator RSA-KEM Encapsulate() Processing

3

3

4

4

6

6

6

7

7

7

8

9

9

11

11

11

13

14

14

15

16

16

17

21

22

23

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 2

D.2. Originator CMS Processing

D.3. Recipient RSA-KEM Decapsulate() Processing

D.4. Recipient CMS Processing

Acknowledgements

Authors' Addresses

24

27

29

30

30

1. Introduction
The RSA Key Encapsulation Mechanism (RSA-KEM) algorithm is a one-pass (store-and-forward)
cryptographic mechanism for an originator to securely send keying material to a recipient using
the recipient's RSA public key. The RSA-KEM algorithm is specified in Clause 11.5 of .

The RSA-KEM algorithm takes a different approach than other RSA key transport mechanisms
 with the goal of providing higher security assurance while also satisfying the KEM

interface. The RSA-KEM algorithm encrypts a random integer with the recipient's RSA public key
and derives a shared secret from the random integer. The originator and recipient can derive a
symmetric key from the shared secret. For example, a key-encryption key (KEK) can be derived
from the shared secret to wrap a content-encryption key (CEK).

In the Cryptographic Message Syntax (CMS) using KEMRecipientInfo , the
shared-secret value is input to a key derivation function (KDF) to compute a key-encryption key
and wrap a symmetric content-encryption key with the key-encryption key. In this way, the
originator and the recipient end up with the same content-encryption key.

For completeness, a specification of the RSA-KEM algorithm is given in Appendix A of this
document. ASN.1 syntax is given in Appendix B.

[ISO18033-2]

[RFC8017]

[RFC5652] [RFC9629]

1.1. RSA-KEM Algorithm Rationale
The RSA-KEM algorithm provides higher security assurance than other variants of the RSA
cryptosystem for two reasons. First, the input to the underlying RSA operation is a string-
encoded random integer between 0 and n-1, where n is the RSA modulus, so it does not have any
structure that could be exploited by an adversary. Second, the input is independent of the keying
material, so the result of the RSA decryption operation is not directly available to an adversary.
As a result, the RSA-KEM algorithm enjoys a "tight" security proof in the random oracle model.
(In other padding schemes, such as PKCS #1 v1.5 , the input has structure and depends
on the keying material. Additionally, the provable security assurances are not as strong.)

The approach is also architecturally convenient because the public-key operations are separate
from the symmetric operations on the keying material. Another benefit is that the length of the
keying material is determined by the symmetric algorithms, not the size of the RSA modulus.

[RFC8017]

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 3

1.2. RSA-KEM Algorithm Summary
All KEM algorithms provide three functions: KeyGen(), Encapsulate(), and Decapsulate().

The following summarizes these three functions for the RSA-KEM algorithm:

KeyGen() -> (pk, sk):
Generate the public key (pk) and a private key (sk) as described in .

Encapsulate(pk) -> (ct, SS):
Given the recipient's public key (pk), produce a ciphertext (ct) to be passed to the recipient
and a shared secret (SS) for use by the originator as follows:

Generate a random integer z between 0 and n-1.
Encrypt the integer z with the recipient's RSA public key to obtain the ciphertext:

Derive a shared secret from the integer z using a Key Derivation Function (KDF):

The ciphertext and the shared secret are returned by the function. The originator sends
the ciphertext to the recipient.

Decapsulate(sk, ct) -> SS:
Given the private key (sk) and the ciphertext (ct), produce the shared secret (SS) for the
recipient as follows:

Decrypt the ciphertext with the recipient's RSA private key to obtain the random integer
z:

Derive a shared secret from the integer z:

The shared secret is returned by the function.

Section 3 of [RFC8017]

1.
2.

 ct = z^e mod n

3.

 SS = KDF(Z, ssLen)

4.

1.

 z = ct^d mod n

2.

 SS = KDF(Z, ssLen)

3.

1.3. CMS KEMRecipientInfo Processing Summary
To support the RSA-KEM algorithm, the CMS originator implement Encapsulate().MUST

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 4

https://rfc-editor.org/rfc/rfc8017#section-3

Given a content-encryption key CEK, the RSA-KEM algorithm processing by the originator to
produce the values that are carried in the CMS KEMRecipientInfo can be summarized as follows:

Obtain the shared secret using the Encapsulate() function of the RSA-KEM algorithm and the
recipient's RSA public key:

Derive a key-encryption key KEK from the shared secret:

Wrap the CEK with the KEK to obtain wrapped keying material WK:

The originator sends the ciphertext and WK to the recipient in the CMS KEMRecipientInfo
structure.

To support the RSA-KEM algorithm, the CMS recipient implement Decapsulate().

The RSA-KEM algorithm recipient processing of the values obtained from the KEMRecipientInfo
structure is summarized as follows:

Obtain the shared secret using the Decapsulate() function of the RSA-KEM algorithm and the
recipient's RSA private key:

Derive a key-encryption key KEK from the shared secret:

Unwrap the WK with the KEK to obtain the content-encryption key CEK:

Note that the KDF used to process the KEMRecipientInfo structure be different from the KDF
used to derive the shared secret in the RSA-KEM algorithm.

1.

 (ct, SS) = Encapsulate(pk)

2.

 KEK = KDF(SS, kekLength, otherInfo)

3.

 WK = WRAP(KEK, CEK)

4.

MUST

1.

 SS = Decapsulate(sk, ct)

2.

 KEK = KDF(SS, kekLength, otherInfo)

3.

 CEK = UNWRAP(KEK, WK)

MAY

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 5

1.4. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.5. ASN.1
CMS values are generated using ASN.1 , which uses the Basic Encoding Rules (BER) and
the Distinguished Encoding Rules (DER) .

[X.680]
[X.690]

1.6. Changes Since RFC 5990
RFC 5990 specified the conventions for using the RSA-KEM algorithm in CMS as a key
transport algorithm. That is, it used KeyTransRecipientInfo for each recipient. Since
the publication of RFC 5990, a new KEMRecipientInfo structure has been defined to
support KEM algorithms. When the id-rsa-kem algorithm identifier appears in the
SubjectPublicKeyInfo field of a certificate, the complex parameter structure defined in RFC 5990
can be omitted; however, the parameters are allowed for backward compatibility. Also, to avoid
visual confusion with id‑kem‑rsa, id‑rsa‑kem‑spki is introduced as an alias for id-rsa-kem.

RFC 5990 used EK as the EncryptedKey, which is the concatenation of the ciphertext C and the
wrapped key WK, EK = (C || WK). The use of EK was necessary to align with the
KeyTransRecipientInfo structure. In this document, the ciphertext and the wrapped key are sent
in separate fields of the KEMRecipientInfo structure. In particular, the ciphertext is carried in the
kemct field, and the wrapped key is carried in the encryptedKey field. See Appendix A for details
about the computation of the ciphertext.

RFC 5990 included support for Camellia and Triple-DES block ciphers; discussion of these block
ciphers does not appear in this document, but the algorithm identifiers remain in the ASN.1
module (see Appendix B.2).

RFC 5990 included support for SHA-1 hash function; discussion of this hash function does not
appear this document, but the algorithm identifier remains in the ASN.1 module (see Appendix B.
2).

RFC 5990 required support for the KDF3 key derivation function ; this document
continues to require support for the KDF3 key derivation function, but it requires support for
SHA-256 as the hash function.

RFC 5990 recommended support for alternatives to KDF3 and AES-Wrap-128; this document
simply states that other key derivation functions and other key-encryption algorithms be
supported.

RFC 5990 supported the future definition of additional KEM algorithms that use RSA; this
document supports only one, and it is identified by the id-kem-rsa object identifier.

[RFC5990]
[RFC5652]

[RFC9629]

[ANS-X9.44]

[SHS]

MAY

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 6

RFC 5990 included an ASN.1 module; this document provides an alternative ASN.1 module that
follows the conventions established in , , and . The new ASN.1
module (Appendix B.2) produces the same bits-on-the-wire as the one in RFC 5990.

[RFC5911] [RFC5912] [RFC6268]

2. Use of the RSA-KEM Algorithm in CMS
The RSA-KEM algorithm be employed for one or more recipients in the CMS enveloped-data
content type , the CMS authenticated-data content type , or the CMS
authenticated-enveloped-data content type . In each case, the KEMRecipientInfo

 is used with the RSA-KEM algorithm to securely transfer the content-encryption key
from the originator to the recipient.

MAY
[RFC5652] [RFC5652]

[RFC5083]
[RFC9629]

2.1. Mandatory To Implement
A CMS implementation that supports the RSA-KEM algorithm support at least the following
underlying components:

For the key derivation function, an implementation support KDF3 with
SHA-256 .
For key-wrapping, an implementation support the AES-Wrap-128 key-
encryption algorithm.

An implementation also support other key derivation functions and other key-encryption
algorithms.

MUST

• MUST [ANS-X9.44]
[SHS]

• MUST [RFC3394]

MAY

2.2. RecipientInfo Conventions
When the RSA-KEM algorithm is employed for a recipient, the RecipientInfo alternative for that
recipient be OtherRecipientInfo using the KEMRecipientInfo structure . The
fields of the KEMRecipientInfo have the following values:

version is the syntax version number; it be 0.
rid identifies the recipient's certificate or public key.
kem identifies the KEM algorithm; it contain id-kem-rsa.
kemct is the ciphertext produced for this recipient; it contains C from steps 1 and 2 of
Originator's Operations in Appendix A.
kdf identifies the key derivation function (KDF). Note that the KDF used for CMS
RecipientInfo process be different than the KDF used within the RSA-KEM algorithm.
kekLength is the size of the key-encryption key in octets.
ukm is an optional random input to the key derivation function.
wrap identifies a key-encryption algorithm used to encrypt the keying material.
encryptedKey is the result of encrypting the keying material with the key-encryption key.
When used with the CMS enveloped-data content type , the keying material is a
content-encryption key. When used with the CMS authenticated-data content type ,
the keying material is a message-authentication key. When used with the CMS authenticated-

MUST [RFC9629]
MUST

• MUST

•
• MUST

•

•
MAY

•
•
•
•

[RFC5652]
[RFC5652]

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 7

enveloped-data content type , the keying material is a content-authenticated-
encryption key (CAEK).

NOTE: For backward compatibility, implementations also support the RSA-KEM Key
Transport algorithm, identified by id-rsa-kem-spki, which uses KeyTransRecipientInfo as
specified in .

[RFC5083]

MAY

[RFC5990]

2.3. Certificate Conventions
The conventions specified in this section augment RFC 5280 .

A recipient who employs the RSA-KEM algorithm identify the public key in a certificate by
the same AlgorithmIdentifier as for PKCS #1 v1.5, that is, using the rsaEncryption object identifier

. The fact that the recipient will accept the RSA-KEM algorithm with this public key is
not indicated by the use of this object identifier. The willingness to accept the RSA-KEM algorithm

 be signaled by the use of the SMIMECapabilities Attribute as specified in
 or the SMIMECapabilities certificate extension as specified in .

If the recipient wishes only to employ the RSA-KEM algorithm with a given public key, the
recipient identify the public key in the certificate using the id-rsa-kem-spki object
identifier; see Appendix B. The use of the id-rsa-kem-spki object identifier allows certificates that
were issued to be compatible with the RSA-KEM Key Transport algorithm to also be used with
this specification. When the id-rsa-kem-spki object identifier appears in the SubjectPublicKeyInfo
algorithm field of the certificate, the parameters field from AlgorithmIdentifier be
absent. That is, the AlgorithmIdentifier be a SEQUENCE of one component, the id-rsa-
kem-spki object identifier. With absent parameters, the KDF3 key derivation function

 with SHA-256 are used to derive the shared secret.

When the AlgorithmIdentifier parameters are present, the GenericHybridParameters be
used. Within the kem element, the algorithm identifier be set to id-kem-rsa, and
RsaKemParameters be included. As described in Section 2.4, the GenericHybridParameters
constrain the values that can be used with the RSA public key for the kdf, kekLength, and wrap
fields of the KEMRecipientInfo structure.

Regardless of the AlgorithmIdentifier used, the RSA public key be carried in the
subjectPublicKey BIT STRING within the SubjectPublicKeyInfo field of the certificate using the
RSAPublicKey type defined in .

The intended application for the public key be indicated in the key usage certificate
extension as specified in . If the keyUsage extension is present in a
certificate that conveys an RSA public key with the id-rsa-kem-spki object identifier as discussed
above, then the key usage extension contain only the following value:

keyEncipherment

[RFC5280]

MAY

[RFC8017]

MAY Section 2.5.2 of
[RFC8551] [RFC4262]

MUST

SHOULD
SHOULD

[ANS-
X9.44] [SHS]

MUST
MUST

MUST

MUST

[RFC8017]

MAY
Section 4.2.1.3 of [RFC5280]

MUST

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 8

https://rfc-editor.org/rfc/rfc8551#section-2.5.2
https://rfc-editor.org/rfc/rfc5280#section-4.2.1.3

Other keyUsage extension values be present. That is, a public key intended to be
employed only with the RSA-KEM algorithm also be employed for data encryption or
for digital signatures. Good cryptographic practice employs a given RSA key pair in only one
scheme. This practice avoids the risk that vulnerability in one scheme may compromise the
security of the other and may be essential to maintain provable security.

MUST NOT
MUST NOT

2.4. SMIMECapabilities Attribute Conventions
 defines the SMIMECapabilities attribute to announce a partial list of

algorithms that an S/MIME implementation can support. When constructing a CMS signed-data
content type , a compliant implementation include the SMIMECapabilities
attribute that announces support for the RSA-KEM algorithm.

The SMIMECapability SEQUENCE representing the RSA-KEM algorithm include the id-rsa-
kem-spki object identifier in the capabilityID field; see Appendix B for the object identifier value
and Appendix C for examples. When the id-rsa-kem-spki object identifier appears in the
capabilityID field and the parameters are present, then the parameters field use the
GenericHybridParameters type.

The fields of the GenericHybridParameters type have the following meanings:

kem is an AlgorithmIdentifer. The algorithm field be set to id-kem-rsa, and the
parameters field be RsaKemParameters, which is a SEQUENCE of an
AlgorithmIdentifier that identifies the supported key derivation function and a positive
INTEGER that identifies the length of the key-encryption key in octets.
dem is an AlgorithmIdentifier. The algorithm field be present, and it identifies the key-
encryption algorithm. The parameters are optional. If the GenericHybridParameters are
present, then the provided dem value be used in the wrap field of KEMRecipientInfo.

If the GenericHybridParameters are present, then the provided kem value be used as the
key derivation function in the kdf field of KEMRecipientInfo and the provided key length
be used in the kekLength of KEMRecipientInfo.

Section 2.5.2 of [RFC8551]

[RFC5652] MAY

MUST

MUST

 GenericHybridParameters ::= SEQUENCE {
 kem KeyEncapsulationMechanism,
 dem DataEncapsulationMechanism }

• MUST
MUST

• MUST

MUST

MUST
MUST

3. Security Considerations
The RSA-KEM algorithm should be considered as a replacement for the key transport portion of
the widely implemented PKCS #1 v1.5 for new applications that use CMS to avoid
potential vulnerabilities to chosen-ciphertext attacks and gain a tighter security proof. However,
the RSA-KEM algorithm has the disadvantage of slightly longer encrypted keying material. With
PKCS #1 v1.5, the originator encrypts the key-encryption key directly with the recipient's RSA
public key. With the RSA-KEM algorithm, the key-encryption key is encrypted separately.

[RFC8017]

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 9

https://rfc-editor.org/rfc/rfc8551#section-2.5.2

The security of the RSA-KEM algorithm can be shown to be tightly related to the difficulty of
either solving the RSA problem or breaking the underlying symmetric key-encryption algorithm
if the underlying key derivation function is modeled as a random oracle, assuming that the
symmetric key-encryption algorithm satisfies the properties of a data encapsulation mechanism

. While in practice a random-oracle result does not provide an actual security proof for
any particular key derivation function, the result does provide assurance that the general
construction is reasonable; a key derivation function would need to be particularly weak to lead
to an attack that is not possible in the random-oracle model.

The RSA key size and the underlying components need to be selected consistent with the desired
security level. Several security levels have been identified in the NIST SP 800-57 Part 1

. For example, one way to achieve 128-bit security, the RSA key size would be
at least 3072 bits, the key derivation function would be SHA-256, and the symmetric key-
encryption algorithm would be AES Key Wrap with a 128-bit key.

Implementations protect the RSA private key, the key-encryption key, the content-
encryption key, message-authentication key, and the content-authenticated-encryption key.
Disclosure of the RSA private key could result in the compromise of all messages protected with
that key. Disclosure of the key-encryption key, the content-encryption key, or the content-
authenticated-encryption key could result in compromise of the associated encrypted content.
Disclosure of the key-encryption key, the message-authentication key, or the content-
authenticated-encryption key could allow modification of the associated authenticated content.

Additional considerations related to key management may be found in .

The security of the RSA-KEM algorithm depends on a quality random number generator. For
further discussion on random number generation, see .

The RSA-KEM algorithm does not use an explicit padding scheme. Instead, an encoded random
value (z) between zero and the RSA modulus minus one (n-1) is directly encrypted with the
recipient's RSA public key. The IntegerToString(z, nLen) encoding produces a string that is the full
length of the RSA modulus. In addition, the random value is passed through a KDF to reduce
possible harm from a poorly implemented random number source or a maliciously chosen
random value (z). Implementations use z directly for any purpose.

As long as a fresh random integer z is chosen as part of each invocation of the Encapsulate()
function, the RSA-KEM algorithm does not degrade as the number of ciphertexts increases. Since
RSA encryption provides a bijective map, a collision in the KDF is the only way that the RSA-KEM
algorithm can produce more than one ciphertext that encapsulates the same shared secret.

The RSA-KEM algorithm provides a fixed-length ciphertext. The recipient check that the
received byte string is the expected length and the length corresponds to an integer in the
expected range prior to attempting decryption with their RSA private key as described in Steps 1
and 2 of Appendix A.2.

Implementations reveal information about intermediate values or calculations,
whether by timing or other "side channels"; otherwise, an opponent may be able to determine
information about the keying data and/or the recipient's private key. Although not all

[SHOUP]

[NISTSP800-57pt1r5]

MUST

[NISTSP800-57pt1r5]

[RFC4086]

MUST NOT

MUST

SHOULD NOT

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 10

5. References

intermediate information may be useful to an opponent, it is preferable to conceal as much
information as is practical, unless analysis specifically indicates that the information would not
be useful to an opponent.

Generally, good cryptographic practice employs a given RSA key pair in only one scheme. This
practice avoids the risk that vulnerability in one scheme may compromise the security of the
other, and may be essential to maintain provable security. RSA public keys have often been
employed for multiple purposes such as key transport and digital signature without any known
bad interactions; however, such combined use of an RSA key pair is in the
future (unless the different schemes are specifically designed to be used together).

Accordingly, an RSA key pair used for the RSA-KEM algorithm also be used for
digital signatures. Indeed, the Accredited Standards Committee X9 (ASC X9) requires such a
separation between key pairs used for key establishment and key pairs used for digital signature

. Continuing this principle of key separation, a key pair used for the RSA-KEM
algorithm be used with other key establishment schemes, or for data encryption, or
with more than one set of underlying algorithm components.

It is acceptable to use the same RSA key pair for the RSA-KEM Key Transport algorithm as
specified in and this specification. This is acceptable because the operations involving
the RSA public key and the RSA private key are identical in the two specifications.

Parties can gain assurance that implementations are correct through formal implementation
validation, such as the NIST Cryptographic Module Validation Program (CMVP) .

NOT RECOMMENDED

SHOULD NOT

[ANS-X9.44]
SHOULD NOT

[RFC5990]

[CMVP]

4. IANA Considerations
For the ASN.1 Module in Appendix B.2, IANA has assigned an object identifier (OID) for the
module identifier. The OID for the module has been allocated in the "SMI Security for S/MIME
Module Identifier" registry (1.2.840.113549.1.9.16.0), and the Description for the new OID has
been set to "id-mod-cms-rsa-kem-2023".

IANA has updated the id-alg-rsa-kem entry in the "SMI Security for S/MIME Algorithms
(1.2.840.113549.1.9.16.3)" repository to refer to this document. In addition, IANA has added the
following note to the registry:

Value 14, "id-alg-rsa-kem," is also referred to as "id-rsa-kem-spki."

[ANS-X9.44]

5.1. Normative References

,

, , 2007,
.

American National Standards Institute "Public Key Cryptography for the
Financial Services Industry -- Key Establishment Using Integer Factorization
Cryptography" ANSI X9.44-2007 (R2017) <https://webstore.ansi.org/
standards/ascx9/ansix9442007r2017>

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 11

https://webstore.ansi.org/standards/ascx9/ansix9442007r2017
https://webstore.ansi.org/standards/ascx9/ansix9442007r2017

[ISO18033-2]

[RFC2119]

[RFC3394]

[RFC5083]

[RFC5280]

[RFC5652]

[RFC5911]

[RFC5912]

[RFC6268]

[RFC8017]

[RFC8174]

[RFC8551]

,
, , 2006,

.

, , ,
, , March 1997,
.

 and ,
, , , September 2002,

.

,
, , , November 2007,

.

, , , , , and ,

, , , May 2008,
.

, , , ,
, September 2009, .

 and ,
, , , June 2010,

.

 and ,
, , , June 2010,

.

 and ,
,

, , July 2011,
.

, , , and ,
, , ,

November 2016, .

, ,
, , , May 2017,

.

, , and ,
, ,

, April 2019, .

ISO/IEC "Information technology -- Security techniques -- Encryption algorithms
-- Part 2: Asymmetric ciphers" ISO/IEC 18033-2:2006 <https://www.iso.org/
standard/37971.html>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Schaad, J. R. Housley "Advanced Encryption Standard (AES) Key Wrap
Algorithm" RFC 3394 DOI 10.17487/RFC3394 <https://www.rfc-
editor.org/info/rfc3394>

Housley, R. "Cryptographic Message Syntax (CMS) Authenticated-Enveloped-
Data Content Type" RFC 5083 DOI 10.17487/RFC5083 <https://
www.rfc-editor.org/info/rfc5083>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Hoffman, P. J. Schaad "New ASN.1 Modules for Cryptographic Message
Syntax (CMS) and S/MIME" RFC 5911 DOI 10.17487/RFC5911 <https://
www.rfc-editor.org/info/rfc5911>

Hoffman, P. J. Schaad "New ASN.1 Modules for the Public Key
Infrastructure Using X.509 (PKIX)" RFC 5912 DOI 10.17487/RFC5912
<https://www.rfc-editor.org/info/rfc5912>

Schaad, J. S. Turner "Additional New ASN.1 Modules for the Cryptographic
Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)"
RFC 6268 DOI 10.17487/RFC6268 <https://www.rfc-editor.org/info/
rfc6268>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Schaad, J. Ramsdell, B. S. Turner "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 4.0 Message Specification" RFC 8551 DOI 10.17487/
RFC8551 <https://www.rfc-editor.org/info/rfc8551>

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 12

https://www.iso.org/standard/37971.html
https://www.iso.org/standard/37971.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc5083
https://www.rfc-editor.org/info/rfc5083
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8551

[RFC9629]

[SHS]

[X.680]

[X.690]

, , and ,
, ,

, August 2024, .

, ,
, , July 2015,

.

,
, ,

, February 2021, .

,

, , ,
February 2021, .

Housley, R. Gray, J. T. Okubo "Using Key Encapsulation Mechanism (KEM)
Algorithms in the Cryptographic Message Syntax (CMS)" RFC 9629 DOI
10.17487/RFC9629 <https://www.rfc-editor.org/info/rfc9629>

National Institute of Standards and Technology "Secure Hash Standard" NIST
FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4 <https://doi.org/10.6028/
NIST.FIPS.180-4>

ITU-T "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation" ITU-T Recommendation X.680 ISO/IEC
8824-1:2021 <https://www.itu.int/rec/T-REC-X.680>

ITU-T "Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 ISO/IEC 8825-1:2021

<https://www.itu.int/rec/T-REC-X.690>

[CMVP]

[NISTSP800-57pt1r5]

[RFC4086]

[RFC4262]

[RFC5990]

[RFC6194]

[SHOUP]

5.2. Informative References

,
, 2016,
.

, ,
, , May 2020,

.

, , and ,
, , , , June 2005,

.

,
, , , December

2005, .

, , , and ,
, ,

, September 2010, .

, , , and ,
, , ,

March 2011, .

, ,
, 2001,

.

National Institute of Standards and Technology "Cryptographic Module
Validation Program" <https://csrc.nist.gov/projects/cryptographic-module-
validation-program>

Barker, E. "Recommendation for Key Management: Part 1 - General"
NIST SP 800-57, Part 1, Revision 5 DOI 10.6028/nist.sp.800-57pt1r5
<https://doi.org/10.6028/nist.sp.800-57pt1r5>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Santesson, S. "X.509 Certificate Extension for Secure/Multipurpose Internet Mail
Extensions (S/MIME) Capabilities" RFC 4262 DOI 10.17487/RFC4262

<https://www.rfc-editor.org/info/rfc4262>

Randall, J. Kaliski, B. Brainard, J. S. Turner "Use of the RSA-KEM Key
Transport Algorithm in the Cryptographic Message Syntax (CMS)" RFC 5990 DOI
10.17487/RFC5990 <https://www.rfc-editor.org/info/rfc5990>

Polk, T. Chen, L. Turner, S. P. Hoffman "Security Considerations for the
SHA-0 and SHA-1 Message-Digest Algorithms" RFC 6194 DOI 10.17487/RFC6194

<https://www.rfc-editor.org/info/rfc6194>

Shoup, V. "A Proposal for an ISO Standard for Public Key Encryption"
Cryptology ePrint Archive Paper 2001/112 <https://eprint.iacr.org/
2001/112>

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 13

https://www.rfc-editor.org/info/rfc9629
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.itu.int/rec/T-REC-X.680
https://www.itu.int/rec/T-REC-X.690
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://doi.org/10.6028/nist.sp.800-57pt1r5
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4262
https://www.rfc-editor.org/info/rfc5990
https://www.rfc-editor.org/info/rfc6194
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2001/112

Appendix A. RSA-KEM Algorithm
The RSA-KEM algorithm is a one-pass (store-and-forward) cryptographic mechanism for an
originator to securely send keying material to a recipient using the recipient's RSA public key.

With the RSA-KEM algorithm, an originator encrypts a random integer (z) with the recipient's
RSA public key to produce a ciphertext (ct), and the originator derives a shared secret (SS) from
the random integer (z). The originator then sends the ciphertext (ct) to the recipient. The
recipient decrypts the ciphertext (ct) using their private key to recover the random integer (z),
and the recipient derives a shared secret (SS) from the random integer (z). In this way, the
originator and recipient obtain the same shared secret (SS).

The RSA-KEM algorithm depends on a key derivation function (KDF), which is used to derive the
shared secret (SS). Many key derivation functions support the inclusion of other information in
addition to the shared secret (SS) in the input to the function; however, no other information is
included as an input to the KDF by the RSA-KEM algorithm.

A.1. Originator's Operations: RSA-KEM Encapsulate()
Let (n,e) be the recipient's RSA public key; see for details.

Let nLen denote the length in bytes of the modulus n, i.e., the least integer such that 2(8*nLen) > n.

The originator performs the following operations:

Generate a random integer z between 0 and n-1 (see NOTE below), and convert z to a byte
string Z of length nLen, most significant byte first:

Encrypt the random integer z using the recipient's RSA public key (n,e) and convert the
resulting integer c to a ciphertext C, a byte string of length nLen:

Derive a symmetric shared secret SS of length ssLen bytes (which be the length of the
key-encryption key) from the byte string Z using the underlying key derivation function:

[RFC8017]

1.

 z = RandomInteger (0, n-1)

 Z = IntegerToString (z, nLen)

2.

 c = z^e mod n

 ct = IntegerToString (c, nLen)

3. MUST

 SS = KDF (Z, ssLen)

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 14

Output the shared secret SS and the ciphertext ct. Send the ciphertext ct to the recipient.

NOTE: The random integer z be generated independently at random for different
encryption operations, whether for the same or different recipients.

4.

MUST

A.2. Recipient's Operations: RSA-KEM Decapsulate()
Let (n,d) be the recipient's RSA private key; see for details, but other private key
formats are allowed.

Let ct be the ciphertext received from the originator.

Let nLen denote the length in bytes of the modulus n.

The recipient performs the following operations:

If the length of the encrypted keying material is less than nLen bytes, output "decryption
error", and stop.
Convert the ciphertext ct to an integer c, most significant byte first (see NOTE below):

If the integer c is not between 0 and n-1, output "decryption error", and stop.

Decrypt the integer c using the recipient's private key (n,d) to recover an integer z (see NOTE
below):

Convert the integer z to a byte string Z of length nLen, most significant byte first (see NOTE
below):

Derive a shared secret SS of length ssLen bytes from the byte string Z using the key
derivation function (see NOTE below):

Output the shared secret SS.

NOTE: Implementations reveal information about the integer z, the string Z, or
about the calculation of the exponentiation in Step 2, the conversion in Step 3, or the key
derivation in Step 4, whether by timing or other "side channels". The observable behavior of the
implementation be the same at these steps for all ciphertexts C that are in range. For

[RFC8017]

1.

2.

 c = StringToInteger (ct)

3.

 z = c^d mod n

4.

 Z = IntegerToString (z, nLen)

5.

 SS = KDF (Z, ssLen)

6.

SHOULD NOT

SHOULD

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 15

example, IntegerToString conversion should take the same amount of time regardless of the
actual value of the integer z. The integer z, the string Z, and other intermediate results be
securely deleted when they are no longer needed.

MUST

Appendix B. ASN.1 Syntax
The ASN.1 syntax for identifying the RSA-KEM algorithm is an extension of the syntax for the
"generic hybrid cipher" in ANS X9.44 .

The ASN.1 Module is unchanged from RFC 5990. The id-rsa-kem-spki object identifier is used in a
backward compatible manner in certificates and SMIMECapabilities . Of
course, the use of the id-kem-rsa object identifier in the new KEMRecipientInfo structure

 was not yet defined at the time that RFC 5990 was written.

[ANS-X9.44]

[RFC5280] [RFC8551]

[RFC9629]

B.1. Underlying Components
Implementations that conform to this specification support the KDF3 key
derivation function using SHA-256 .

KDF2 and KDF3 are both key derivation functions based on a hash function. The
only difference between KDF2 and KDF3 is the order of the components to be hashed.

The object identifier for KDF3 is:

The KDF3 parameters identify the underlying hash function. For alignment with ANS X9.44, the
hash function be an ASC X9-approved hash function. While the SHA-1 hash algorithm is
included in the ASN.1 definitions, SHA-1 be used. SHA-1 is considered to be obsolete;
see . SHA-1 remains in the ASN.1 module for compatibility with RFC 5990. In addition,
other hash functions be used with CMS.

MUST [ANS-X9.44]
[SHS]

[ANS-X9.44]

 KDF2 calculates T as: T = T || Hash (Z || D || otherInfo)

 KDF3 calculates T as: T = T || Hash (D || Z || otherInfo)

 id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) }

MUST
MUST NOT

[RFC6194]
MAY

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 16

Implementations that conform to this specification support the AES Key Wrap
key-encryption algorithm with a 128-bit key. There are three object identifiers for the AES Key
Wrap, one for each permitted size of the key-encryption key. There are three object identifiers
imported from , and none of these algorithm identifiers have associated parameters:

 kda-kdf3 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf3
 PARAMS TYPE KDF3-HashFunction ARE required
 -- No S/MIME caps defined -- }

 KDF3-HashFunction ::=
 AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF3-HashFunctions} }

 KDF3-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... }

 X9-HashFunctions DIGEST-ALGORITHM ::= {
 mda-sha1 | mda-sha224 | mda-sha256 | mda-sha384 |
 mda-sha512, ... }

MUST [RFC3394]

[RFC5912]

 kwa-aes128-wrap KEY-WRAP ::= {
 IDENTIFIER id-aes128-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-aes128-wrap } }

 kwa-aes192-wrap KEY-WRAP ::= {
 IDENTIFIER id-aes192-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-aes192-wrap } }

 kwa-aes256-wrap KEY-WRAP ::= {
 IDENTIFIER id-aes256-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-aes256-wrap } }

B.2. ASN.1 Module

<CODE BEGINS>
CMS-RSA-KEM-2023
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cms-rsa-kem-2023(79) }

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS ALL

IMPORTS

 KEM-ALGORITHM
 FROM KEMAlgorithmInformation-2023 -- [RFC9629]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 17

 AlgorithmIdentifier{}, PUBLIC-KEY, DIGEST-ALGORITHM,
 KEY-DERIVATION, KEY-WRAP, SMIME-CAPS
 FROM AlgorithmInformation-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

 kwa-aes128-wrap, kwa-aes192-wrap, kwa-aes256-wrap
 FROM CMSAesRsaesOaep-2009 -- [RFC5911]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-aes-02(38) }

 kwa-3DESWrap
 FROM CryptographicMessageSyntaxAlgorithms-2009 -- [RFC5911]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cmsalg-2001-02(37) }

 id-camellia128-wrap, id-camellia192-wrap, id-camellia256-wrap
 FROM CamelliaEncryptionAlgorithmInCMS -- [RFC3657]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs9(9) smime(16) modules(0)
 id-mod-cms-camellia(23) }

 mda-sha1, pk-rsa, RSAPublicKey
 FROM PKIXAlgs-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-algorithms2008-02(56) }

 mda-sha224, mda-sha256, mda-sha384, mda-sha512
 FROM PKIX1-PSS-OAEP-Algorithms-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54) } ;

-- Useful types and definitions

OID ::= OBJECT IDENTIFIER -- alias

NullParms ::= NULL

-- ISO/IEC 18033-2 arc

is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

-- NIST algorithm arc

nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16) us(840)
 organization(1) gov(101) csor(3) nistAlgorithm(4) }

-- PKCS #1 arc

pkcs-1 OID ::= { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) }

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 18

-- X9.44 arc

x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
 country(16) x9(840) x9Standards(9) x9-44(44) }

x9-44-components OID ::= { x9-44 components(1) }

-- RSA-KEM algorithm

id-rsa-kem OID ::= { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) alg(3) 14 }

id-rsa-kem-spki OID ::= id-rsa-kem

GenericHybridParameters ::= SEQUENCE {
 kem KeyEncapsulationMechanism,
 dem DataEncapsulationMechanism }

KeyEncapsulationMechanism ::=
 AlgorithmIdentifier { KEM-ALGORITHM, {KEMAlgorithms} }

KEMAlgorithms KEM-ALGORITHM ::= { kema-kem-rsa | kema-rsa-kem, ... }

kema-rsa-kem KEM-ALGORITHM ::= {
 IDENTIFIER id-rsa-kem-spki
 PARAMS TYPE GenericHybridParameters ARE optional
 PUBLIC-KEYS { pk-rsa | pk-rsa-kem }
 UKM ARE optional
 SMIME-CAPS { TYPE GenericHybridParameters
 IDENTIFIED BY id-rsa-kem-spki } }

kema-kem-rsa KEM-ALGORITHM ::= {
 IDENTIFIER id-kem-rsa
 PARAMS TYPE RsaKemParameters ARE optional
 PUBLIC-KEYS { pk-rsa | pk-rsa-kem }
 UKM ARE optional
 SMIME-CAPS { TYPE GenericHybridParameters
 IDENTIFIED BY id-rsa-kem-spki } }

id-kem-rsa OID ::= { is18033-2 key-encapsulation-mechanism(2)
 rsa(4) }

RsaKemParameters ::= SEQUENCE {
 keyDerivationFunction KeyDerivationFunction,
 keyLength KeyLength }

pk-rsa-kem PUBLIC-KEY ::= {
 IDENTIFIER id-rsa-kem-spki
 KEY RSAPublicKey
 PARAMS TYPE GenericHybridParameters ARE preferredAbsent
 -- Private key format is not specified here --
 CERT-KEY-USAGE {keyEncipherment} }

KeyDerivationFunction ::=
 AlgorithmIdentifier { KEY-DERIVATION, {KDFAlgorithms} }

KDFAlgorithms KEY-DERIVATION ::= { kda-kdf2 | kda-kdf3, ... }

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 19

KeyLength ::= INTEGER (1..MAX)

DataEncapsulationMechanism ::=
 AlgorithmIdentifier { KEY-WRAP, {DEMAlgorithms} }

DEMAlgorithms KEY-WRAP ::= {
 X9-SymmetricKeyWrappingSchemes |
 Camellia-KeyWrappingSchemes, ... }

X9-SymmetricKeyWrappingSchemes KEY-WRAP ::= {
 kwa-aes128-wrap | kwa-aes192-wrap | kwa-aes256-wrap |
 kwa-3DESWrap, ... }

X9-SymmetricKeyWrappingScheme ::=
 AlgorithmIdentifier { KEY-WRAP, {X9-SymmetricKeyWrappingSchemes} }

Camellia-KeyWrappingSchemes KEY-WRAP ::= {
 kwa-camellia128-wrap | kwa-camellia192-wrap |
 kwa-camellia256-wrap, ... }

Camellia-KeyWrappingScheme ::=
 AlgorithmIdentifier { KEY-WRAP, {Camellia-KeyWrappingSchemes} }

kwa-camellia128-wrap KEY-WRAP ::= {
 IDENTIFIER id-camellia128-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-camellia128-wrap } }

kwa-camellia192-wrap KEY-WRAP ::= {
 IDENTIFIER id-camellia192-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-camellia192-wrap } }

kwa-camellia256-wrap KEY-WRAP ::= {
 IDENTIFIER id-camellia256-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-camellia256-wrap } }

-- Key Derivation Functions

id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

kda-kdf2 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf2
 PARAMS TYPE KDF2-HashFunction ARE required
 -- No S/MIME caps defined -- }

KDF2-HashFunction ::=
 AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF2-HashFunctions} }

KDF2-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... }

id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

kda-kdf3 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf3
 PARAMS TYPE KDF3-HashFunction ARE required

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 20

 -- No S/MIME caps defined -- }

KDF3-HashFunction ::=
 AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF3-HashFunctions} }

KDF3-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... }

-- Hash Functions

X9-HashFunctions DIGEST-ALGORITHM ::= {
 mda-sha1 | mda-sha224 | mda-sha256 | mda-sha384 |
 mda-sha512, ... }

-- Updates for the SMIME-CAPS Set from RFC 5911

SMimeCapsSet SMIME-CAPS ::= {
 kema-kem-rsa.&smimeCaps |
 kwa-aes128-wrap |
 kwa-aes192-wrap |
 kwa-aes256-wrap |
 kwa-camellia128-wrap.&smimeCaps |
 kwa-camellia192-wrap.&smimeCaps |
 kwa-camellia256-wrap.&smimeCaps,
 ... }

END
<CODE ENDS>

Appendix C. SMIMECapabilities Examples
To indicate support for the RSA-KEM algorithm coupled with the KDF3 key derivation function
with SHA-256 and the AES Key Wrap symmetric key-encryption algorithm 128-bit key-encryption
key, the SMIMECapabilities will include the following entry:

SEQUENCE {
 id-rsa-kem-spki, -- RSA-KEM algorithm
 SEQUENCE { -- GenericHybridParameters
 SEQUENCE { -- key encapsulation mechanism
 id-kem-rsa, -- RSA-KEM
 SEQUENCE { -- RsaKemParameters
 SEQUENCE { -- key derivation function
 id-kdf-kdf3, -- KDF3
 SEQUENCE { -- KDF3-HashFunction
 id-sha256 -- SHA-256; no parameters (preferred)
 },
 16 -- KEK length in bytes
 },
 SEQUENCE { -- data encapsulation mechanism
 id-aes128-Wrap -- AES-128 Wrap; no parameters
 }
 }
}

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 21

This SMIMECapability value has the following DER encoding (in hexadecimal):

To indicate support for the RSA-KEM algorithm coupled with the KDF3 key derivation function
with SHA-384 and the AES Key Wrap symmetric key-encryption algorithm 192-bit key-encryption
key, the SMIMECapabilities will include the following SMIMECapability value (in hexadecimal):

To indicate support for the RSA-KEM algorithm coupled with the KDF3 key derivation function
with SHA-512 and the AES Key Wrap symmetric key-encryption algorithm 256-bit key-encryption
key, the SMIMECapabilities will include the following SMIMECapability value (in hexadecimal):

30 47
 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e -- id-rsa-kem-spki
 30 38
 30 29
 06 07 28 81 8c 71 02 02 04 -- id-kem-rsa
 30 1e
 30 19
 06 0a 2b 81 05 10 86 48 09 2c 01 02 -- id-kdf-kdf3
 30 0b
 06 09 60 86 48 01 65 03 04 02 01 -- id-sha256
 02 01 10 -- 16 bytes
 30 0b
 06 09 60 86 48 01 65 03 04 01 05 -- id-aes128-Wrap

 30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
 38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
 06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
 60 86 48 01 65 03 04 02 02 02 01 18 30 0b 06 09
 60 86 48 01 65 03 04 01 19

 30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
 38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
 06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
 60 86 48 01 65 03 04 02 03 02 01 20 30 0b 06 09
 60 86 48 01 65 03 04 01 2d

Appendix D. RSA-KEM CMS Enveloped-Data Example
This example shows the establishment of an AES-128 content-encryption key using:

RSA-KEM with a 3072-bit key and KDF3 with SHA-256;
KEMRecipientInfo key derivation using KDF3 with SHA-256; and
KEMRecipientInfo Key Wrap using AES-128-KEYWRAP.

In real-world use, the originator would encrypt the content-encryption key in a manner that
would allow decryption with their own private key as well as the recipient's private key. This is
omitted in an attempt to simplify the example.

•
•
•

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 22

D.1. Originator RSA-KEM Encapsulate() Processing
Alice obtains Bob's public key:

Bob's RSA public key has the following key identifier:

Alice randomly generates integer z between 0 and n-1:

Alice encrypts integer z using the Bob's RSA public key. The result is called ct:

 -----BEGIN PUBLIC KEY-----
 MIIBojANBgkqhkiG9w0BAQEFAAOCAY8AMIIBigKCAYEA3ocW14cxncPJ47fnEjBZ
 AyfC2lqapL3ET4jvV6C7gGeVrRQxWPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JH
 Keeza+itfuhsz3yifgeEpeK8T+SusHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqq
 vS3jg/VO+OPnZbofoHOOevt8Q/roahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx
 2AHHZJevo3nmRnlgJXo6mE00E/6qkhjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0v
 SH7qUl8/vN13y4UOFkn8hM4kmZ6bJqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39a
 uLNnH3EXdXaV1tk75H3qC7zJaeGWMJyQfOE3YfEGRKn8fxubji716D8UecAxAzFy
 FL6m1JiOyV5acAiOpxN14qRYZdHnXOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fS
 whSZG7VNf+vgNWTLNYSYLI04KiMdulnvU6ds+QPz+KKtAgMBAAE=
 -----END PUBLIC KEY-----

 9eeb67c9b95a74d44d2f16396680e801b5cba49c

 9c126102a5c1c0354672a3c2f19fc9ddea988f815e1da812c7bd4f8eb082bdd1
 4f85a7f7c2f1af11d5333e0d6bcb375bf855f208da72ba27e6fb0655f2825aa6
 2b93b1f9bbd3491fed58f0380fa0de36430e3a144d569600bd362609be5b9481
 0875990b614e406fa6dff500043cbca95968faba61f795096a7fb3687a51078c
 4ca2cb663366b0bea0cd9cccac72a25f3f4ed03deb68b4453bba44b943f4367b
 67d6cd10c8ace53f545aac50968fc3c6ecc80f3224b64e37038504e2d2c0e2b2
 9d45e46c62826d96331360e4c17ea3ef89a9efc5fac99eda830e81450b6534dc
 0bdf042b8f3b706649c631fe51fc2445cc8d447203ec2f41f79cdfea16de1ce6
 abdfdc1e2ef2e5d5d8a65e645f397240ef5a26f5e4ff715de782e30ecf477293
 e89e13171405909a8e04dd31d21d0c57935fc1ceea8e1033e31e1bc8c56da0f3
 d79510f3f380ff58e5a61d361f2f18e99fbae5663172e8cd1f21deaddc5bbbea
 060d55f1842b93d1a9c888d0bf85d0af9947fe51acf940c7e7577eb79cabecb3

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 23

Alice derives the shared secret (SS) using KDF3 with SHA-256:

 c071fc273af8e7bdb152e06bf73310361074154a43abcf3c93c13499d2065344
 3eed9ef5d3c0685e4aa76a6854815bb97691ff9f8dac15eea7d74f452bf350a6
 46163d68288e978cbf7a73089ee52712f9a4f49e06ace7bbc85ab14d4e336c97
 c5728a2654138c7b26e8835c6b0a9fbed26495c4eadf745a2933be283f6a88b1
 6695fc06666873cfb6d36718ef3376cefc100c3941f3c494944078325807a559
 186b95ccabf3714cfaf79f83bd30537fdd9aed5a4cdcbd8bd0486faed73e9d48
 6b3087d6c806546b6e2671575c98461e441f65542bd95de26d0f53a64e7848d7
 31d9608d053e8d345546602d86236ffe3704c98ad59144f3089e5e6d527b5497
 ba103c79d62e80d0235410b06f71a7d9bd1c38000f910d6312ea2f20a3557535
 ad01b3093fb5f7ee507080d0f77d48c9c3b3796f6b7dd3786085fb895123f04c
 a1f1c1be22c747a8dface32370fb0d570783e27dbb7e74fca94ee39676fde3d8
 a9553d878224736e37e191dab953c7e228c07ad5ca3122421c14debd072a9ab6

 3cf82ec41b54ed4d37402bbd8f805a52

D.2. Originator CMS Processing
Alice encodes the CMSORIforKEMOtherInfo structure with the algorithm identifier for AES-128-
KEYWRAP and a key length of 16 octets. The DER encoding of CMSORIforKEMOtherInfo produces
18 octets:

The CMSORIforKEMOtherInfo structure contains:

Alice derives the key-encryption key from shared secret produced by RSA-KEM Encapsulate() and
the CMSORIforKEMOtherInfo structure with KDF3 and SHA-256. The KEK is:

Alice randomly generates a 128-bit content-encryption key:

 3010300b0609608648016503040105020110

 0 16: SEQUENCE {
 2 11: SEQUENCE {
 4 9: OBJECT IDENTIFIER aes128-wrap (2 16 840 1 101 3 4 1 5)
 : }
 15 1: INTEGER 16
 : }

 e6dc9d62ff2b469bef604c617b018718

 77f2a84640304be7bd42670a84a1258b

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 24

Alice uses AES-128-KEYWRAP to encrypt the 128-bit content-encryption key with the derived key-
encryption key:

Alice encrypts the padded content using AES-128-CBC with the content-encryption key. The 16-
octet IV used is:

The padded content plaintext is:

The resulting ciphertext is:

Alice encodes the EnvelopedData (using KEMRecipientInfo) and ContentInfo, and then sends the
result to Bob. The Base64-encoded result is:

This result decodes to:

 28782e5d3d794a7616b863fbcfc719b78f12de08cf286e09

 480ccafebabefacedbaddecaf8887781

 48656c6c6f2c20776f726c6421030303

 c6ca65db7bdd76b0f37e2fab6264b66d

 MIICXAYJKoZIhvcNAQcDoIICTTCCAkkCAQMxggIEpIICAAYLKoZIhvcNAQkQDQMw
 ggHvAgEAgBSe62fJuVp01E0vFjlmgOgBtcuknDAJBgcogYxxAgIEBIIBgMBx/Cc6
 +Oe9sVLga/czEDYQdBVKQ6vPPJPBNJnSBlNEPu2e9dPAaF5Kp2poVIFbuXaR/5+N
 rBXup9dPRSvzUKZGFj1oKI6XjL96cwie5ScS+aT0ngas57vIWrFNTjNsl8VyiiZU
 E4x7JuiDXGsKn77SZJXE6t90Wikzvig/aoixZpX8BmZoc8+202cY7zN2zvwQDDlB
 88SUlEB4MlgHpVkYa5XMq/NxTPr3n4O9MFN/3ZrtWkzcvYvQSG+u1z6dSGswh9bI
 BlRrbiZxV1yYRh5EH2VUK9ld4m0PU6ZOeEjXMdlgjQU+jTRVRmAthiNv/jcEyYrV
 kUTzCJ5ebVJ7VJe6EDx51i6A0CNUELBvcafZvRw4AA+RDWMS6i8go1V1Na0Bswk/
 tffuUHCA0Pd9SMnDs3lva33TeGCF+4lRI/BMofHBviLHR6jfrOMjcPsNVweD4n27
 fnT8qU7jlnb949ipVT2HgiRzbjfhkdq5U8fiKMB61coxIkIcFN69ByqatjAbBgor
 gQUQhkgJLAECMA0GCWCGSAFlAwQCAQUAAgEQMAsGCWCGSAFlAwQBBQQYKHguXT15
 SnYWuGP7z8cZt48S3gjPKG4JMDwGCSqGSIb3DQEHATAdBglghkgBZQMEAQIEEEgM
 yv66vvrO263eyviId4GAEMbKZdt73Xaw834vq2Jktm0=

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 25

 0 604: SEQUENCE {
 4 9: OBJECT IDENTIFIER envelopedData (1 2 840 113549 1 7 3)
 15 589: [0] {
 19 585: SEQUENCE {
 23 1: INTEGER 3
 26 516: SET {
 30 512: [4] {
 34 11: OBJECT IDENTIFIER
 : KEMRecipientInfo (1 2 840 113549 1 9 16 13 3)
 47 495: SEQUENCE {
 51 1: INTEGER 0
 54 20: [0]
 : 9E EB 67 C9 B9 5A 74 D4 4D 2F 16 39 66 80 E8 01
 : B5 CB A4 9C
 76 9: SEQUENCE {
 78 7: OBJECT IDENTIFIER kemRSA (1 0 18033 2 2 4)
 : }
 87 384: OCTET STRING
 : C0 71 FC 27 3A F8 E7 BD B1 52 E0 6B F7 33 10 36
 : 10 74 15 4A 43 AB CF 3C 93 C1 34 99 D2 06 53 44
 : 3E ED 9E F5 D3 C0 68 5E 4A A7 6A 68 54 81 5B B9
 : 76 91 FF 9F 8D AC 15 EE A7 D7 4F 45 2B F3 50 A6
 : 46 16 3D 68 28 8E 97 8C BF 7A 73 08 9E E5 27 12
 : F9 A4 F4 9E 06 AC E7 BB C8 5A B1 4D 4E 33 6C 97
 : C5 72 8A 26 54 13 8C 7B 26 E8 83 5C 6B 0A 9F BE
 : D2 64 95 C4 EA DF 74 5A 29 33 BE 28 3F 6A 88 B1
 : 66 95 FC 06 66 68 73 CF B6 D3 67 18 EF 33 76 CE
 : FC 10 0C 39 41 F3 C4 94 94 40 78 32 58 07 A5 59
 : 18 6B 95 CC AB F3 71 4C FA F7 9F 83 BD 30 53 7F
 : DD 9A ED 5A 4C DC BD 8B D0 48 6F AE D7 3E 9D 48
 : 6B 30 87 D6 C8 06 54 6B 6E 26 71 57 5C 98 46 1E
 : 44 1F 65 54 2B D9 5D E2 6D 0F 53 A6 4E 78 48 D7
 : 31 D9 60 8D 05 3E 8D 34 55 46 60 2D 86 23 6F FE
 : 37 04 C9 8A D5 91 44 F3 08 9E 5E 6D 52 7B 54 97
 : BA 10 3C 79 D6 2E 80 D0 23 54 10 B0 6F 71 A7 D9
 : BD 1C 38 00 0F 91 0D 63 12 EA 2F 20 A3 55 75 35
 : AD 01 B3 09 3F B5 F7 EE 50 70 80 D0 F7 7D 48 C9
 : C3 B3 79 6F 6B 7D D3 78 60 85 FB 89 51 23 F0 4C
 : A1 F1 C1 BE 22 C7 47 A8 DF AC E3 23 70 FB 0D 57
 : 07 83 E2 7D BB 7E 74 FC A9 4E E3 96 76 FD E3 D8
 : A9 55 3D 87 82 24 73 6E 37 E1 91 DA B9 53 C7 E2
 : 28 C0 7A D5 CA 31 22 42 1C 14 DE BD 07 2A 9A B6
475 27: SEQUENCE {
477 10: OBJECT IDENTIFIER
 : kdf3 (1 3 133 16 840 9 44 1 2)
489 13: SEQUENCE {
491 9: OBJECT IDENTIFIER
 : sha-256 (2 16 840 1 101 3 4 2 1)
502 0: NULL
 : }
 : }
504 1: INTEGER 16
507 11: SEQUENCE {
509 9: OBJECT IDENTIFIER
 : aes128-wrap (2 16 840 1 101 3 4 1 5)
 : }
520 24: OCTET STRING

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 26

 : 28 78 2E 5D 3D 79 4A 76 16 B8 63 FB CF C7 19 B7
 : 8F 12 DE 08 CF 28 6E 09
 : }
 : }
 : }
546 60: SEQUENCE {
548 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
559 29: SEQUENCE {
561 9: OBJECT IDENTIFIER
 : aes128-CBC (2 16 840 1 101 3 4 1 2)
572 16: OCTET STRING
 : 48 0C CA FE BA BE FA CE DB AD DE CA F8 88 77 81
 : }
590 16: [0] C6 CA 65 DB 7B DD 76 B0 F3 7E 2F AB 62 64 B6 6D
 : }
 : }
 : }
 : }

D.3. Recipient RSA-KEM Decapsulate() Processing
Bob's private key:

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 27

Bob checks that the length of the ciphertext is less than nLen bytes.

Bob checks that the ciphertext is greater than zero and is less than his RSA modulus.

Bob decrypts the ciphertext with his RSA private key to obtain the integer z:

 -----BEGIN PRIVATE KEY-----
 MIIG5AIBAAKCAYEA3ocW14cxncPJ47fnEjBZAyfC2lqapL3ET4jvV6C7gGeVrRQx
 WPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JHKeeza+itfuhsz3yifgeEpeK8T+Su
 sHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqqvS3jg/VO+OPnZbofoHOOevt8Q/ro
 ahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx2AHHZJevo3nmRnlgJXo6mE00E/6q
 khjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0vSH7qUl8/vN13y4UOFkn8hM4kmZ6b
 JqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39auLNnH3EXdXaV1tk75H3qC7zJaeGW
 MJyQfOE3YfEGRKn8fxubji716D8UecAxAzFyFL6m1JiOyV5acAiOpxN14qRYZdHn
 XOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fSwhSZG7VNf+vgNWTLNYSYLI04KiMd
 ulnvU6ds+QPz+KKtAgMBAAECggGATFfkSkUjjJCjLvDk4aScpSx6+Rakf2hrdS3x
 jwqhyUfAXgTTeUQQBs1HVtHCgxQd+qlXYn3/qu8TeZVwG4NPztyi/Z5yB1wOGJEV
 3k8N/ytul6pJFFn6p48VM01bUdTrkMJbXERe6g/rr6dBQeeItCaOK7N5SIJH3Oqh
 9xYuB5tH4rquCdYLmt17Tx8CaVqU9qPY3vOdQEOwIjjMV8uQUR8rHSO9KkSj8AGs
 Lq9kcuPpvgJc2oqMRcNePS2WVh8xPFktRLLRazgLP8STHAtjT6SlJ2UzkUqfDHGK
 q/BoXxBDu6L1VDwdnIS5HXtL54ElcXWsoOyKF8/ilmhRUIUWRZFmlS1ok8IC5IgX
 UdL9rJVZFTRLyAwmcCEvRM1asbBrhyEyshSOuN5nHJi2WVJ+wSHijeKl1qeLlpMk
 HrdIYBq4Nz7/zXmiQphpAy+yQeanhP8O4O6C8e7RwKdpxe44su4Z8fEgA5yQx0u7
 8yR1EhGKydX5bhBLR5Cm1VM7rT2BAoHBAP/+e5gZLNf/ECtEBZjeiJ0VshszOoUq
 haUQPA+9Bx9pytsoKm5oQhB7QDaxAvrn8/FUW2aAkaXsaj9F+/q30AYSQtExai9J
 fdKKook3oimN8/yNRsKmhfjGOj8hd4+GjX0qoMSBCEVdT+bAjjry8wgQrqReuZnu
 oXU85dmb3jvv0uIczIKvTIeyjXE5afjQIJLmZFXsBm09BG87Ia5EFUKly96BOMJh
 /QWEzuYYXDqOFfzQtkAefXNFW21Kz4Hw2QKBwQDeiGh4lxCGTjECvG7fauMGlu+q
 DSdYyMHif6t6mx57eS16EjvOrlXKItYhIyzW8Kw0rf/CSB2j8ig1GkMLTOgrGIJ1
 0322o50FOr5oOmZPueeR4pOyAP0fgQ8DD1L3JBpY68/8MhYbsizVrR+Ar4jM0f96
 W2bF5Xj3h+fQTDMkx6VrCCQ6miRmBUzH+ZPs5n/lYOzAYrqiKOanaiHy4mjRvlsy
 mjZ6z5CG8sISqcLQ/k3Qli5pOY/v0rdBjgwAW/UCgcEAqGVYGjKdXCzuDvf9EpV4
 mpTWB6yIV2ckaPOn/tZi5BgsmEPwvZYZt0vMbu28Px7sSpkqUuBKbzJ4pcy8uC3I
 SuYiTAhMiHS4rxIBX3BYXSuDD2RD4vG1+XM0h6jVRHXHh0nOXdVfgnmigPGz3jVJ
 B8oph/jD8O2YCk4YCTDOXPEi8Rjusxzro+whvRR+kG0gsGGcKSVNCPj1fNISEte4
 gJId7O1mUAAzeDjn/VaS/PXQovEMolssPPKn9NocbKbpAoHBAJnFHJunl22W/lrr
 ppmPnIzjI30YVcYOA5vlqLKyGaAsnfYqP1WUNgfVhq2jRsrHx9cnHQI9Hu442PvI
 x+c5H30YFJ4ipE3eRRRmAUi4ghY5WgD+1hw8fqyUW7E7l5LbSbGEUVXtrkU5G64T
 UR91LEyMF8OPATdiV/KD4PWYkgaqRm3tVEuCVACDTQkqNsOOi3YPQcm270w6gxfQ
 SOEy/kdhCFexJFA8uZvmh6Cp2crczxyBilR/yCxqKOONqlFdOQKBwFbJk5eHPjJz
 AYueKMQESPGYCrwIqxgZGCxaqeVArHvKsEDx5whI6JWoFYVkFA8F0MyhukoEb/2x
 2qB5T88Dg3EbqjTiLg3qxrWJ2OxtUo8pBP2I2wbl2NOwzcbrlYhzEZ8bJyxZu5i1
 sYILC8PJ4Qzw6jS4Qpm4y1WHz8e/ElW6VyfmljZYA7f9WMntdfeQVqCVzNTvKn6f
 hg6GSpJTzp4LV3ougi9nQuWXZF2wInsXkLYpsiMbL6Fz34RwohJtYA==
 -----END PRIVATE KEY-----

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 28

Bob checks that the integer z is greater than zero and is less than his RSA modulus.

Bob derives the shared secret (SS) using KDF3 with SHA-256:

 9c126102a5c1c0354672a3c2f19fc9ddea988f815e1da812c7bd4f8eb082bdd1
 4f85a7f7c2f1af11d5333e0d6bcb375bf855f208da72ba27e6fb0655f2825aa6
 2b93b1f9bbd3491fed58f0380fa0de36430e3a144d569600bd362609be5b9481
 0875990b614e406fa6dff500043cbca95968faba61f795096a7fb3687a51078c
 4ca2cb663366b0bea0cd9cccac72a25f3f4ed03deb68b4453bba44b943f4367b
 67d6cd10c8ace53f545aac50968fc3c6ecc80f3224b64e37038504e2d2c0e2b2
 9d45e46c62826d96331360e4c17ea3ef89a9efc5fac99eda830e81450b6534dc
 0bdf042b8f3b706649c631fe51fc2445cc8d447203ec2f41f79cdfea16de1ce6
 abdfdc1e2ef2e5d5d8a65e645f397240ef5a26f5e4ff715de782e30ecf477293
 e89e13171405909a8e04dd31d21d0c57935fc1ceea8e1033e31e1bc8c56da0f3
 d79510f3f380ff58e5a61d361f2f18e99fbae5663172e8cd1f21deaddc5bbbea
 060d55f1842b93d1a9c888d0bf85d0af9947fe51acf940c7e7577eb79cabecb3

 3cf82ec41b54ed4d37402bbd8f805a52

D.4. Recipient CMS Processing
Bob encodes the CMSORIforKEMOtherInfo structure with the algorithm identifier for AES-128-
KEYWRAP and a key length of 16 octets. The DER encoding of CMSORIforKEMOtherInfo is not
repeated here.

Bob derives the key-encryption key from shared secret and the CMSORIforKEMOtherInfo
structure with KDF3 and SHA-256, the KEK is:

Bob uses AES-KEY-WRAP to decrypt the content-encryption key with the key-encryption key. The
content-encryption key is:

Bob decrypts the content using AES-128-CBC with the content- encryption key. The 16-octet IV
used is:

The received ciphertext content is:

 e6dc9d62ff2b469bef604c617b018718

 77f2a84640304be7bd42670a84a1258b

 480ccafebabefacedbaddecaf8887781

 c6ca65db7bdd76b0f37e2fab6264b66d

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 29

The resulting padded plaintext content is:

After stripping the AES-CBC padding, the plaintext content is:

 48656c6c6f2c20776f726c6421030303

 Hello, world!

Acknowledgements
We thank , , and as the original authors of ;
this document is based on their work.

We thank the members of the ASC X9F1 working group for their contributions to drafts of ANS
X9.44, which led to .

We thank , , , , and for helping
bring to fruition.

We thank , , , , ,
, and for careful review and thoughtful comments that greatly improved this

document.

James Randall Burt Kaliski John Brainard [RFC5990]

[RFC5990]

Blake Ramsdell Jim Schaad Magnus Nystrom Bob Griffin John Linn
[RFC5990]

Burt Kaliski Alex Railean Joe Mandel Mike Ounsworth Peter Campbell Daniel Van
Geest David Ireland

Authors' Addresses
Russ Housley
Vigil Security, LLC
516 Dranesville Road

, Herndon VA 20170
United States of America

housley@vigilsec.comEmail:

Sean Turner
sn3rd

sean@sn3rd.comEmail:

RFC 9690 RSA-KEM with CMS KEMRecipientInfo February 2025

Housley & Turner Standards Track Page 30

mailto:housley@vigilsec.com
mailto:sean@sn3rd.com

	RFC 9690
	Use of the RSA-KEM Algorithm in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. RSA-KEM Algorithm Rationale
	1.2. RSA-KEM Algorithm Summary
	1.3. CMS KEMRecipientInfo Processing Summary
	1.4. Conventions and Definitions
	1.5. ASN.1
	1.6. Changes Since RFC 5990

	2. Use of the RSA-KEM Algorithm in CMS
	2.1. Mandatory To Implement
	2.2. RecipientInfo Conventions
	2.3. Certificate Conventions
	2.4. SMIMECapabilities Attribute Conventions

	3. Security Considerations
	4. IANA Considerations
	5. References
	5.1. Normative References
	5.2. Informative References

	Appendix A. RSA-KEM Algorithm
	A.1. Originator's Operations: RSA-KEM Encapsulate()
	A.2. Recipient's Operations: RSA-KEM Decapsulate()

	Appendix B. ASN.1 Syntax
	B.1. Underlying Components
	B.2. ASN.1 Module

	Appendix C. SMIMECapabilities Examples
	Appendix D. RSA-KEM CMS Enveloped-Data Example
	D.1. Originator RSA-KEM Encapsulate() Processing
	D.2. Originator CMS Processing
	D.3. Recipient RSA-KEM Decapsulate() Processing
	D.4. Recipient CMS Processing

	Acknowledgements
	Authors' Addresses

 Use of the RSA-KEM Algorithm in the Cryptographic Message Syntax (CMS)

 Vigil Security, LLC

 516 Dranesville Road
 Herndon
 VA
 20170
 United States of America

 housley@vigilsec.com

 sn3rd

 sean@sn3rd.com

 SEC
 lamps
 Key Encapsulation Mechanism (KEM)
 KEMRecipientInfo

 The RSA Key Encapsulation Mechanism (RSA-KEM) algorithm is a one-pass
(store-and-forward) cryptographic mechanism for an originator to securely
send keying material to a recipient using the recipient's RSA public key.
The RSA-KEM algorithm is specified in Clause 11.5 of ISO/IEC: 18033-2:2006.
This document specifies the conventions for using the RSA-KEM algorithm as a
standalone KEM algorithm and the conventions for using the RSA-KEM algorithm
with the Cryptographic Message Syntax (CMS) using KEMRecipientInfo as
specified in RFC 9629. This document obsoletes RFC 5990.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . RSA-KEM Algorithm Rationale

 . RSA-KEM Algorithm Summary

 . CMS KEMRecipientInfo Processing Summary

 . Conventions and Definitions

 . ASN.1

 . Changes Since RFC 5990

 . Use of the RSA-KEM Algorithm in CMS

 . Mandatory To Implement

 . RecipientInfo Conventions

 . Certificate Conventions

 . SMIMECapabilities Attribute Conventions

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . RSA-KEM Algorithm

 . Originator's Operations: RSA-KEM Encapsulate()

 . Recipient's Operations: RSA-KEM Decapsulate()

 . ASN.1 Syntax

 . Underlying Components

 . ASN.1 Module

 . SMIMECapabilities Examples

 . RSA-KEM CMS Enveloped-Data Example

 . Originator RSA-KEM Encapsulate() Processing

 . Originator CMS Processing

 . Recipient RSA-KEM Decapsulate() Processing

 . Recipient CMS Processing

 Acknowledgements

 Authors' Addresses

 Introduction
 The RSA Key Encapsulation Mechanism (RSA-KEM) algorithm is a one-pass
(store-and-forward) cryptographic mechanism for an originator to securely
send keying material to a recipient using the recipient's RSA public key.
The RSA-KEM algorithm is specified in Clause 11.5 of .
 The RSA-KEM algorithm takes a different approach than other RSA key
transport mechanisms with the goal of providing higher
security assurance while also satisfying the KEM interface. The
RSA-KEM algorithm encrypts a random integer with the recipient's
RSA public key and derives a shared secret from the random integer. The
originator and recipient can derive a symmetric key from the shared
secret. For example, a key-encryption key (KEK) can be derived from the shared
secret to wrap a content-encryption key (CEK).
 In the Cryptographic Message Syntax (CMS) using
KEMRecipientInfo , the shared-secret value
is input to a key derivation function (KDF) to compute a key-encryption key and
wrap a symmetric content-encryption key with the key-encryption key. In
this way, the originator and the recipient end up with the same
content-encryption key.
 For completeness, a specification of the RSA-KEM algorithm is given in
 of this document. ASN.1 syntax is given in .

 RSA-KEM Algorithm Rationale
 The RSA-KEM algorithm provides higher security assurance than other
 variants of the RSA cryptosystem for two reasons. First, the input to
 the underlying RSA operation is a string-encoded random integer
 between 0 and n-1, where n is the RSA modulus, so it does not have any
 structure that could be exploited by an adversary. Second, the input
 is independent of the keying material, so the result of the RSA
 decryption operation is not directly available to an adversary. As a
 result, the RSA-KEM algorithm enjoys a "tight" security proof in the
 random oracle model. (In other padding schemes, such as PKCS #1 v1.5
 , the input has structure and depends on the
 keying material. Additionally, the provable security assurances are
 not as strong.)
 The approach is also architecturally convenient because the
public-key operations are separate from the symmetric operations on the
keying material. Another benefit is that the length of the keying material
is determined by the symmetric algorithms, not the size of the RSA modulus.

 RSA-KEM Algorithm Summary
 All KEM algorithms provide three functions: KeyGen(), Encapsulate(),
and Decapsulate().
 The following summarizes these three functions for the RSA-KEM algorithm:

 KeyGen() -> (pk, sk):

 Generate the public key (pk) and a private key (sk) as
 described in .

 Encapsulate(pk) -> (ct, SS):

 Given the recipient's public key (pk), produce a ciphertext
 (ct) to be passed to the recipient and a shared secret (SS) for
 use by the originator as follows:

 Generate a random integer z between 0 and n-1.

 Encrypt the integer z with the recipient's RSA public key to obtain the ciphertext:

 ct = z^e mod n

 Derive a shared secret from the integer z using a Key
 Derivation Function (KDF):

 SS = KDF(Z, ssLen)

 The ciphertext and the shared secret are returned by the
 function. The originator sends the ciphertext to the
 recipient.

 Decapsulate(sk, ct) -> SS:

 Given the private key (sk) and the ciphertext (ct), produce
 the shared secret (SS) for the recipient as follows:

 Decrypt the ciphertext with the recipient's RSA private
 key to obtain the random integer z:

 z = ct^d mod n

 Derive a shared secret from the integer z:

 SS = KDF(Z, ssLen)

 The shared secret is returned by the function.

 CMS KEMRecipientInfo Processing Summary
 To support the RSA-KEM algorithm, the CMS originator
 MUST implement Encapsulate().
 Given a content-encryption key CEK, the RSA-KEM algorithm
 processing by the originator to produce the values that are carried in
 the CMS KEMRecipientInfo can be summarized as follows:

 Obtain the shared secret using the Encapsulate() function of
 the RSA-KEM algorithm and the recipient's RSA public key:

 (ct, SS) = Encapsulate(pk)

 Derive a key-encryption key KEK from the shared secret:

 KEK = KDF(SS, kekLength, otherInfo)

 Wrap the CEK with the KEK to obtain wrapped keying material WK:

 WK = WRAP(KEK, CEK)

 The originator sends the ciphertext and WK to the recipient in
 the CMS KEMRecipientInfo structure.

 To support the RSA-KEM algorithm, the CMS recipient
 MUST implement Decapsulate().
 The RSA-KEM algorithm recipient processing of the values obtained
 from the KEMRecipientInfo structure is summarized as follows:

 Obtain the shared secret using the Decapsulate() function of
 the RSA-KEM algorithm and the recipient's RSA private key:

 SS = Decapsulate(sk, ct)

 Derive a key-encryption key KEK from the shared secret:

 KEK = KDF(SS, kekLength, otherInfo)

 Unwrap the WK with the KEK to obtain the content-encryption key CEK:

 CEK = UNWRAP(KEK, WK)

 Note that the KDF used to process the KEMRecipientInfo structure MAY be
different from the KDF used to derive the shared secret in the RSA-KEM
algorithm.

 Conventions and Definitions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 ASN.1
 CMS values are generated using ASN.1 , which uses the Basic
Encoding Rules (BER) and the Distinguished Encoding Rules (DER) .

 Changes Since RFC 5990
 RFC 5990 specified the conventions for using the RSA-KEM algorithm
in CMS as a key transport algorithm. That is, it used KeyTransRecipientInfo
for each recipient. Since the publication of RFC 5990, a new KEMRecipientInfo
structure has been defined to support KEM
algorithms. When the id-rsa-kem algorithm identifier appears in the
SubjectPublicKeyInfo field of a certificate, the complex parameter structure
defined in RFC 5990 can be omitted; however, the parameters are allowed for
backward compatibility. Also, to avoid visual confusion with id‑kem‑rsa,
id‑rsa‑kem‑spki is introduced as an alias for id-rsa-kem.
 RFC 5990 used EK as the EncryptedKey, which is the concatenation of
the ciphertext C and the wrapped key WK, EK = (C || WK). The use of EK was
necessary to align with the KeyTransRecipientInfo structure. In this
document, the ciphertext and the wrapped key are sent in separate fields of
the KEMRecipientInfo structure. In particular, the ciphertext is carried in
the kemct field, and the wrapped key is carried in the encryptedKey
field. See for details about the computation of the ciphertext.
 RFC 5990 included support for Camellia and Triple-DES block ciphers;
discussion of these block ciphers does not appear in this document, but
the algorithm identifiers remain in the ASN.1 module (see).
 RFC 5990 included support for SHA-1 hash function; discussion of this
hash function does not appear this document, but the algorithm identifier
remains in the ASN.1 module (see).
 RFC 5990 required support for the KDF3 key derivation function
 ; this document continues to require
 support for the KDF3 key derivation function, but it requires support
 for SHA-256 as the hash function.
 RFC 5990 recommended support for alternatives to KDF3 and AES-Wrap-128;
this document simply states that other key derivation functions and other
key-encryption algorithms MAY be supported.
 RFC 5990 supported the future definition of additional KEM algorithms that
use RSA; this document supports only one, and it is identified by the
id-kem-rsa object identifier.
 RFC 5990 included an ASN.1 module; this document provides an alternative
ASN.1 module that follows the conventions established in ,
 , and . The new ASN.1 module ()
produces the same bits-on-the-wire as the one in RFC 5990.

 Use of the RSA-KEM Algorithm in CMS
 The RSA-KEM algorithm MAY be employed for one or more recipients in the
CMS enveloped-data content type , the CMS authenticated-data
content type , or the CMS authenticated-enveloped-data
content type . In each case, the KEMRecipientInfo
 is used with the RSA-KEM algorithm
to securely transfer the content-encryption key from the originator to
the recipient.

 Mandatory To Implement
 A CMS implementation that supports the RSA-KEM algorithm MUST support at
least the following underlying components:

 For the key derivation function, an implementation MUST support
KDF3 with SHA-256 .

 For key-wrapping, an implementation MUST support the
AES-Wrap-128 key-encryption algorithm.

 An implementation MAY also support other key derivation functions and
other key-encryption algorithms.

 RecipientInfo Conventions
 When the RSA-KEM algorithm is employed for a recipient, the
RecipientInfo alternative for that recipient MUST be
OtherRecipientInfo using the KEMRecipientInfo structure
 . The fields of the
KEMRecipientInfo MUST have the following values:

 version is the syntax version number; it MUST be 0.
 rid identifies the recipient's certificate or public key.
 kem identifies the KEM algorithm; it MUST contain id-kem-rsa.
 kemct is the ciphertext produced for this recipient;
 it contains C from steps 1 and 2 of Originator's Operations in
 .
 kdf identifies the key derivation function (KDF).
 Note that the KDF used for CMS RecipientInfo process
 MAY be different than the KDF used within the
 RSA-KEM algorithm.
 kekLength is the size of the key-encryption key in octets.
 ukm is an optional random input to the key derivation function.
 wrap identifies a key-encryption algorithm used to
 encrypt the keying material.
 encryptedKey is the result of encrypting the keying material with the
key-encryption key. When used with the CMS enveloped-data content
type , the keying material is a content-encryption key. When
used with the CMS authenticated-data content type , the
keying material is a message-authentication key. When used with the
CMS authenticated-enveloped-data content type , the
keying material is a content-authenticated-encryption key (CAEK).

 NOTE: For backward compatibility, implementations MAY also support
the RSA-KEM Key Transport algorithm, identified by id-rsa-kem-spki, which uses
KeyTransRecipientInfo as specified in .

 Certificate Conventions
 The conventions specified in this section augment RFC 5280 .
 A recipient who employs the RSA-KEM algorithm MAY
 identify the public key in a certificate by the same
 AlgorithmIdentifier as for PKCS #1 v1.5, that is, using the
 rsaEncryption object identifier . The fact
 that the recipient will accept the RSA-KEM algorithm with this public key is not
 indicated by the use of this object identifier. The willingness to
 accept the RSA-KEM algorithm MAY be signaled by the use
 of the SMIMECapabilities Attribute as specified in or the
 SMIMECapabilities certificate extension as specified in .
 If the recipient wishes only to employ the RSA-KEM algorithm with a
 given public key, the recipient MUST identify the
 public key in the certificate using the id-rsa-kem-spki object
 identifier; see . The use of the
 id-rsa-kem-spki object identifier allows certificates that were issued
 to be compatible with the RSA-KEM Key Transport algorithm to also be
 used with this specification. When the id-rsa-kem-spki object
 identifier appears in the SubjectPublicKeyInfo algorithm field of the
 certificate, the parameters field from AlgorithmIdentifier
 SHOULD be absent. That is, the AlgorithmIdentifier
 SHOULD be a SEQUENCE of one component, the
 id-rsa-kem-spki object identifier. With absent parameters, the KDF3
 key derivation function with SHA-256 are used to derive the shared secret.
 When the AlgorithmIdentifier parameters are present, the
GenericHybridParameters MUST be used. Within the kem element, the algorithm
identifier MUST be set to id-kem-rsa, and RsaKemParameters MUST be included.
As described in , the GenericHybridParameters constrain the values
that can be used with the RSA public key for the kdf, kekLength, and wrap
fields of the KEMRecipientInfo structure.
 Regardless of the AlgorithmIdentifier used, the RSA public key MUST be
carried in the subjectPublicKey BIT STRING within the SubjectPublicKeyInfo
field of the certificate using the RSAPublicKey type defined in .
 The intended application for the public key MAY be indicated in the key usage
certificate extension as specified in . If the
keyUsage extension is present in a certificate that conveys an RSA public key
with the id-rsa-kem-spki object identifier as discussed above, then the key
usage extension MUST contain only the following value:
 keyEncipherment
 Other keyUsage extension values MUST NOT be
present. That is, a public key intended to be employed only with the
RSA-KEM algorithm MUST NOT also be employed for data encryption or
for digital signatures. Good cryptographic practice employs a given RSA
key pair in only one scheme. This practice avoids the risk that vulnerability
in one scheme may compromise the security of the other and may be essential
to maintain provable security.

 SMIMECapabilities Attribute Conventions
 defines the SMIMECapabilities attribute to
announce a partial list of algorithms that an S/MIME implementation can
support. When constructing a CMS signed-data content type ,
a compliant implementation MAY include the SMIMECapabilities attribute
that announces support for the RSA-KEM algorithm.
 The SMIMECapability SEQUENCE representing the RSA-KEM algorithm MUST
include the id-rsa-kem-spki object identifier in the capabilityID field;
see for the object identifier value and
for examples. When the id-rsa-kem-spki object identifier appears in the
capabilityID field and the parameters are present, then the parameters
field MUST use the GenericHybridParameters type.

 GenericHybridParameters ::= SEQUENCE {
 kem KeyEncapsulationMechanism,
 dem DataEncapsulationMechanism }
 The fields of the GenericHybridParameters type have the following meanings:

 kem is an AlgorithmIdentifer. The algorithm field MUST be set to id-kem-rsa,
and the parameters field MUST be RsaKemParameters, which is a SEQUENCE of an
AlgorithmIdentifier that identifies the supported key derivation function
and a positive INTEGER that identifies the length of the key-encryption
key in octets.

 dem is an AlgorithmIdentifier. The algorithm field MUST be present, and it
identifies the key-encryption algorithm. The parameters are optional. If the
GenericHybridParameters are present, then the provided dem value MUST be
used in the wrap field of KEMRecipientInfo.

 If the GenericHybridParameters are present, then the provided kem value MUST
be used as the key derivation function in the kdf field of KEMRecipientInfo
and the provided key length MUST be used in the kekLength of KEMRecipientInfo.

 Security Considerations
 The RSA-KEM algorithm should be considered as a replacement for the key transport portion of the
widely implemented PKCS #1 v1.5 for new applications
that use CMS to avoid potential vulnerabilities to chosen-ciphertext
attacks and gain a tighter security proof. However, the RSA-KEM algorithm
has the disadvantage of slightly longer encrypted keying material. With
PKCS #1 v1.5, the originator encrypts the key-encryption key directly with
the recipient's RSA public key. With the RSA-KEM algorithm, the key-encryption key
is encrypted separately.
 The security of the RSA-KEM algorithm can be shown to be tightly related
to the difficulty of either solving the RSA problem or breaking the underlying
symmetric key-encryption algorithm if the underlying key derivation function
is modeled as a random oracle, assuming that the symmetric key-encryption
algorithm satisfies the properties of a data encapsulation mechanism . While in practice a random-oracle result does not provide
an actual security proof for any particular key derivation function, the
result does provide assurance that the general construction is reasonable; a
key derivation function would need to be particularly weak to lead to an
attack that is not possible in the random-oracle model.
 The RSA key size and the underlying components need to be selected
consistent with the desired security level. Several security levels
have been identified in the NIST SP 800-57 Part 1 . For example, one way
to achieve 128-bit security, the RSA key size would be at least 3072 bits,
the key derivation function would be SHA-256, and the symmetric
key-encryption algorithm would be AES Key Wrap with a 128-bit key.
 Implementations MUST protect the RSA private key, the key-encryption key,
the content-encryption key, message-authentication key, and the
content-authenticated-encryption key. Disclosure of the RSA private key
could result in the compromise of all messages protected with that key.
Disclosure of the key-encryption key, the content-encryption key, or the
content-authenticated-encryption key could result in compromise of the
associated encrypted content. Disclosure of the key-encryption key, the
message-authentication key, or the content-authenticated-encryption key
could allow modification of the associated authenticated content.
 Additional considerations related to key management may be found in
 .
 The security of the RSA-KEM algorithm depends on a quality random number
generator. For further discussion on random number generation,
see .
 The RSA-KEM algorithm does not use an explicit padding scheme. Instead,
an encoded random value (z) between zero and the RSA modulus minus one (n-1)
is directly encrypted with the recipient's RSA public key. The
IntegerToString(z, nLen) encoding produces a string that is the full length of
the RSA modulus. In addition, the random value is passed through a
KDF to reduce possible harm from a poorly implemented random number
source or a maliciously chosen random value (z). Implementations MUST NOT
use z directly for any purpose.
 As long as a fresh random integer z is chosen as part of each invocation
of the Encapsulate() function, the RSA-KEM algorithm does not degrade as the number of
ciphertexts increases. Since RSA encryption provides a bijective map,
a collision in the KDF is the only way that the RSA-KEM algorithm can produce more than
one ciphertext that encapsulates the same shared secret.
 The RSA-KEM algorithm provides a fixed-length ciphertext. The recipient MUST
check that the received byte string is the expected length and the length
corresponds to an integer in the expected range prior to attempting decryption
with their RSA private key as described in Steps 1 and 2 of .
 Implementations SHOULD NOT reveal information about intermediate
values or calculations, whether by timing or other "side channels";
otherwise, an opponent may be able to determine information about
the keying data and/or the recipient's private key. Although not all
intermediate information may be useful to an opponent, it is
preferable to conceal as much information as is practical, unless
analysis specifically indicates that the information would not be
useful to an opponent.
 Generally, good cryptographic practice employs a given RSA key pair
in only one scheme. This practice avoids the risk that vulnerability
in one scheme may compromise the security of the other, and may be
essential to maintain provable security. RSA public keys have often
been employed for multiple purposes such as key transport and digital
signature without any known bad interactions; however, such combined use
of an RSA key pair is NOT RECOMMENDED in the future (unless the different
schemes are specifically designed to be used together).
 Accordingly, an RSA key pair used for the RSA-KEM algorithm SHOULD NOT
also be used for digital signatures. Indeed, the Accredited Standards
Committee X9 (ASC X9) requires such a separation between key pairs used
for key establishment and key pairs used for digital signature
 . Continuing this principle of key separation, a key pair
used for the RSA-KEM algorithm SHOULD NOT be used with other key
establishment schemes, or for data encryption, or with more
than one set of underlying algorithm components.
 It is acceptable to use the same RSA key pair for the RSA-KEM Key
 Transport algorithm as specified in and this
 specification. This is acceptable because the operations involving the
 RSA public key and the RSA private key are identical in the two
 specifications.
 Parties can gain assurance that implementations are correct through
formal implementation validation, such as the NIST Cryptographic
Module Validation Program (CMVP) .

 IANA Considerations
 For the ASN.1 Module in , IANA has assigned an
object identifier (OID) for the module identifier. The OID for the module
has been allocated in the "SMI Security for S/MIME Module Identifier"
registry (1.2.840.113549.1.9.16.0), and the Description for the new OID
has been set to "id-mod-cms-rsa-kem-2023".
 IANA has updated the id-alg-rsa-kem entry in the "SMI Security for S/MIME Algorithms (1.2.840.113549.1.9.16.3)" repository to refer to this document. In addition, IANA has added the following note to the registry:
 Value 14, "id-alg-rsa-kem," is also referred to as "id-rsa-kem-spki."

 References

 Normative References

 Public Key Cryptography for the Financial Services Industry -- Key Establishment Using Integer Factorization Cryptography

 American National Standards Institute

 Information technology -- Security techniques -- Encryption algorithms -- Part 2: Asymmetric ciphers

 ISO/IEC

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Advanced Encryption Standard (AES) Key Wrap Algorithm

 Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type

 This document describes an additional content type for the Cryptographic Message Syntax (CMS). The authenticated-enveloped-data content type is intended for use with authenticated encryption modes. All of the various key management techniques that are supported in the CMS enveloped-data content type are also supported by the CMS authenticated-enveloped-data content type. [STANDARDS-TRACK]

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices. [STANDARDS-TRACK]

 Cryptographic Message Syntax (CMS)

 This document describes the Cryptographic Message Syntax (CMS). This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. [STANDARDS-TRACK]

 New ASN.1 Modules for Cryptographic Message Syntax (CMS) and S/MIME

 The Cryptographic Message Syntax (CMS) format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates those ASN.1 modules to conform to the 2002 version of ASN.1. There are no bits-on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)

 The Public Key Infrastructure using X.509 (PKIX) certificate format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates those ASN.1 modules to conform to the 2002 version of ASN.1. There are no bits-on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Additional New ASN.1 Modules for the Cryptographic Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)

 The Cryptographic Message Syntax (CMS) format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates some auxiliary ASN.1 modules to conform to the 2008 version of ASN.1; the 1988 ASN.1 modules remain the normative version. There are no bits- on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 PKCS #1: RSA Cryptography Specifications Version 2.2

 This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.
 This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.
 This document also obsoletes RFC 3447.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification

 This document defines Secure/Multipurpose Internet Mail Extensions (S/MIME) version 4.0. S/MIME provides a consistent way to send and receive secure MIME data. Digital signatures provide authentication, message integrity, and non-repudiation with proof of origin. Encryption provides data confidentiality. Compression can be used to reduce data size. This document obsoletes RFC 5751.

 Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic Message Syntax (CMS)

 The Cryptographic Message Syntax (CMS) supports key transport and key agreement algorithms. In recent years, cryptographers have been specifying Key Encapsulation Mechanism (KEM) algorithms, including quantum-secure KEM algorithms. This document defines conventions for the use of KEM algorithms by the originator and recipients to encrypt and decrypt CMS content. This document updates RFC 5652.

 Secure Hash Standard

 National Institute of Standards and Technology

 Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation

 ITU-T

 Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

 ITU-T

 Informative References

 Cryptographic Module Validation Program

 National Institute of Standards and Technology

 Recommendation for Key Management: Part 1 - General

 National Institute of Standards and Technology

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 X.509 Certificate Extension for Secure/Multipurpose Internet Mail Extensions (S/MIME) Capabilities

 This document defines a certificate extension for inclusion of Secure/Multipurpose Internet Mail Extensions (S/MIME) Capabilities in X.509 public key certificates, as defined by RFC 3280. This certificate extension provides an optional method to indicate the cryptographic capabilities of an entity as a complement to the S/MIME Capabilities signed attribute in S/MIME messages according to RFC 3851. [STANDARDS-TRACK]

 Use of the RSA-KEM Key Transport Algorithm in the Cryptographic Message Syntax (CMS)

 The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward) mechanism for transporting keying data to a recipient using the recipient's RSA public key. ("KEM" stands for "key encapsulation mechanism".) This document specifies the conventions for using the RSA-KEM Key Transport Algorithm with the Cryptographic Message Syntax (CMS). The ASN.1 syntax is aligned with an expected forthcoming change to American National Standard (ANS) X9.44.

 Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms

 This document includes security considerations for the SHA-0 and SHA-1 message digest algorithm. This document is not an Internet Standards Track specification; it is published for informational purposes.

 A Proposal for an ISO Standard for Public Key Encryption

 RSA-KEM Algorithm
 The RSA-KEM algorithm is a one-pass (store-and-forward) cryptographic
mechanism for an originator to securely send keying material to a recipient
using the recipient's RSA public key.
 With the RSA-KEM algorithm, an originator encrypts a random integer (z) with
the recipient's RSA public key to produce a ciphertext (ct), and the originator
derives a shared secret (SS) from the random integer (z). The originator then
sends the ciphertext (ct) to the recipient. The recipient decrypts the
ciphertext (ct) using their private key to recover the random integer (z),
and the recipient derives a shared secret (SS) from the random integer (z). In
this way, the originator and recipient obtain the same shared secret (SS).
 The RSA-KEM algorithm depends on a key derivation function (KDF), which is
used to derive the shared secret (SS). Many key derivation functions support
the inclusion of other information in addition to the shared secret (SS) in
the input to the function; however, no other information is included as an
input to the KDF by the RSA-KEM algorithm.

 Originator's Operations: RSA-KEM Encapsulate()
 Let (n,e) be the recipient's RSA public key; see for details.
 Let nLen denote the length in bytes of the modulus n, i.e., the least
integer such that 2 (8*nLen) > n.
 The originator performs the following operations:

 Generate a random integer z between 0 and n-1 (see NOTE below), and
 convert z to a byte string Z of length nLen, most significant byte
 first:

 z = RandomInteger (0, n-1)

 Z = IntegerToString (z, nLen)

 Encrypt the random integer z using the recipient's RSA public
 key (n,e) and convert the resulting integer c to a ciphertext C,
 a byte string of length nLen:

 c = z^e mod n

 ct = IntegerToString (c, nLen)

 Derive a symmetric shared secret SS of length ssLen bytes (which MUST be the length of the key-encryption key) from the
byte string Z using the underlying key derivation function:

 SS = KDF (Z, ssLen)

 Output the shared secret SS and the ciphertext ct. Send the
ciphertext ct to the recipient.

 NOTE: The random integer z MUST be generated independently at random
for different encryption operations, whether for the same or different
recipients.

 Recipient's Operations: RSA-KEM Decapsulate()
 Let (n,d) be the recipient's RSA private key; see for details,
but other private key formats are allowed.
 Let ct be the ciphertext received from the originator.
 Let nLen denote the length in bytes of the modulus n.
 The recipient performs the following operations:

 If the length of the encrypted keying material is less than nLen
bytes, output "decryption error", and stop.

 Convert the ciphertext ct to an integer c, most significant byte
first (see NOTE below):

 c = StringToInteger (ct)
 If the integer c is not between 0 and n-1, output "decryption
 error", and stop.

 Decrypt the integer c using the recipient's private key (n,d)
 to recover an integer z (see NOTE below):

 z = c^d mod n

 Convert the integer z to a byte string Z of length nLen, most
significant byte first (see NOTE below):

 Z = IntegerToString (z, nLen)

 Derive a shared secret SS of length ssLen bytes from the byte
string Z using the key derivation function (see NOTE below):

 SS = KDF (Z, ssLen)

 Output the shared secret SS.

 NOTE: Implementations SHOULD NOT reveal information about the
integer z, the string Z, or about the calculation of the
exponentiation in Step 2, the conversion in Step 3, or the key
derivation in Step 4, whether by timing or other "side channels".
The observable behavior of the implementation SHOULD be the same at
these steps for all ciphertexts C that are in range. For example,
IntegerToString conversion should take the same amount of time
regardless of the actual value of the integer z. The integer z, the
string Z, and other intermediate results MUST be securely deleted
when they are no longer needed.

 ASN.1 Syntax
 The ASN.1 syntax for identifying the RSA-KEM algorithm
is an extension of the syntax for the "generic hybrid cipher" in
ANS X9.44 .
 The ASN.1 Module is unchanged from RFC 5990. The id-rsa-kem-spki
object identifier is used in a backward compatible manner
in certificates and SMIMECapabilities .
Of course, the use of the id-kem-rsa object identifier in the
new KEMRecipientInfo structure
was not yet defined at the time that RFC 5990 was written.

 Underlying Components
 Implementations that conform to this specification MUST support
the KDF3 key derivation function using SHA-256 .
 KDF2 and KDF3 are both key derivation functions based on
a hash function. The only difference between KDF2 and KDF3 is the order
of the components to be hashed.

 KDF2 calculates T as: T = T || Hash (Z || D || otherInfo)

 KDF3 calculates T as: T = T || Hash (D || Z || otherInfo)
 The object identifier for KDF3 is:

 id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) }
 The KDF3 parameters identify the underlying hash function. For
alignment with ANS X9.44, the hash function MUST be an ASC X9-approved
hash function. While the SHA-1 hash algorithm is included in the
ASN.1 definitions, SHA-1 MUST NOT be used. SHA-1 is considered
to be obsolete; see . SHA-1 remains in the ASN.1 module for
compatibility with RFC 5990. In addition, other hash functions MAY be
used with CMS.

 kda-kdf3 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf3
 PARAMS TYPE KDF3-HashFunction ARE required
 -- No S/MIME caps defined -- }

 KDF3-HashFunction ::=
 AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF3-HashFunctions} }

 KDF3-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... }

 X9-HashFunctions DIGEST-ALGORITHM ::= {
 mda-sha1 | mda-sha224 | mda-sha256 | mda-sha384 |
 mda-sha512, ... }
 Implementations that conform to this specification MUST support
the AES Key Wrap key-encryption algorithm with a 128-bit
key. There are three object identifiers for the AES Key Wrap, one for
each permitted size of the key-encryption key. There are three object
identifiers imported from , and none of these algorithm
identifiers have associated parameters:

 kwa-aes128-wrap KEY-WRAP ::= {
 IDENTIFIER id-aes128-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-aes128-wrap } }

 kwa-aes192-wrap KEY-WRAP ::= {
 IDENTIFIER id-aes192-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-aes192-wrap } }

 kwa-aes256-wrap KEY-WRAP ::= {
 IDENTIFIER id-aes256-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-aes256-wrap } }

 ASN.1 Module

CMS-RSA-KEM-2023
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cms-rsa-kem-2023(79) }

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS ALL

IMPORTS

 KEM-ALGORITHM
 FROM KEMAlgorithmInformation-2023 -- [RFC9629]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }

 AlgorithmIdentifier{}, PUBLIC-KEY, DIGEST-ALGORITHM,
 KEY-DERIVATION, KEY-WRAP, SMIME-CAPS
 FROM AlgorithmInformation-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

 kwa-aes128-wrap, kwa-aes192-wrap, kwa-aes256-wrap
 FROM CMSAesRsaesOaep-2009 -- [RFC5911]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-aes-02(38) }

 kwa-3DESWrap
 FROM CryptographicMessageSyntaxAlgorithms-2009 -- [RFC5911]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cmsalg-2001-02(37) }

 id-camellia128-wrap, id-camellia192-wrap, id-camellia256-wrap
 FROM CamelliaEncryptionAlgorithmInCMS -- [RFC3657]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs9(9) smime(16) modules(0)
 id-mod-cms-camellia(23) }

 mda-sha1, pk-rsa, RSAPublicKey
 FROM PKIXAlgs-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-algorithms2008-02(56) }

 mda-sha224, mda-sha256, mda-sha384, mda-sha512
 FROM PKIX1-PSS-OAEP-Algorithms-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54) } ;

-- Useful types and definitions

OID ::= OBJECT IDENTIFIER -- alias

NullParms ::= NULL

-- ISO/IEC 18033-2 arc

is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

-- NIST algorithm arc

nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16) us(840)
 organization(1) gov(101) csor(3) nistAlgorithm(4) }

-- PKCS #1 arc

pkcs-1 OID ::= { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) }

-- X9.44 arc

x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
 country(16) x9(840) x9Standards(9) x9-44(44) }

x9-44-components OID ::= { x9-44 components(1) }

-- RSA-KEM algorithm

id-rsa-kem OID ::= { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) alg(3) 14 }

id-rsa-kem-spki OID ::= id-rsa-kem

GenericHybridParameters ::= SEQUENCE {
 kem KeyEncapsulationMechanism,
 dem DataEncapsulationMechanism }

KeyEncapsulationMechanism ::=
 AlgorithmIdentifier { KEM-ALGORITHM, {KEMAlgorithms} }

KEMAlgorithms KEM-ALGORITHM ::= { kema-kem-rsa | kema-rsa-kem, ... }

kema-rsa-kem KEM-ALGORITHM ::= {
 IDENTIFIER id-rsa-kem-spki
 PARAMS TYPE GenericHybridParameters ARE optional
 PUBLIC-KEYS { pk-rsa | pk-rsa-kem }
 UKM ARE optional
 SMIME-CAPS { TYPE GenericHybridParameters
 IDENTIFIED BY id-rsa-kem-spki } }

kema-kem-rsa KEM-ALGORITHM ::= {
 IDENTIFIER id-kem-rsa
 PARAMS TYPE RsaKemParameters ARE optional
 PUBLIC-KEYS { pk-rsa | pk-rsa-kem }
 UKM ARE optional
 SMIME-CAPS { TYPE GenericHybridParameters
 IDENTIFIED BY id-rsa-kem-spki } }

id-kem-rsa OID ::= { is18033-2 key-encapsulation-mechanism(2)
 rsa(4) }

RsaKemParameters ::= SEQUENCE {
 keyDerivationFunction KeyDerivationFunction,
 keyLength KeyLength }

pk-rsa-kem PUBLIC-KEY ::= {
 IDENTIFIER id-rsa-kem-spki
 KEY RSAPublicKey
 PARAMS TYPE GenericHybridParameters ARE preferredAbsent
 -- Private key format is not specified here --
 CERT-KEY-USAGE {keyEncipherment} }

KeyDerivationFunction ::=
 AlgorithmIdentifier { KEY-DERIVATION, {KDFAlgorithms} }

KDFAlgorithms KEY-DERIVATION ::= { kda-kdf2 | kda-kdf3, ... }

KeyLength ::= INTEGER (1..MAX)

DataEncapsulationMechanism ::=
 AlgorithmIdentifier { KEY-WRAP, {DEMAlgorithms} }

DEMAlgorithms KEY-WRAP ::= {
 X9-SymmetricKeyWrappingSchemes |
 Camellia-KeyWrappingSchemes, ... }

X9-SymmetricKeyWrappingSchemes KEY-WRAP ::= {
 kwa-aes128-wrap | kwa-aes192-wrap | kwa-aes256-wrap |
 kwa-3DESWrap, ... }

X9-SymmetricKeyWrappingScheme ::=
 AlgorithmIdentifier { KEY-WRAP, {X9-SymmetricKeyWrappingSchemes} }

Camellia-KeyWrappingSchemes KEY-WRAP ::= {
 kwa-camellia128-wrap | kwa-camellia192-wrap |
 kwa-camellia256-wrap, ... }

Camellia-KeyWrappingScheme ::=
 AlgorithmIdentifier { KEY-WRAP, {Camellia-KeyWrappingSchemes} }

kwa-camellia128-wrap KEY-WRAP ::= {
 IDENTIFIER id-camellia128-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-camellia128-wrap } }

kwa-camellia192-wrap KEY-WRAP ::= {
 IDENTIFIER id-camellia192-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-camellia192-wrap } }

kwa-camellia256-wrap KEY-WRAP ::= {
 IDENTIFIER id-camellia256-wrap
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-camellia256-wrap } }

-- Key Derivation Functions

id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

kda-kdf2 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf2
 PARAMS TYPE KDF2-HashFunction ARE required
 -- No S/MIME caps defined -- }

KDF2-HashFunction ::=
 AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF2-HashFunctions} }

KDF2-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... }

id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

kda-kdf3 KEY-DERIVATION ::= {
 IDENTIFIER id-kdf-kdf3
 PARAMS TYPE KDF3-HashFunction ARE required
 -- No S/MIME caps defined -- }

KDF3-HashFunction ::=
 AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF3-HashFunctions} }

KDF3-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... }

-- Hash Functions

X9-HashFunctions DIGEST-ALGORITHM ::= {
 mda-sha1 | mda-sha224 | mda-sha256 | mda-sha384 |
 mda-sha512, ... }

-- Updates for the SMIME-CAPS Set from RFC 5911

SMimeCapsSet SMIME-CAPS ::= {
 kema-kem-rsa.&smimeCaps |
 kwa-aes128-wrap |
 kwa-aes192-wrap |
 kwa-aes256-wrap |
 kwa-camellia128-wrap.&smimeCaps |
 kwa-camellia192-wrap.&smimeCaps |
 kwa-camellia256-wrap.&smimeCaps,
 ... }

END

 SMIMECapabilities Examples
 To indicate support for the RSA-KEM algorithm coupled with the KDF3
key derivation function with SHA-256 and the AES Key Wrap symmetric
key-encryption algorithm 128-bit key-encryption key, the
SMIMECapabilities will include the following entry:

SEQUENCE {
 id-rsa-kem-spki, -- RSA-KEM algorithm
 SEQUENCE { -- GenericHybridParameters
 SEQUENCE { -- key encapsulation mechanism
 id-kem-rsa, -- RSA-KEM
 SEQUENCE { -- RsaKemParameters
 SEQUENCE { -- key derivation function
 id-kdf-kdf3, -- KDF3
 SEQUENCE { -- KDF3-HashFunction
 id-sha256 -- SHA-256; no parameters (preferred)
 },
 16 -- KEK length in bytes
 },
 SEQUENCE { -- data encapsulation mechanism
 id-aes128-Wrap -- AES-128 Wrap; no parameters
 }
 }
}
 This SMIMECapability value has the following DER encoding (in hexadecimal):

30 47
 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e -- id-rsa-kem-spki
 30 38
 30 29
 06 07 28 81 8c 71 02 02 04 -- id-kem-rsa
 30 1e
 30 19
 06 0a 2b 81 05 10 86 48 09 2c 01 02 -- id-kdf-kdf3
 30 0b
 06 09 60 86 48 01 65 03 04 02 01 -- id-sha256
 02 01 10 -- 16 bytes
 30 0b
 06 09 60 86 48 01 65 03 04 01 05 -- id-aes128-Wrap
 To indicate support for the RSA-KEM algorithm coupled with the KDF3
key derivation function with SHA-384 and the AES Key Wrap symmetric
key-encryption algorithm 192-bit key-encryption key, the
SMIMECapabilities will include the following SMIMECapability value
(in hexadecimal):

 30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
 38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
 06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
 60 86 48 01 65 03 04 02 02 02 01 18 30 0b 06 09
 60 86 48 01 65 03 04 01 19
 To indicate support for the RSA-KEM algorithm coupled with the KDF3
key derivation function with SHA-512 and the AES Key Wrap symmetric
key-encryption algorithm 256-bit key-encryption key, the
SMIMECapabilities will include the following SMIMECapability value
(in hexadecimal):

 30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
 38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
 06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
 60 86 48 01 65 03 04 02 03 02 01 20 30 0b 06 09
 60 86 48 01 65 03 04 01 2d

 RSA-KEM CMS Enveloped-Data Example
 This example shows the establishment of an AES-128 content-encryption
key using:

 RSA-KEM with a 3072-bit key and KDF3 with SHA-256;

 KEMRecipientInfo key derivation using KDF3 with SHA-256; and

 KEMRecipientInfo Key Wrap using AES-128-KEYWRAP.

 In real-world use, the originator would encrypt the content-encryption
key in a manner that would allow decryption with their own private key
as well as the recipient's private key. This is omitted in an attempt
to simplify the example.

 Originator RSA-KEM Encapsulate() Processing
 Alice obtains Bob's public key:

 -----BEGIN PUBLIC KEY-----
 MIIBojANBgkqhkiG9w0BAQEFAAOCAY8AMIIBigKCAYEA3ocW14cxncPJ47fnEjBZ
 AyfC2lqapL3ET4jvV6C7gGeVrRQxWPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JH
 Keeza+itfuhsz3yifgeEpeK8T+SusHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqq
 vS3jg/VO+OPnZbofoHOOevt8Q/roahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx
 2AHHZJevo3nmRnlgJXo6mE00E/6qkhjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0v
 SH7qUl8/vN13y4UOFkn8hM4kmZ6bJqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39a
 uLNnH3EXdXaV1tk75H3qC7zJaeGWMJyQfOE3YfEGRKn8fxubji716D8UecAxAzFy
 FL6m1JiOyV5acAiOpxN14qRYZdHnXOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fS
 whSZG7VNf+vgNWTLNYSYLI04KiMdulnvU6ds+QPz+KKtAgMBAAE=
 -----END PUBLIC KEY-----
 Bob's RSA public key has the following key identifier:

 9eeb67c9b95a74d44d2f16396680e801b5cba49c
 Alice randomly generates integer z between 0 and n-1:

 9c126102a5c1c0354672a3c2f19fc9ddea988f815e1da812c7bd4f8eb082bdd1
 4f85a7f7c2f1af11d5333e0d6bcb375bf855f208da72ba27e6fb0655f2825aa6
 2b93b1f9bbd3491fed58f0380fa0de36430e3a144d569600bd362609be5b9481
 0875990b614e406fa6dff500043cbca95968faba61f795096a7fb3687a51078c
 4ca2cb663366b0bea0cd9cccac72a25f3f4ed03deb68b4453bba44b943f4367b
 67d6cd10c8ace53f545aac50968fc3c6ecc80f3224b64e37038504e2d2c0e2b2
 9d45e46c62826d96331360e4c17ea3ef89a9efc5fac99eda830e81450b6534dc
 0bdf042b8f3b706649c631fe51fc2445cc8d447203ec2f41f79cdfea16de1ce6
 abdfdc1e2ef2e5d5d8a65e645f397240ef5a26f5e4ff715de782e30ecf477293
 e89e13171405909a8e04dd31d21d0c57935fc1ceea8e1033e31e1bc8c56da0f3
 d79510f3f380ff58e5a61d361f2f18e99fbae5663172e8cd1f21deaddc5bbbea
 060d55f1842b93d1a9c888d0bf85d0af9947fe51acf940c7e7577eb79cabecb3
 Alice encrypts integer z using the Bob's RSA public key. The result is
called ct:

 c071fc273af8e7bdb152e06bf73310361074154a43abcf3c93c13499d2065344
 3eed9ef5d3c0685e4aa76a6854815bb97691ff9f8dac15eea7d74f452bf350a6
 46163d68288e978cbf7a73089ee52712f9a4f49e06ace7bbc85ab14d4e336c97
 c5728a2654138c7b26e8835c6b0a9fbed26495c4eadf745a2933be283f6a88b1
 6695fc06666873cfb6d36718ef3376cefc100c3941f3c494944078325807a559
 186b95ccabf3714cfaf79f83bd30537fdd9aed5a4cdcbd8bd0486faed73e9d48
 6b3087d6c806546b6e2671575c98461e441f65542bd95de26d0f53a64e7848d7
 31d9608d053e8d345546602d86236ffe3704c98ad59144f3089e5e6d527b5497
 ba103c79d62e80d0235410b06f71a7d9bd1c38000f910d6312ea2f20a3557535
 ad01b3093fb5f7ee507080d0f77d48c9c3b3796f6b7dd3786085fb895123f04c
 a1f1c1be22c747a8dface32370fb0d570783e27dbb7e74fca94ee39676fde3d8
 a9553d878224736e37e191dab953c7e228c07ad5ca3122421c14debd072a9ab6
 Alice derives the shared secret (SS) using KDF3 with SHA-256:

 3cf82ec41b54ed4d37402bbd8f805a52

 Originator CMS Processing
 Alice encodes the CMSORIforKEMOtherInfo structure with the algorithm
identifier for AES-128-KEYWRAP and a key length of 16 octets.
The DER encoding of CMSORIforKEMOtherInfo produces 18 octets:

 3010300b0609608648016503040105020110
 The CMSORIforKEMOtherInfo structure contains:

 0 16: SEQUENCE {
 2 11: SEQUENCE {
 4 9: OBJECT IDENTIFIER aes128-wrap (2 16 840 1 101 3 4 1 5)
 : }
 15 1: INTEGER 16
 : }
 Alice derives the key-encryption key from shared secret produced
by RSA-KEM Encapsulate() and the CMSORIforKEMOtherInfo structure
with KDF3 and SHA-256. The KEK is:

 e6dc9d62ff2b469bef604c617b018718
 Alice randomly generates a 128-bit content-encryption key:

 77f2a84640304be7bd42670a84a1258b
 Alice uses AES-128-KEYWRAP to encrypt the 128-bit content-encryption
key with the derived key-encryption key:

 28782e5d3d794a7616b863fbcfc719b78f12de08cf286e09
 Alice encrypts the padded content using AES-128-CBC with the
content-encryption key. The 16-octet IV used is:

 480ccafebabefacedbaddecaf8887781
 The padded content plaintext is:

 48656c6c6f2c20776f726c6421030303
 The resulting ciphertext is:

 c6ca65db7bdd76b0f37e2fab6264b66d
 Alice encodes the EnvelopedData (using KEMRecipientInfo) and
ContentInfo, and then sends the result to Bob. The Base64-encoded
result is:

 MIICXAYJKoZIhvcNAQcDoIICTTCCAkkCAQMxggIEpIICAAYLKoZIhvcNAQkQDQMw
 ggHvAgEAgBSe62fJuVp01E0vFjlmgOgBtcuknDAJBgcogYxxAgIEBIIBgMBx/Cc6
 +Oe9sVLga/czEDYQdBVKQ6vPPJPBNJnSBlNEPu2e9dPAaF5Kp2poVIFbuXaR/5+N
 rBXup9dPRSvzUKZGFj1oKI6XjL96cwie5ScS+aT0ngas57vIWrFNTjNsl8VyiiZU
 E4x7JuiDXGsKn77SZJXE6t90Wikzvig/aoixZpX8BmZoc8+202cY7zN2zvwQDDlB
 88SUlEB4MlgHpVkYa5XMq/NxTPr3n4O9MFN/3ZrtWkzcvYvQSG+u1z6dSGswh9bI
 BlRrbiZxV1yYRh5EH2VUK9ld4m0PU6ZOeEjXMdlgjQU+jTRVRmAthiNv/jcEyYrV
 kUTzCJ5ebVJ7VJe6EDx51i6A0CNUELBvcafZvRw4AA+RDWMS6i8go1V1Na0Bswk/
 tffuUHCA0Pd9SMnDs3lva33TeGCF+4lRI/BMofHBviLHR6jfrOMjcPsNVweD4n27
 fnT8qU7jlnb949ipVT2HgiRzbjfhkdq5U8fiKMB61coxIkIcFN69ByqatjAbBgor
 gQUQhkgJLAECMA0GCWCGSAFlAwQCAQUAAgEQMAsGCWCGSAFlAwQBBQQYKHguXT15
 SnYWuGP7z8cZt48S3gjPKG4JMDwGCSqGSIb3DQEHATAdBglghkgBZQMEAQIEEEgM
 yv66vvrO263eyviId4GAEMbKZdt73Xaw834vq2Jktm0=
 This result decodes to:

 0 604: SEQUENCE {
 4 9: OBJECT IDENTIFIER envelopedData (1 2 840 113549 1 7 3)
 15 589: [0] {
 19 585: SEQUENCE {
 23 1: INTEGER 3
 26 516: SET {
 30 512: [4] {
 34 11: OBJECT IDENTIFIER
 : KEMRecipientInfo (1 2 840 113549 1 9 16 13 3)
 47 495: SEQUENCE {
 51 1: INTEGER 0
 54 20: [0]
 : 9E EB 67 C9 B9 5A 74 D4 4D 2F 16 39 66 80 E8 01
 : B5 CB A4 9C
 76 9: SEQUENCE {
 78 7: OBJECT IDENTIFIER kemRSA (1 0 18033 2 2 4)
 : }
 87 384: OCTET STRING
 : C0 71 FC 27 3A F8 E7 BD B1 52 E0 6B F7 33 10 36
 : 10 74 15 4A 43 AB CF 3C 93 C1 34 99 D2 06 53 44
 : 3E ED 9E F5 D3 C0 68 5E 4A A7 6A 68 54 81 5B B9
 : 76 91 FF 9F 8D AC 15 EE A7 D7 4F 45 2B F3 50 A6
 : 46 16 3D 68 28 8E 97 8C BF 7A 73 08 9E E5 27 12
 : F9 A4 F4 9E 06 AC E7 BB C8 5A B1 4D 4E 33 6C 97
 : C5 72 8A 26 54 13 8C 7B 26 E8 83 5C 6B 0A 9F BE
 : D2 64 95 C4 EA DF 74 5A 29 33 BE 28 3F 6A 88 B1
 : 66 95 FC 06 66 68 73 CF B6 D3 67 18 EF 33 76 CE
 : FC 10 0C 39 41 F3 C4 94 94 40 78 32 58 07 A5 59
 : 18 6B 95 CC AB F3 71 4C FA F7 9F 83 BD 30 53 7F
 : DD 9A ED 5A 4C DC BD 8B D0 48 6F AE D7 3E 9D 48
 : 6B 30 87 D6 C8 06 54 6B 6E 26 71 57 5C 98 46 1E
 : 44 1F 65 54 2B D9 5D E2 6D 0F 53 A6 4E 78 48 D7
 : 31 D9 60 8D 05 3E 8D 34 55 46 60 2D 86 23 6F FE
 : 37 04 C9 8A D5 91 44 F3 08 9E 5E 6D 52 7B 54 97
 : BA 10 3C 79 D6 2E 80 D0 23 54 10 B0 6F 71 A7 D9
 : BD 1C 38 00 0F 91 0D 63 12 EA 2F 20 A3 55 75 35
 : AD 01 B3 09 3F B5 F7 EE 50 70 80 D0 F7 7D 48 C9
 : C3 B3 79 6F 6B 7D D3 78 60 85 FB 89 51 23 F0 4C
 : A1 F1 C1 BE 22 C7 47 A8 DF AC E3 23 70 FB 0D 57
 : 07 83 E2 7D BB 7E 74 FC A9 4E E3 96 76 FD E3 D8
 : A9 55 3D 87 82 24 73 6E 37 E1 91 DA B9 53 C7 E2
 : 28 C0 7A D5 CA 31 22 42 1C 14 DE BD 07 2A 9A B6
475 27: SEQUENCE {
477 10: OBJECT IDENTIFIER
 : kdf3 (1 3 133 16 840 9 44 1 2)
489 13: SEQUENCE {
491 9: OBJECT IDENTIFIER
 : sha-256 (2 16 840 1 101 3 4 2 1)
502 0: NULL
 : }
 : }
504 1: INTEGER 16
507 11: SEQUENCE {
509 9: OBJECT IDENTIFIER
 : aes128-wrap (2 16 840 1 101 3 4 1 5)
 : }
520 24: OCTET STRING
 : 28 78 2E 5D 3D 79 4A 76 16 B8 63 FB CF C7 19 B7
 : 8F 12 DE 08 CF 28 6E 09
 : }
 : }
 : }
546 60: SEQUENCE {
548 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
559 29: SEQUENCE {
561 9: OBJECT IDENTIFIER
 : aes128-CBC (2 16 840 1 101 3 4 1 2)
572 16: OCTET STRING
 : 48 0C CA FE BA BE FA CE DB AD DE CA F8 88 77 81
 : }
590 16: [0] C6 CA 65 DB 7B DD 76 B0 F3 7E 2F AB 62 64 B6 6D
 : }
 : }
 : }
 : }

 Recipient RSA-KEM Decapsulate() Processing
 Bob's private key:

 -----BEGIN PRIVATE KEY-----
 MIIG5AIBAAKCAYEA3ocW14cxncPJ47fnEjBZAyfC2lqapL3ET4jvV6C7gGeVrRQx
 WPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JHKeeza+itfuhsz3yifgeEpeK8T+Su
 sHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqqvS3jg/VO+OPnZbofoHOOevt8Q/ro
 ahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx2AHHZJevo3nmRnlgJXo6mE00E/6q
 khjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0vSH7qUl8/vN13y4UOFkn8hM4kmZ6b
 JqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39auLNnH3EXdXaV1tk75H3qC7zJaeGW
 MJyQfOE3YfEGRKn8fxubji716D8UecAxAzFyFL6m1JiOyV5acAiOpxN14qRYZdHn
 XOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fSwhSZG7VNf+vgNWTLNYSYLI04KiMd
 ulnvU6ds+QPz+KKtAgMBAAECggGATFfkSkUjjJCjLvDk4aScpSx6+Rakf2hrdS3x
 jwqhyUfAXgTTeUQQBs1HVtHCgxQd+qlXYn3/qu8TeZVwG4NPztyi/Z5yB1wOGJEV
 3k8N/ytul6pJFFn6p48VM01bUdTrkMJbXERe6g/rr6dBQeeItCaOK7N5SIJH3Oqh
 9xYuB5tH4rquCdYLmt17Tx8CaVqU9qPY3vOdQEOwIjjMV8uQUR8rHSO9KkSj8AGs
 Lq9kcuPpvgJc2oqMRcNePS2WVh8xPFktRLLRazgLP8STHAtjT6SlJ2UzkUqfDHGK
 q/BoXxBDu6L1VDwdnIS5HXtL54ElcXWsoOyKF8/ilmhRUIUWRZFmlS1ok8IC5IgX
 UdL9rJVZFTRLyAwmcCEvRM1asbBrhyEyshSOuN5nHJi2WVJ+wSHijeKl1qeLlpMk
 HrdIYBq4Nz7/zXmiQphpAy+yQeanhP8O4O6C8e7RwKdpxe44su4Z8fEgA5yQx0u7
 8yR1EhGKydX5bhBLR5Cm1VM7rT2BAoHBAP/+e5gZLNf/ECtEBZjeiJ0VshszOoUq
 haUQPA+9Bx9pytsoKm5oQhB7QDaxAvrn8/FUW2aAkaXsaj9F+/q30AYSQtExai9J
 fdKKook3oimN8/yNRsKmhfjGOj8hd4+GjX0qoMSBCEVdT+bAjjry8wgQrqReuZnu
 oXU85dmb3jvv0uIczIKvTIeyjXE5afjQIJLmZFXsBm09BG87Ia5EFUKly96BOMJh
 /QWEzuYYXDqOFfzQtkAefXNFW21Kz4Hw2QKBwQDeiGh4lxCGTjECvG7fauMGlu+q
 DSdYyMHif6t6mx57eS16EjvOrlXKItYhIyzW8Kw0rf/CSB2j8ig1GkMLTOgrGIJ1
 0322o50FOr5oOmZPueeR4pOyAP0fgQ8DD1L3JBpY68/8MhYbsizVrR+Ar4jM0f96
 W2bF5Xj3h+fQTDMkx6VrCCQ6miRmBUzH+ZPs5n/lYOzAYrqiKOanaiHy4mjRvlsy
 mjZ6z5CG8sISqcLQ/k3Qli5pOY/v0rdBjgwAW/UCgcEAqGVYGjKdXCzuDvf9EpV4
 mpTWB6yIV2ckaPOn/tZi5BgsmEPwvZYZt0vMbu28Px7sSpkqUuBKbzJ4pcy8uC3I
 SuYiTAhMiHS4rxIBX3BYXSuDD2RD4vG1+XM0h6jVRHXHh0nOXdVfgnmigPGz3jVJ
 B8oph/jD8O2YCk4YCTDOXPEi8Rjusxzro+whvRR+kG0gsGGcKSVNCPj1fNISEte4
 gJId7O1mUAAzeDjn/VaS/PXQovEMolssPPKn9NocbKbpAoHBAJnFHJunl22W/lrr
 ppmPnIzjI30YVcYOA5vlqLKyGaAsnfYqP1WUNgfVhq2jRsrHx9cnHQI9Hu442PvI
 x+c5H30YFJ4ipE3eRRRmAUi4ghY5WgD+1hw8fqyUW7E7l5LbSbGEUVXtrkU5G64T
 UR91LEyMF8OPATdiV/KD4PWYkgaqRm3tVEuCVACDTQkqNsOOi3YPQcm270w6gxfQ
 SOEy/kdhCFexJFA8uZvmh6Cp2crczxyBilR/yCxqKOONqlFdOQKBwFbJk5eHPjJz
 AYueKMQESPGYCrwIqxgZGCxaqeVArHvKsEDx5whI6JWoFYVkFA8F0MyhukoEb/2x
 2qB5T88Dg3EbqjTiLg3qxrWJ2OxtUo8pBP2I2wbl2NOwzcbrlYhzEZ8bJyxZu5i1
 sYILC8PJ4Qzw6jS4Qpm4y1WHz8e/ElW6VyfmljZYA7f9WMntdfeQVqCVzNTvKn6f
 hg6GSpJTzp4LV3ougi9nQuWXZF2wInsXkLYpsiMbL6Fz34RwohJtYA==
 -----END PRIVATE KEY-----
 Bob checks that the length of the ciphertext is less than nLen bytes.
 Bob checks that the ciphertext is greater than zero and is less
than his RSA modulus.
 Bob decrypts the ciphertext with his RSA private key to obtain
the integer z:

 9c126102a5c1c0354672a3c2f19fc9ddea988f815e1da812c7bd4f8eb082bdd1
 4f85a7f7c2f1af11d5333e0d6bcb375bf855f208da72ba27e6fb0655f2825aa6
 2b93b1f9bbd3491fed58f0380fa0de36430e3a144d569600bd362609be5b9481
 0875990b614e406fa6dff500043cbca95968faba61f795096a7fb3687a51078c
 4ca2cb663366b0bea0cd9cccac72a25f3f4ed03deb68b4453bba44b943f4367b
 67d6cd10c8ace53f545aac50968fc3c6ecc80f3224b64e37038504e2d2c0e2b2
 9d45e46c62826d96331360e4c17ea3ef89a9efc5fac99eda830e81450b6534dc
 0bdf042b8f3b706649c631fe51fc2445cc8d447203ec2f41f79cdfea16de1ce6
 abdfdc1e2ef2e5d5d8a65e645f397240ef5a26f5e4ff715de782e30ecf477293
 e89e13171405909a8e04dd31d21d0c57935fc1ceea8e1033e31e1bc8c56da0f3
 d79510f3f380ff58e5a61d361f2f18e99fbae5663172e8cd1f21deaddc5bbbea
 060d55f1842b93d1a9c888d0bf85d0af9947fe51acf940c7e7577eb79cabecb3
 Bob checks that the integer z is greater than zero and is less
than his RSA modulus.
 Bob derives the shared secret (SS) using KDF3 with SHA-256:

 3cf82ec41b54ed4d37402bbd8f805a52

 Recipient CMS Processing
 Bob encodes the CMSORIforKEMOtherInfo structure with the algorithm
identifier for AES-128-KEYWRAP and a key length of 16 octets.
The DER encoding of CMSORIforKEMOtherInfo is not repeated here.
 Bob derives the key-encryption key from shared secret and the
CMSORIforKEMOtherInfo structure with KDF3 and SHA-256, the KEK is:

 e6dc9d62ff2b469bef604c617b018718
 Bob uses AES-KEY-WRAP to decrypt the content-encryption key
with the key-encryption key. The content-encryption key is:

 77f2a84640304be7bd42670a84a1258b
 Bob decrypts the content using AES-128-CBC with the content-
encryption key. The 16-octet IV used is:

 480ccafebabefacedbaddecaf8887781
 The received ciphertext content is:

 c6ca65db7bdd76b0f37e2fab6264b66d
 The resulting padded plaintext content is:

 48656c6c6f2c20776f726c6421030303
 After stripping the AES-CBC padding, the plaintext content is:

 Hello, world!

 Acknowledgements
 We thank , , and as the original
 authors of ; this document is based on their
 work.
 We thank the members of the ASC X9F1 working group for their
 contributions to drafts of ANS X9.44, which led to .
 We thank , , , , and for helping bring to fruition.
 We thank , , , , , , and
 for careful review and thoughtful comments that greatly improved this
 document.

 Authors' Addresses

 Vigil Security, LLC

 516 Dranesville Road
 Herndon
 VA
 20170
 United States of America

 housley@vigilsec.com

 sn3rd

 sean@sn3rd.com

