RFC 8915 | Network Time Security for NTP | September 2020 |
Franke, et al. | Standards Track | [Page] |
This memo specifies Network Time Security (NTS), a mechanism for using Transport Layer Security (TLS) and Authenticated Encryption with Associated Data (AEAD) to provide cryptographic security for the client-server mode of the Network Time Protocol (NTP).¶
NTS is structured as a suite of two loosely coupled sub-protocols. The first (NTS Key Establishment (NTS-KE)) handles initial authentication and key establishment over TLS. The second (NTS Extension Fields for NTPv4) handles encryption and authentication during NTP time synchronization via extension fields in the NTP packets, and holds all required state only on the client via opaque cookies.¶
This is an Internet Standards Track document.¶
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.¶
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8915.¶
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.¶
This memo specifies Network Time Security (NTS), a cryptographic security mechanism for network time synchronization. A complete specification is provided for application of NTS to the client-server mode of the Network Time Protocol (NTP) [RFC5905].¶
The objectives of NTS are as follows:¶
The Network Time Protocol includes many different operating modes to support various network topologies (see Section 3 of RFC 5905 [RFC5905]). In addition to its best-known and most-widely-used client-server mode, it also includes modes for synchronization between symmetric peers, a control mode for server monitoring and administration, and a broadcast mode. These various modes have differing and partly contradictory requirements for security and performance. Symmetric and control modes demand mutual authentication and mutual replay protection. Additionally, for certain message types, the control mode may require confidentiality as well as authentication. Client-server mode places more stringent requirements on resource utilization than other modes because servers may have a vast number of clients and be unable to afford to maintain per-client state. However, client-server mode also has more relaxed security needs because only the client requires replay protection: it is harmless for stateless servers to process replayed packets. The security demands of symmetric and control modes, on the other hand, are in conflict with the resource-utilization demands of client-server mode: any scheme that provides replay protection inherently involves maintaining some state to keep track of which messages have already been seen.¶
This memo specifies NTS exclusively for the client-server mode of NTP. To this end, NTS is structured as a suite of two protocols:¶
The typical protocol flow is as follows: The client connects to an NTS-KE server on the NTS TCP port and the two parties perform a TLS handshake. Via the TLS channel, the parties negotiate some additional protocol parameters, and the server sends the client a supply of cookies along with an address and port of an NTP server for which the cookies are valid. The parties use TLS key export [RFC5705] to extract key material, which will be used in the next phase of the protocol. This negotiation takes only a single round trip, after which the server closes the connection and discards all associated state. At this point, the NTS-KE phase of the protocol is complete. Ideally, the client never needs to connect to the NTS-KE server again.¶
Time synchronization proceeds with the indicated NTP server. The client sends the server an NTP client packet that includes several extension fields. Included among these fields are a cookie (previously provided by the key establishment server) and an authentication tag, computed using key material extracted from the NTS-KE handshake. The NTP server uses the cookie to recover this key material and send back an authenticated response. The response includes a fresh, encrypted cookie that the client then sends back in the clear in a subsequent request. This constant refreshing of cookies is necessary in order to achieve NTS's unlinkability goal.¶
Figure 1 provides an overview of the high-level interaction between the client, the NTS-KE server, and the NTP server. Note that the cookies' data format and the exchange of secrets between NTS-KE and NTP servers are not part of this specification and are implementation dependent. However, a suggested format for NTS cookies is provided in Section 6.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
Network Time Security makes use of TLS for NTS key establishment.¶
Since the NTS protocol is new as of this publication, no backward-compatibility concerns exist to justify using obsolete, insecure, or otherwise broken TLS features or versions. Implementations MUST conform with RFC 7525 [RFC7525] or with a later revision of BCP 195.¶
Implementations MUST NOT negotiate TLS versions earlier than 1.3 [RFC8446] and MAY refuse to negotiate any TLS version that has been superseded by a later supported version.¶
Use of the Application-Layer Protocol Negotiation Extension [RFC7301] is integral to NTS, and support for it is REQUIRED for interoperability.¶
Implementations MUST follow the rules in RFC 5280 [RFC5280] and RFC 6125 [RFC6125] for the representation and verification of the application's service identity. When NTS-KE service discovery (out of scope for this document) produces one or more host names, use of the DNS-ID identifier type [RFC6125] is RECOMMENDED; specifications for service discovery mechanisms can provide additional guidance for certificate validation based on the results of discovery. Section 8.5 of this memo discusses particular considerations for certificate verification in the context of NTS.¶
The NTS key establishment protocol is conducted via TCP port 4460. The two endpoints carry out a TLS handshake in conformance with Section 3, with the client offering (via an ALPN extension [RFC7301]), and the server accepting, an application-layer protocol of "ntske/1". Immediately following a successful handshake, the client SHALL send a single request as Application Data encapsulated in the TLS-protected channel. Then, the server SHALL send a single response. After sending their respective request and response, the client and server SHALL send TLS "close_notify" alerts in accordance with Section 6.1 of RFC 8446 [RFC8446].¶
The client's request and the server's response each SHALL consist of a sequence of records formatted according to Figure 2. The request and a non-error response each SHALL include exactly one NTS Next Protocol Negotiation record. The sequence SHALL be terminated by a "End of Message" record. The requirement that all NTS-KE messages be terminated by an End of Message record makes them self-delimiting.¶
Clients and servers MAY enforce length limits on requests and responses; however, servers MUST accept requests of at least 1024 octets, and clients SHOULD accept responses of at least 65536 octets.¶
The fields of an NTS-KE record are defined as follows:¶
For clarity regarding bit-endianness: the Critical Bit is the most significant bit of the first octet. In the C programming language, given a network buffer 'unsigned char b[]' containing an NTS-KE record, the critical bit is 'b[0] >> 7' while the record type is '((b[0] & 0x7f) << 8) + b[1]'.¶
Note that, although the Type-Length-Body format of an NTS-KE record is similar to that of an NTP extension field, the semantics of the length field differ. While the length subfield of an NTP extension field gives the length of the entire extension field including the type and length subfields, the length field of an NTS-KE record gives just the length of the body.¶
Figure 3 provides a schematic overview of the key establishment. It displays the protocol steps to be performed by the NTS client and server and Record Types to be exchanged.¶
The following NTS-KE Record Types are defined:¶
The End of Message record has a Record Type number of 0 and a zero-length body. It MUST occur exactly once as the final record of every NTS-KE request and response. The Critical Bit MUST be set.¶
The NTS Next Protocol Negotiation record has a Record Type number of 1. It MUST occur exactly once in every NTS-KE request and response. Its body consists of a sequence of 16-bit unsigned integers in network byte order. Each integer represents a Protocol ID from the IANA "Network Time Security Next Protocols" registry (Section 7.7). The Critical Bit MUST be set.¶
The Protocol IDs listed in the client's NTS Next Protocol Negotiation record denote those protocols that the client wishes to speak using the key material established through this NTS-KE session. Protocol IDs listed in the NTS-KE server's response MUST comprise a subset of those listed in the request and denote those protocols that the NTP server is willing and able to speak using the key material established through this NTS-KE session. The client MAY proceed with one or more of them. The request MUST list at least one protocol, but the response MAY be empty.¶
The Error record has a Record Type number of 2. Its body is exactly two octets long, consisting of an unsigned 16-bit integer in network byte order, denoting an error code. The Critical Bit MUST be set.¶
Clients MUST NOT include Error records in their request. If clients receive a server response that includes an Error record, they MUST discard any key material negotiated during the initial TLS exchange and MUST NOT proceed to the Next Protocol. Requirements for retry intervals are described in Section 4.2.¶
The following error codes are defined:¶
The Warning record has a Record Type number of 3. Its body is exactly two octets long, consisting of an unsigned 16-bit integer in network byte order, denoting a warning code. The Critical Bit MUST be set.¶
Clients MUST NOT include Warning records in their request. If clients receive a server response that includes a Warning record, they MAY discard any negotiated key material and abort without proceeding to the Next Protocol. Unrecognized warning codes MUST be treated as errors.¶
This memo defines no warning codes.¶
The AEAD Algorithm Negotiation record has a Record Type number of 4. Its body consists of a sequence of unsigned 16-bit integers in network byte order, denoting Numeric Identifiers from the IANA "AEAD Algorithms" registry [IANA-AEAD]. The Critical Bit MAY be set.¶
If the NTS Next Protocol Negotiation record offers Protocol ID 0 (for NTPv4), then this record MUST be included exactly once. Other protocols MAY require it as well.¶
When included in a request, this record denotes which AEAD algorithms the client is willing to use to secure the Next Protocol, in decreasing preference order. When included in a response, this record denotes which algorithm the server chooses to use. It is empty if the server supports none of the algorithms offered. In requests, the list MUST include at least one algorithm. In responses, it MUST include at most one. Honoring the client's preference order is OPTIONAL: servers may select among any of the client's offered choices, even if they are able to support some other algorithm that the client prefers more.¶
Server implementations of NTS Extension Fields for NTPv4 (Section 5) MUST support AEAD_AES_SIV_CMAC_256 [RFC5297] (Numeric Identifier 15). That is, if the client includes AEAD_AES_SIV_CMAC_256 in its AEAD Algorithm Negotiation record, and the server accepts Protocol ID 0 (NTPv4) in its NTS Next Protocol Negotiation record, then the server's AEAD Algorithm Negotiation record MUST NOT be empty.¶
The NTPv4 Server Negotiation record has a Record Type number of 6. Its body consists of an ASCII-encoded [RFC0020] string. The contents of the string SHALL be either an IPv4 address, an IPv6 address, or a fully qualified domain name (FQDN). IPv4 addresses MUST be in dotted decimal notation. IPv6 addresses MUST conform to the "Text Representation of Addresses" as specified in RFC 4291 [RFC4291] and MUST NOT include zone identifiers [RFC6874]. If a label contains at least one non-ASCII character, it is an internationalized domain name, and an A-LABEL MUST be used as defined in Section 2.3.2.1 of RFC 5890 [RFC5890]. If the record contains a domain name, the recipient MUST treat it as a FQDN, e.g., by making sure it ends with a dot.¶
When NTPv4 is negotiated as a Next Protocol and this record is sent by the server, the body specifies the hostname or IP address of the NTPv4 server with which the client should associate and that will accept the supplied cookies. If no record of this type is sent, the client SHALL interpret this as a directive to associate with an NTPv4 server at the same IP address as the NTS-KE server. Servers MUST NOT send more than one record of this type.¶
When this record is sent by the client, it indicates that the client wishes to associate with the specified NTP server. The NTS-KE server MAY incorporate this request when deciding which NTPv4 Server Negotiation records to respond with, but honoring the client's preference is OPTIONAL. The client MUST NOT send more than one record of this type.¶
If the client has sent a record of this type, the NTS-KE server SHOULD reply with the same record if it is valid and the server is able to supply cookies for it. If the client has not sent any record of this type, the NTS-KE server SHOULD respond with either an NTP server address in the same family as the NTS-KE session or a FQDN that can be resolved to an address in that family, if such alternatives are available.¶
Servers MAY set the Critical Bit on records of this type; clients SHOULD NOT.¶
The NTPv4 Port Negotiation record has a Record Type number of 7. Its body consists of a 16-bit unsigned integer in network byte order, denoting a UDP port number.¶
When NTPv4 is negotiated as a Next Protocol, and this record is sent by the server, the body specifies the port number of the NTPv4 server with which the client should associate and that will accept the supplied cookies. If no record of this type is sent, the client SHALL assume a default of 123 (the registered port number for NTP).¶
When this record is sent by the client in conjunction with a NTPv4 Server Negotiation record, it indicates that the client wishes to associate with the NTP server at the specified port. The NTS-KE server MAY incorporate this request when deciding what NTPv4 Server Negotiation and NTPv4 Port Negotiation records to respond with, but honoring the client's preference is OPTIONAL.¶
Servers MAY set the Critical Bit on records of this type; clients SHOULD NOT.¶
A mechanism for not unnecessarily overloading the NTS-KE server is REQUIRED when retrying the key establishment process due to protocol, communication, or other errors. The exact workings of this will be dependent on the application and operational experience gathered over time. Until such experience is available, this memo provides the following suggestion.¶
Clients SHOULD use exponential backoff, with an initial and minimum retry interval of 10 seconds, a maximum retry interval of 5 days, and a base of 1.5. Thus, the minimum interval in seconds, 't', for the nth retry is calculated with the following:¶
Clients MUST NOT reset the retry interval until they have performed a successful key establishment with the NTS-KE server, followed by a successful use of the negotiated Next Protocol with the keys and data established during that transaction.¶
Following a successful run of the NTS-KE protocol, key material SHALL be extracted using the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) [RFC5869] in accordance with Section 7.5 of RFC 8446 [RFC8446]. Inputs to the exporter function are to be constructed in a manner specific to the negotiated Next Protocol. However, all protocols that utilize NTS-KE MUST conform to the following two rules:¶
Following a successful run of the NTS-KE protocol wherein Protocol ID 0 (NTPv4) is selected as a Next Protocol, two AEAD keys SHALL be extracted: a client-to-server (C2S) key and a server-to-client (S2C) key. These keys SHALL be computed with the HKDF defined in Section 7.5 of RFC 8446 [RFC8446] using the following inputs:¶
The per-association context value [RFC5705] SHALL consist of the following five octets:¶
Implementations wishing to derive additional keys for private or experimental use MUST NOT do so by extending the above-specified syntax for per-association context values. Instead, they SHOULD use their own disambiguating label string. Note that RFC 5705 [RFC5705] provides that disambiguating label strings beginning with "EXPERIMENTAL" MAY be used without IANA registration.¶
In general, an NTS-protected NTPv4 packet consists of the following:¶
Always included among the authenticated or authenticated-and-encrypted extension fields are a cookie extension field and a unique identifier extension field, as described in Section 5.7. The purpose of the cookie extension field is to enable the server to offload storage of session state onto the client. The purpose of the unique identifier extension field is to protect the client from replay attacks.¶
The Unique Identifier extension field provides the client with a cryptographically strong means of detecting replayed packets. It has a Field Type of 0x0104. When the extension field is included in a client packet (mode 3), its body SHALL consist of a string of octets generated by a cryptographically secure random number generator [RFC4086]. The string MUST be at least 32 octets long. When the extension field is included in a server packet (mode 4), its body SHALL contain the same octet string as was provided in the client packet to which the server is responding. All server packets generated by NTS-implementing servers in response to client packets containing this extension field MUST also contain this field with the same content as in the client's request. The field's use in modes other than client-server is not defined.¶
This extension field MAY also be used standalone, without NTS, in which case it provides the client with a means of detecting spoofed packets from off-path attackers. Historically, NTP's origin timestamp field has played both these roles, but this is suboptimal for cryptographic purposes because it is only 64 bits long, and depending on implementation details, most of those bits may be predictable. In contrast, the Unique Identifier extension field enables a degree of unpredictability and collision resistance more consistent with cryptographic best practice.¶
The NTS Authenticator and Encrypted Extension Fields extension field is the central cryptographic element of an NTS-protected NTP packet. Its Field Type is 0x0404. It SHALL be formatted according to Figure 4 and include the following fields:¶
The Ciphertext field SHALL be formed by providing the following inputs to the negotiated AEAD algorithm:¶
The purpose of the Additional Padding field is to ensure that servers can always choose a nonce whose length is adequate to ensure its uniqueness, even if the client chooses a shorter one, and still ensure that the overall length of the server's response packet does not exceed the length of the request. For mode 4 (server) packets, no Additional Padding field is ever required. For mode 3 (client) packets, the length of the Additional Padding field SHALL be computed as follows. Let 'N_LEN' be the padded length of the Nonce field. Let 'N_MAX' be, as specified by RFC 5116 [RFC5116], the maximum permitted nonce length for the negotiated AEAD algorithm. Let 'N_REQ' be the lesser of 16 and N_MAX, rounded up to the nearest multiple of 4. If N_LEN is greater than or equal to N_REQ, then no Additional Padding field is required. Otherwise, the Additional Padding field SHALL be at least N_REQ - N_LEN octets in length. Servers MUST enforce this requirement by discarding any packet that does not conform to it.¶
Senders are always free to include more Additional Padding than mandated by the above paragraph. Theoretically, it could be necessary to do so in order to bring the extension field to the minimum length required by RFC 7822 [RFC7822]. This should never happen in practice because any reasonable AEAD algorithm will have a nonce and an authenticator long enough to bring the extension field to its required length already. Nonetheless, implementers are advised to explicitly handle this case and ensure that the extension field they emit is of legal length.¶
The NTS Authenticator and Encrypted Extension Fields extension field MUST NOT be included in NTP packets whose mode is other than 3 (client) or 4 (server).¶
A client sending an NTS-protected request SHALL include the following extension fields as displayed in Figure 5:¶
To protect the client's privacy, the client SHOULD avoid reusing a cookie. If the client does not have any cookies that it has not already sent, it SHOULD initiate a rerun of the NTS-KE protocol. The client MAY reuse cookies in order to prioritize resilience over unlinkability. Which of the two that should be prioritized in any particular case is dependent on the application and the user's preference. Section 9.1 describes the privacy considerations of this in further detail.¶
The client MAY include one or more NTS Cookie Placeholder extension fields that MUST be authenticated and MAY be encrypted. The number of NTS Cookie Placeholder extension fields that the client includes SHOULD be such that if the client includes N placeholders and the server sends back N+1 cookies, the number of unused cookies stored by the client will come to eight. The client SHOULD NOT include more than seven NTS Cookie Placeholder extension fields in a request. When both the client and server adhere to all cookie-management guidance provided in this memo, the number of placeholder extension fields will equal the number of dropped packets since the last successful volley.¶
In rare circumstances, it may be necessary to include fewer NTS Cookie Placeholder extensions than recommended above in order to prevent datagram fragmentation. When cookies adhere to the format recommended in Section 6 and the AEAD in use is the mandatory-to-implement AEAD_AES_SIV_CMAC_256, senders can include a cookie and seven placeholders and still have packet size fall comfortably below 1280 octets if no non-NTS-related extensions are used; 1280 octets is the minimum prescribed MTU for IPv6 and is generally safe for avoiding IPv4 fragmentation. Nonetheless, senders SHOULD include fewer cookies and placeholders than otherwise indicated if doing so is necessary to prevent fragmentation.¶
The client MAY include additional (non-NTS-related) extension fields that MAY appear prior to the NTS Authenticator and Encrypted Extension Fields extension fields (therefore authenticated but not encrypted), within it (therefore encrypted and authenticated), or after it (therefore neither encrypted nor authenticated). The server MUST discard any unauthenticated extension fields. Future specifications of extension fields MAY provide exceptions to this rule.¶
Upon receiving an NTS-protected request, the server SHALL (through some implementation-defined mechanism) use the cookie to recover the AEAD algorithm, C2S key, and S2C key associated with the request, and then use the C2S key to authenticate the packet and decrypt the ciphertext. If the cookie is valid and authentication and decryption succeed, the server SHALL include the following extension fields in its response:¶
We emphasize the contrast that NTS Cookie extension fields MUST NOT be encrypted when sent from client to server but MUST be encrypted when sent from server to client. The former is necessary in order for the server to be able to recover the C2S and S2C keys, while the latter is necessary to satisfy the unlinkability goals discussed in Section 9.1. We emphasize also that "encrypted" means encapsulated within the NTS Authenticator and Encrypted Extensions extension field. While the body of an NTS Cookie extension field will generally consist of some sort of AEAD output (regardless of whether the recommendations of Section 6 are precisely followed), this is not sufficient to make the extension field "encrypted".¶
The server MAY include additional (non-NTS-related) extension fields that MAY appear prior to the NTS Authenticator and Encrypted Extension Fields extension field (therefore authenticated but not encrypted), within it (therefore encrypted and authenticated), or after it (therefore neither encrypted nor authenticated). The client MUST discard any unauthenticated extension fields. Future specifications of extension fields MAY provide exceptions to this rule.¶
Upon receiving an NTS-protected response, the client MUST verify that the Unique Identifier matches that of an outstanding request, and that the packet is authentic under the S2C key associated with that request. If either of these checks fails, the packet MUST be discarded without further processing. In particular, the client MUST discard unprotected responses to NTS-protected requests.¶
If the server is unable to validate the cookie or authenticate the request, it SHOULD respond with a Kiss-o'-Death (KoD) packet (see Section 7.4 of RFC 5905 [RFC5905]) with kiss code "NTSN", meaning "NTS NAK" (NTS negative-acknowledgment). It MUST NOT include any NTS Cookie or NTS Authenticator and Encrypted Extension Fields extension fields.¶
If the NTP server has previously responded with authentic NTS-protected NTP packets, the client MUST verify that any KoD packets received from the server contain the Unique Identifier extension field and that the Unique Identifier matches that of an outstanding request. If this check fails, the packet MUST be discarded without further processing. If this check passes, the client MUST comply with Section 7.4 of RFC 5905 [RFC5905] where required.¶
A client MAY automatically rerun the NTS-KE protocol upon forced disassociation from an NTP server. In that case, it MUST avoid quickly looping between the NTS-KE and NTP servers by rate limiting the retries. Requirements for retry intervals in NTS-KE are described in Section 4.2.¶
Upon reception of the NTS NAK kiss code, the client SHOULD wait until the next poll for a valid NTS-protected response, and if none is received, initiate a fresh NTS-KE handshake to try to renegotiate new cookies, AEAD keys, and parameters. If the NTS-KE handshake succeeds, the client MUST discard all old cookies and parameters and use the new ones instead. As long as the NTS-KE handshake has not succeeded, the client SHOULD continue polling the NTP server using the cookies and parameters it has.¶
To allow for NTP session restart when the NTS-KE server is unavailable and to reduce NTS-KE server load, the client SHOULD keep at least one unused but recent cookie, AEAD keys, negotiated AEAD algorithm, and other necessary parameters in persistent storage. This way, the client is able to resume the NTP session without performing renewed NTS-KE negotiation.¶
IANA has allocated the following entry in the "Service Name and Transport Protocol Port Number Registry" [RFC6335]:¶
IANA has allocated the following entry in the "TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs" registry [RFC7301]:¶
IANA has allocated the following entry in the TLS Exporter Labels registry [RFC5705]:¶
Value | DTLS-OK | Recommended | Reference | Note |
---|---|---|---|---|
EXPORTER-network-time-security | Y | Y | RFC 8915, Section 4.3 |
IANA has allocated the following entry in the "NTP Kiss-o'-Death Codes" registry [RFC5905]:¶
Code | Meaning | Reference |
---|---|---|
NTSN | Network Time Security (NTS) negative-acknowledgment (NAK) | RFC 8915, Section 5.7 |
IANA has allocated the following entries in the "NTP Extension Field Types" registry [RFC5905]:¶
Field Type | Meaning | Reference |
---|---|---|
0x0104 | Unique Identifier | RFC 8915, Section 5.3 |
0x0204 | NTS Cookie | RFC 8915, Section 5.4 |
0x0304 | NTS Cookie Placeholder | RFC 8915, Section 5.5 |
0x0404 | NTS Authenticator and Encrypted Extension Fields | RFC 8915, Section 5.6 |
IANA has created a new registry entitled "Network Time Security Key Establishment Record Types". Entries have the following fields:¶
The registration policy varies by Record Type Number, as follows:¶
The initial contents of this registry are as follows:¶
Record Type Number | Description | Reference |
---|---|---|
0 | End of Message | RFC 8915, Section 4.1.1 |
1 | NTS Next Protocol Negotiation | RFC 8915, Section 4.1.2 |
2 | Error | RFC 8915, Section 4.1.3 |
3 | Warning | RFC 8915, Section 4.1.4 |
4 | AEAD Algorithm Negotiation | RFC 8915, Section 4.1.5 |
5 | New Cookie for NTPv4 | RFC 8915, Section 4.1.6 |
6 | NTPv4 Server Negotiation | RFC 8915, Section 4.1.7 |
7 | NTPv4 Port Negotiation | RFC 8915, Section 4.1.8 |
8-16383 | Unassigned | |
16384-32767 | Reserved for Private or Experimental Use | RFC 8915 |
IANA has created a new registry entitled "Network Time Security Next Protocols". Entries have the following fields:¶
The registration policy varies by Protocol ID, as follows:¶
The initial contents of this registry are as follows:¶
Protocol ID | Protocol Name | Reference |
---|---|---|
0 | Network Time Protocol version 4 (NTPv4) | RFC 8915 |
1-32767 | Unassigned | |
32768-65535 | Reserved for Private or Experimental Use | RFC 8915 |
IANA has created two new registries entitled "Network Time Security Error Codes" and "Network Time Security Warning Codes". Entries in each have the following fields:¶
The registration policy varies by Number, as follows:¶
The initial contents of the "Network Time Security Error Codes" registry are as follows:¶
Number | Description | Reference |
---|---|---|
0 | Unrecognized Critical Record | RFC 8915, Section 4.1.3 |
1 | Bad Request | RFC 8915, Section 4.1.3 |
2 | Internal Server Error | RFC 8915, Section 4.1.3 |
3-32767 | Unassigned | |
32768-65535 | Reserved for Private or Experimental Use | RFC 8915 |
The "Network Time Security Warning Codes" registry is initially empty except for the reserved range, i.e.:¶
Number | Description | Reference |
---|---|---|
0-32767 | Unassigned | |
32768-65535 | Reserved for Private or Experimental Use | RFC 8915 |
NTP provides many different operating modes in order to support different network topologies and to adapt to various requirements. This memo only specifies NTS for NTP modes 3 (client) and 4 (server) (see Section 1.3). The best current practice for authenticating the other NTP modes is using the symmetric message authentication code feature as described in RFC 5905 [RFC5905] and RFC 8573 [RFC8573].¶
If the suggested format for NTS cookies in Section 6 of this document is used, an attacker who has gained access to the secret cookie encryption key 'K' can impersonate the NTP server, including generating new cookies. NTP and NTS-KE server operators SHOULD remove compromised keys as soon as the compromise is discovered. This will cause the NTP servers to respond with NTS NAK, thus forcing key renegotiation. Note that this measure does not protect against MITM attacks where the attacker has access to a compromised cookie encryption key. If another cookie scheme is used, there are likely similar considerations for that particular scheme.¶
The introduction of NTS brings with it the introduction of asymmetric cryptography to NTP. Asymmetric cryptography is necessary for initial server authentication and AEAD key extraction. Asymmetric cryptosystems are generally orders of magnitude slower than their symmetric counterparts. This makes it much harder to build systems that can serve requests at a rate corresponding to the full line speed of the network connection. This, in turn, opens up a new possibility for DDoS attacks on NTP services.¶
The main protection against these attacks in NTS lies in that the use of asymmetric cryptosystems is only necessary in the initial NTS-KE phase of the protocol. Since the protocol design enables separation of the NTS-KE and NTP servers, a successful DDoS attack on an NTS-KE server separated from the NTP service it supports will not affect NTP users that have already performed initial authentication, AEAD key extraction, and cookie exchange.¶
NTS users should also consider that they are not fully protected against DoS attacks by on-path adversaries. In addition to dropping packets and attacks such as those described in Section 8.6, an on-path attacker can send spoofed Kiss-o'-Death replies, which are not authenticated, in response to NTP requests. This could result in significantly increased load on the NTS-KE server. Implementers have to weigh the user's need for unlinkability against the added resilience that comes with cookie reuse in cases of NTS-KE server unavailability.¶
Certain nonstandard and/or deprecated features of the Network Time Protocol enable clients to send a request to a server that causes the server to send a response much larger than the request. Servers that enable these features can be abused in order to amplify traffic volume in DDoS attacks by sending them a request with a spoofed source IP address. In recent years, attacks of this nature have become an endemic nuisance.¶
NTS is designed to avoid contributing any further to this problem by ensuring that NTS-related extension fields included in server responses will be the same size as the NTS-related extension fields sent by the client. In particular, this is why the client is required to send a separate and appropriately padded-out NTS Cookie Placeholder extension field for every cookie it wants to get back, rather than being permitted simply to specify a desired quantity.¶
Due to the RFC 7822 [RFC7822] requirement that extensions be padded and aligned to four-octet boundaries, response size may still in some cases exceed request size by up to three octets. This is sufficiently inconsequential that we have declined to address it.¶
NTS's security goals are undermined if the client fails to verify that the X.509 certificate chain presented by the NTS-KE server is valid and rooted in a trusted certificate authority. RFC 5280 [RFC5280] and RFC 6125 [RFC6125] specify how such verification is to be performed in general. However, the expectation that the client does not yet have a correctly-set system clock at the time of certificate verification presents difficulties with verifying that the certificate is within its validity period, i.e., that the current time lies between the times specified in the certificate's notBefore and notAfter fields. It may be operationally necessary in some cases for a client to accept a certificate that appears to be expired or not yet valid. While there is no perfect solution to this problem, there are several mitigations the client can implement to make it more difficult for an adversary to successfully present an expired certificate:¶
In a packet delay attack, an adversary with the ability to act as a man-in-the-middle delays time synchronization packets between client and server asymmetrically [RFC7384]. Since NTP's formula for computing time offset relies on the assumption that network latency is roughly symmetrical, this leads to the client to compute an inaccurate value [Mizrahi]. The delay attack does not reorder or modify the content of the exchanged synchronization packets. Therefore, cryptographic means do not provide a feasible way to mitigate this attack. However, the maximum error that an adversary can introduce is bounded by half of the round-trip delay.¶
RFC 5905 [RFC5905] specifies a parameter called MAXDIST, which denotes the maximum round-trip latency (including not only the immediate round trip between client and server, but the whole distance back to the reference clock as reported in the Root Delay field) that a client will tolerate before concluding that the server is unsuitable for synchronization. The standard value for MAXDIST is one second, although some implementations use larger values. Whatever value a client chooses, the maximum error that can be introduced by a delay attack is MAXDIST/2.¶
Usage of multiple time sources, or multiple network paths to a given time source [Shpiner], may also serve to mitigate delay attacks if the adversary is in control of only some of the paths.¶
Implementers must be aware of the possibility of "NTS stripping" attacks, where an attacker attempts to trick clients into reverting to plain NTP. Naive client implementations might, for example, revert automatically to plain NTP if the NTS-KE handshake fails. A man-in-the-middle attacker can easily cause this to happen. Even clients that already hold valid cookies can be vulnerable, since an attacker can force a client to repeat the NTS-KE handshake by sending faked NTP mode 4 replies with the NTS NAK kiss code. Forcing a client to repeat the NTS-KE handshake can also be the first step in more advanced attacks.¶
For the reasons described here, implementations SHOULD NOT revert from NTS-protected to unprotected NTP with any server without explicit user action.¶
Unlinkability prevents a device from being tracked when it changes network addresses (e.g., because said device moved between different networks). In other words, unlinkability thwarts an attacker that seeks to link a new network address used by a device with a network address that it was formerly using because of recognizable data that the device persistently sends as part of an NTS-secured NTP association. This is the justification for continually supplying the client with fresh cookies, so that a cookie never represents recognizable data in the sense outlined above.¶
NTS's unlinkability objective is merely to not leak any additional data that could be used to link a device's network address. NTS does not rectify legacy linkability issues that are already present in NTP. Thus, a client that requires unlinkability must also minimize information transmitted in a client query (mode 3) packet as described in the document NTP Client Data Minimization [NTP-DATA-MIN].¶
The unlinkability objective only holds for time synchronization traffic, as opposed to key establishment traffic. This implies that it cannot be guaranteed for devices that function not only as time clients, but also as time servers (because the latter can be externally triggered to send linkable data, such as the TLS certificate).¶
It should also be noted that it could be possible to link devices that operate as time servers from their time synchronization traffic, using information exposed in (mode 4) server response packets (e.g. reference ID, reference time, stratum, poll). Also, devices that respond to NTP control queries could be linked using the information revealed by control queries.¶
Note that the unlinkability objective does not prevent a client device from being tracked by its time servers.¶
NTS does not protect the confidentiality of information in NTP's header fields. When clients implement NTP Client Data Minimization [NTP-DATA-MIN], client packet headers do not contain any information that the client could conceivably wish to keep secret: one field is random, and all others are fixed. Information in server packet headers is likewise public: the origin timestamp is copied from the client's (random) transmit timestamp, and all other fields are set the same regardless of the identity of the client making the request.¶
Future extension fields could hypothetically contain sensitive information, in which case NTS provides a mechanism for encrypting them.¶
The authors would like to thank Richard Barnes, Steven Bellovin, Scott Fluhrer, Patrik Fältström, Sharon Goldberg, Russ Housley, Benjamin Kaduk, Suresh Krishnan, Mirja Kühlewind, Martin Langer, Barry Leiba, Miroslav Lichvar, Aanchal Malhotra, Danny Mayer, Dave Mills, Sandra Murphy, Hal Murray, Karen O'Donoghue, Eric K. Rescorla, Kurt Roeckx, Stephen Roettger, Dan Romascanu, Kyle Rose, Rich Salz, Brian Sniffen, Susan Sons, Douglas Stebila, Harlan Stenn, Joachim Strömbergsson, Martin Thomson, Éric Vyncke, Richard Welty, Christer Weinigel, and Magnus Westerlund for contributions to this document and comments on the design of NTS.¶