This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 4309
Internet Engineering Task Force (IETF)                        P. Marques
Request for Comments: 6368
Category: Standards Track                                      R. Raszuk
ISSN: 2070-1721                                                  NTT MCL
                                                                K. Patel
                                                           Cisco Systems
                                                               K. Kumaki
                                                             T. Yamagata
                                                        KDDI Corporation
                                                          September 2011


        Internal BGP as the Provider/Customer Edge Protocol for
              BGP/MPLS IP Virtual Private Networks (VPNs)

Abstract

   This document defines protocol extensions and procedures for BGP
   Provider/Customer Edge router iteration in BGP/MPLS IP VPNs.  These
   extensions and procedures have the objective of making the usage of
   the BGP/MPLS IP VPN transparent to the customer network, as far as
   routing information is concerned.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6368.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................2
   2. Requirements Language ...........................................3
   3. IP VPN as a Route Server ........................................3
   4. Path Attributes .................................................5
   5. BGP Customer Route Attributes ...................................6
   6. Next-Hop Handling ...............................................7
   7. Exchanging Routes between Different VPN Customer Networks .......8
   8. Deployment Considerations ......................................10
   9. Security Considerations ........................................12
   10. IANA Considerations ...........................................12
   11. Acknowledgments ...............................................12
   12. References ....................................................13
      12.1. Normative References .....................................13
      12.2. Informative References ...................................13

1.  Introduction

   In current deployments, when BGP is used as the Provider/Customer
   Edge routing protocol, these peering sessions are typically
   configured as an external peering between the VPN provider autonomous
   system (AS) and the customer network autonomous system.  At each
   External BGP boundary, BGP path attributes [RFC4271] are modified as
   per standard BGP rules.  This includes prepending the AS_PATH
   attribute with the autonomous-system number of the originating
   Customer Edge (CE) router and the autonomous-system number(s) of the
   Provider Edge (PE) router(s).

   In order for such routes not to be rejected by AS_PATH loop
   detection, a PE router advertising a route received from a remote PE
   often remaps the customer network autonomous-system number to its
   own.  Otherwise, the customer network can use different autonomous-
   system numbers at different sites or configure their CE routers to
   accept routes containing their own AS number.

   While this technique works well in situations where there are no BGP
   routing exchanges between the client network and other networks, it
   does have drawbacks for customer networks that use BGP internally for
   purposes other than interaction between CE and PE routers.

   In order to make the usage of BGP/MPLS VPN services as transparent as
   possible to any external interaction, it is desirable to define a
   mechanism by which PE-CE routers can exchange BGP routes by means
   other than External BGP.

   One can consider a BGP/MPLS VPN as a provider-managed backbone
   service interconnecting several customer-managed sites.  While this
   model is not universal, it does constitute a good starting point.

   Independently of the presence of VPN service, networks often use a
   hierarchical design utilizing either BGP route reflection [RFC4456]
   or confederations [RFC5065].  This document assumes that the IP VPN
   service interacts with the customer network following a similar
   model.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  IP VPN as a Route Server

   In a typical backbone/area hierarchical design, routers that attach
   an area (or site) to the core use BGP route reflection (or
   confederations) to distribute routes between the top-level core
   Internal BGP (iBGP) mesh and the local area iBGP cluster.

   To provide equivalent functionality in a network using a provider-
   provisioned backbone, one can consider the VPN as the equivalent of
   an Internal BGP Route Server that multiplexes information from _N_
   VPN attachment points.

   A route learned by any of the PEs in the IP VPN is available to all
   other PEs that import the Route Target used to identify the customer
   network.  This is conceptually equivalent to a centralized route
   server.

   In a PE router, PE-received routes are not advertised back to other
   PEs.  It is this split-horizon technique that prevents routing loops
   in an IP VPN environment.  This is also consistent with the behavior
   of a top-level mesh of route reflectors (RRs).

   In order to complete the Route Server model, it is necessary to be
   able to transparently carry the Internal BGP path attributes of
   customer network routes through the BGP/MPLS VPN core.  This is
   achieved by using a new BGP path attribute, described below, that
   allows the customer network attributes to be saved and restored at
   the BGP/MPLS VPN boundaries.

   When a route is advertised from PE to CE, if it is advertised as an
   iBGP route, the CE will not advertise it further unless it is itself
   configured as a route reflector (or has an External BGP session).
   This is a consequence of the default BGP behavior of not advertising
   iBGP routes back to iBGP peers.  This behavior is not modified.

   On a BGP/MPLS VPN PE, a CE-received route MUST be advertised to other
   VPN PEs that import the Route Targets that are associated with the
   route.  This is independent of whether the CE route has been received
   as an external or internal route.  However, a CE-received route is
   not re-advertised back to other CEs unless route reflection is
   explicitly configured.  This is the equivalent of disabling client-
   to-client reflection in BGP route reflection implementations.

   When reflection is configured on the PE router, with local CE routers
   as clients, there is no need to internally mesh multiple CEs that may
   exist in the site.

   This Route Server model can also be used to support a confederation-
   style abstraction to CE devices.  At this point, we choose not to
   describe in detail the procedures for that mode of operation.
   Confederations are considered to be less common than route reflection
   in enterprise environments.

4.  Path Attributes

             --> push path attributes --> vrf-export --> BGP/MPLS IP VPN
   VRF route                                             PE-PE route
                                                         advertisement
             <--  pop path attributes <--  vrf-import <--

   The diagram above shows the BGP path attribute stack processing in
   relation to existing BGP/MPLS IP VPN [RFC4364] route processing
   procedures.  BGP path attributes received from a customer network are
   pushed into the stack, before adding the Export Route Targets to the
   BGP path attributes.  Conversely, the stack is popped following the
   Import Target processing step that identifies the VPN Routing and
   Forwarding (VRF) table in which a PE-received route is accepted.

   When the advertising PE performs a "push" operation at the
   "vrf-export" processing stage, it SHOULD initialize the attributes of
   the BGP IP VPN route advertisement as it would for a locally
   originated route from the respective VRF context.

   When a PE-received route is imported into a VRF, its IGP metric, as
   far as BGP path selection is concerned, SHOULD be the metric to the
   remote PE address, expressed in terms of the service provider metric
   domain.

   For the purposes of VRF route selection performed at the PE, between
   routes received from local CEs and remote PEs, customer network IGP
   metrics SHOULD always be considered higher (and thus least preferred)
   than local site metrics.

   When backdoor links are present, this would tend to direct the
   traffic between two sites through the backdoor link for BGP routes
   originated by a remote site.  However, BGP already has policy
   mechanisms, such as the LOCAL_PREF attribute, to address this type of
   situation.

   When a given CE is connected to more than one PE, it will not
   advertise the route that it receives from a PE to another PE unless
   configured as a route reflector, due to the standard BGP route
   advertisement rules.

   When a CE reflects a PE-received route to another PE, the fact that
   the original attributes of a route are preserved across the VPN
   prevents the formation of routing loops due to mutual redistribution
   between the two networks.

5.  BGP Customer Route Attributes

   In order to transparently carry the BGP path attributes of customer
   routes, this document defines a new BGP path attribute:

      ATTR_SET (type code 128)

      ATTR_SET is an optional transitive attribute that carries a set of
      BGP path attributes.  An attribute set (ATTR_SET) can include any
      BGP attribute that can occur in a BGP UPDATE message, except for
      the MP_REACH and MP_UNREACH attributes.

   The ATTR_SET attribute is encoded as follows:

                      +------------------------------+
                      | Attr Flags (O|T) Code = 128  |
                      +------------------------------+
                      | Attr. Length (1 or 2 octets) |
                      +------------------------------+
                      | Origin AS (4 octets)         |
                      +------------------------------+
                      | Path Attributes (variable)   |
                      +------------------------------+

   The Attribute Flags are encoded according to RFC 4271 [RFC4271].  The
   Extended Length bit determines whether the Attribute Length is one or
   two octets.

   The attribute value consists of a 4-octet "Origin AS" value followed
   by a variable-length field that conforms to the BGP UPDATE message
   path attribute encoding rules.  The length of this attribute is 4
   plus the total length of the encoded attributes.

   The ATTR_SET attribute is used by a PE router to store the original
   set of BGP attributes it receives from a CE.  When a PE router
   advertises a PE-received route to a CE, it will use the path
   attributes carried in the ATTR_SET attribute.

   In other words, the BGP path attributes are "pushed" into this
   attribute, which operates as a stack, when the route is received by
   the VPN and "popped" when the route is advertised in the PE-to-CE
   direction.

   Using this mechanism isolates the customer network from the
   attributes used in the customer network and vice versa.  Attributes
   such as the route reflection cluster list attribute are segregated
   such that customer network cluster identifiers won't be considered by
   the customer network route reflectors and vice versa.

   The Origin autonomous-system number is designed to prevent a route
   originating in a given autonomous-system iBGP from being leaked into
   a different autonomous system without proper AS_PATH manipulation.
   It SHOULD contain the autonomous-system number of the customer
   network that originates the given set of attributes.  The value is
   encoded as a 32-bit unsigned integer in network byte order,
   regardless of whether or not the originating PE supports 4-octet AS
   numbers [RFC4893].

   The AS_PATH and AGGREGATOR attributes contained within an ATTR_SET
   attribute MUST be encoded using 4-octet AS numbers [RFC4893],
   regardless of the capabilities advertised by the BGP speaker to which
   the ATTR_SET attribute is transmitted.  BGP speakers that support the
   extensions defined in this document MUST also support RFC 4893
   [RFC4893].  The reason for this requirement is to remove ambiguity
   between 2-octet and 4-octet AS_PATH attribute encoding.

   The NEXT_HOP attribute SHOULD NOT be included in an ATTR_SET.  When
   present, it SHOULD be ignored by the receiving PE.  Future
   applications of the ATTR_SET attribute MAY define meaningful
   semantics for an included NEXT_HOP attribute.

   The ATTR_SET attribute SHALL be considered malformed if any of the
   following apply:

   o  Its length is less than 4 octets.

   o  The original path attributes carried in the variable-length
      attribute data include the MP_REACH or MP_UNREACH attribute.

   o  The included attributes are malformed themselves.

   An UPDATE message with a malformed ATTR_SET attribute SHALL be
   handled as follows.  If its Partial flag is set and its
   Neighbor-Complete flag is clear, the UPDATE is treated as a route
   withdraw as discussed in [OPT-TRANS-BGP].  Otherwise (i.e., Partial
   flag is clear or Neighbor-Complete is set), the procedures of the
   BGP-4 base specification [RFC4271] MUST be followed with respect to
   an Optional Attribute Error.

6.  Next-Hop Handling

   When BGP/MPLS VPNs are not in use, the NEXT_HOP attribute in iBGP
   routes carries the address of the border router advertising the route
   into the domain.  The IGP distance to the NEXT_HOP of the route is an
   important component of BGP route selection.

   When a BGP/MPLS VPN service is used to provide interconnection
   between different sites, since the customer network runs a different
   IGP domain, metrics between the provider and customer networks are
   not comparable.

   However, the most important component of a metric is the inter-area
   metric, which is known to the customer network.  The intra-area
   metric is typically negligible.

   The use of route reflection, for instance, requires metrics to be
   configured so that inter-cluster/area metrics are always greater than
   intra-cluster metrics.

   The approach taken by this document is to rewrite the NEXT_HOP
   attribute at the VRF import/export boundary.  PE routers take into
   account the PE-PE IGP distance calculated by the customer network
   IGP, when selecting between routes advertised from different PEs.

   An advantage of the proposed method is that the customer network can
   run independent IGPs at each site.

7.  Exchanging Routes between Different VPN Customer Networks

      In the traditional model, where External BGP sessions are used 
   between the BGP/MPLS VPN PE and CE, the PE router identifies itself
   as belonging to the provider network autonomous system.
EID 4309 (Verified) is as follows:

Section: 7

Original Text:

   In the traditional model, where External BGP sessions are used
   between the BGP/MPLS VPN PE and CE, the PE router identifies itself
   as belonging to the customer network autonomous system.

Corrected Text:

   In the traditional model, where External BGP sessions are used
   between the BGP/MPLS VPN PE and CE, the PE router identifies itself
   as belonging to the provider network autonomous system.
Notes:
None
In order to use Internal BGP sessions, the PE router has to identify itself as belonging to the customer AS. More specifically, the VRF that is used to interconnect to that customer site is assigned to the customer AS rather than the VPN provider AS. The Origin AS element in the ATTR_SET path attribute conveys the AS number of the originating VRF. This AS number is used in a receiving PE in order to identify route exchanges between VRFs in different ASes. In scenarios such as what is commonly referred to as an "extranet" VPN, routes MAY be advertised to both internal and external VPN attachments belonging to different autonomous systems. +-----+ +-----+ | PE1 |-----------------| PE2 | +-----+ +-----+ / \ | +-----+ +-----+ +-----+ | CE1 | | CE2 | | CE3 | +-----+ +-----+ +-----+ AS 1 AS 2 AS 1 Consider the example given above, where (PE1, CE1) and (PE2, CE3) sessions are iBGP. In BGP/MPLS VPNs, a route received from CE1 above may be distributed to the VRFs corresponding to the attachment points for CEs 2 and 3. The desired result in such a scenario is to present the internal peer (CE3) with a BGP advertisement that contains the same BGP path attributes received from CE1, and to present the external peer (CE2) with a BGP advertisement that would correspond to a situation where AS 1 and AS 2 have an External BGP session between them. In order to achieve this goal, the following set of rules applies: When importing a VPN route that contains the ATTR_SET attribute into a destination VRF, a PE router MUST check that the "Origin AS" number contained in the ATTR_SET attribute matches the autonomous system associated with the VRF. In case the autonomous-system numbers do match, the route is imported into the VRF with the attributes contained in the ATTR_SET attribute. Otherwise, in the case of an autonomous- system number mismatch, the set of attributes to be associated with the route SHALL be constructed as follows: 1. The path attributes are set to the attributes contained in the ATTR_SET attribute. 2. iBGP-specific attributes are discarded (LOCAL_PREF, ORIGINATOR, CLUSTER_LIST, etc). 3. The "Origin AS" number contained in the ATTR_SET attribute is prepended to the AS_PATH following the rules that would apply to an External BGP peering between the source and destination ASes. 4. If the autonomous system associated with the VRF is the same as the VPN provider autonomous system and the AS_PATH attribute of the VPN route is not empty, it SHALL be prepended to the AS_PATH attribute of the VRF route. When advertising the VRF route to an External BGP peer, a PE router SHALL apply steps 1 to 4 defined above and subsequently prepend its own autonomous-system number to the AS_PATH attribute. For example, if the route originated in a VRF that supports Internal BGP peering and the ATTR_SET attribute and is advertised to a CE that is configured in the traditional External BGP mode, then the originator AS, the VPN AS_PATH segment, and the customer network AS are prepended to the AS_PATH. When importing a route without the ATTR_SET attribute to a VRF that is configured in a different autonomous system, a PE router MUST prepend the VPN provider AS number to the AS_PATH. In all cases where a route containing the ATTR_SET attribute is imported, attributes present on the VPN route other than the NEXT_HOP attribute are ignored, both from the point of view of route selection in the VRF Adj-RIB-In and route advertisement to a CE router. In other words, the information contained in the ATTR_SET attribute overrides the VPN route attributes on "vrf-import". 8. Deployment Considerations It is RECOMMENDED that different VRFs of the same VPN (i.e., in different PE routers) that are configured with iBGP PE-CE peering sessions use different Route Distinguisher (RD) values. Otherwise (in the case where the same RD is used), the BGP IP VPN infrastructure may select a single BGP customer path for a given IP Network Layer Reachability Information (NLRI) without access to the detailed path information that is contained in the ATTR_SET attribute. As mentioned previously, the model for this service is a "Route Server" where the IP VPN provides the customer network with all the BGP paths known by the CEs. This effectively implies the use of unique RDs per VRF. The stated goal of this extension is to isolate the customer network from the BGP path attribute operations performed by the IP VPN and conversely isolate the service provider network from any attributes injected by the customer. For instance, BGP communities can be used to influence the behavior of the IP VPN infrastructure. Using this extension, the service provider network can transparently carry these attributes without interfering with its operations. Another example of unwanted interaction between customer and IP VPN BGP attributes is a scenario where the same service provider autonomous-system number is used to provide Internet service as well as the IP VPN service. In this case, it is not uncommon to have a VPN customer route contain the AS number of the service provider. The IP VPN should work transparently in this case as in all others. This protocol extension is designed to behave such that each PE VRF operates as a router in the configured AS. Previously, VRFs operated in the provider network AS only. The VPN backbone provides interconnection between VRFs of the same AS, as well as interconnection between different ASes (subject to the appropriate policies). When interconnecting VRFs in the same AS, the VPN backbone operates as a top-level route reflection mesh. When interconnecting VRFs in different ASes, the provider network provides an implicit peering relationship between the ASes that originate and import a specific route. This extension is also applicable to scenarios where the VPN backbone spans multiple ASes. When the VPN backbone Inter-AS operation follows option b) or c) as defined in Section 10 of [RFC4364], the provider networks are able to influence the route attributes and route selection of the VPN routes while providing a transparent service to the customer AS. Either Internal BGP connectivity or extranets can be provided to the customer AS. When VPN provider networks interconnect via option a), there is no possibility of providing a fully transparent service. By definition, option a) implies that each autonomous-system border router (ASBR) has a VRF associated with the customer VPN that is configured to operate in the respective provider AS. These ASBR VRFs then communicate via External BGP with their peer provider ASes. In this case, it is still possible to have all the customer VRFs with one provider network be configured in the same customer AS. This customer AS will then peer with the provider AS implicitly at the ASBR, which will in turn peer explicitly with a second provider AS. This is not, however, a scenario in which transparency to the customer AS is possible. 9. Security Considerations It is worthwhile to consider the security implications of this proposal from two independent perspectives: the IP VPN provider and the IP VPN customer. From an IP VPN provider perspective, this mechanism will assure separation between the BGP path attributes advertised by the CE router and the BGP attributes used within the provider network, thus potentially improving security. Although this behavior is largely implementation dependent, it is currently possible for a CE device to inject BGP attributes (extended communities, for example) that have semantics on the IP VPN provider network, unless explicitly disabled by configuration in the PE. With the rules specified for the ATTR_SET path attribute, any attribute that has been received from a CE is pushed into the stack before the route is advertised to other PEs. As with any other field based on values received from an external system, an implementation must consider the issues of input validation and resource management. From the perspective of the VPN customer network, it is our opinion that there is no change to the security profile of PE-CE interaction. While having an iBGP session allows the PE to specify additional attributes not allowed on an External BGP session (e.g., LOCAL_PREF), this does not significantly change the fact that the VPN customer must trust its service provider to provide it with correct routing information. 10. IANA Considerations This document defines a new BGP path attribute that is part of a registry space managed by IANA. IANA has updated its BGP Path Attributes registry with the value specified above (128) for the ATTR_SET path attribute. 11. Acknowledgments The authors would like to thank Stephane Litkowski and Bruno Decraene for their comments. 12. References 12.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006. [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, February 2006. [RFC4456] Bates, T., Chen, E., and R. Chandra, "BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)", RFC 4456, April 2006. [RFC4893] Vohra, Q. and E. Chen, "BGP Support for Four-octet AS Number Space", RFC 4893, May 2007. [RFC5065] Traina, P., McPherson, D., and J. Scudder, "Autonomous System Confederations for BGP", RFC 5065, August 2007. 12.2. Informative References [OPT-TRANS-BGP] Scudder, J. and E. Chen, "Error Handling for Optional Transitive BGP Attributes", Work in Progress, September 2010. Authors' Addresses Pedro Marques EMail: pedro.r.marques@gmail.com Robert Raszuk NTT MCL 101 S. Ellsworth Avenue Suite 350 San Mateo, CA 94401 US EMail: robert@raszuk.net Keyur Patel Cisco Systems 170 W. Tasman Dr. San Jose, CA 95134 US EMail: keyupate@cisco.com Kenji Kumaki KDDI Corporation Garden Air Tower Iidabashi Chiyoda-ku, Tokyo 102-8460 Japan EMail: ke-kumaki@kddi.com Tomohiro Yamagata KDDI Corporation Garden Air Tower Iidabashi Chiyoda-ku, Tokyo 102-8460 Japan EMail: to-yamagata@kddi.com