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ABSTRACT

The synchronization index model of sensory dissonance and rough-
ness accounts for the degree of phase-locking to a particular fre-
quency that is present in the neural patterns. Sensory dissonance
(roughness) is defined as the energy of the relevant beating fre-
quencies in the auditory channels with respect to the total energy.
The model takes rate-code patterns at the level of the auditory
nerve as input and outputs a sensory dissonance (roughness) value.
The synchronization index model entails a straightforward visual-
ization of the principles underlying sensory dissonance and rough-
ness, in particular in terms of (i) roughness contributions with re-
spect to cochlear mechanical filtering (on a Critical Band scale),
and (ii) roughness contributions with respect to phase-locking syn-
chrony (=the synchronization index for the relevant beating fre-
quencies on a frequency scale). This paper presents the concept,
and implementation of the synchronization index model and its
application to musical scales.

1. INTRODUCTION

Since its introduction by H. v. Helmholtz [1], the termssensory
dissonanceandroughnesshave both been used to characterize the
texture of a sound in terms ofimpureor unpleasantqualities. The
sensation is associated with the physical presence of beating fre-
quencies.

Following v. Helmholtz, many researchers have used the term
sensory dissonancewhen speaking about tone relationships but it
is nowadays more appropriate to use the termroughness[German:
’Rauigheit’, French: ’Rugosité’] because this term is more general
and can be applied to characterize impure or unpleasant qualities of
all kinds of sounds, including noises. (In dealing with the texture
of noisy sounds it is indeed rather awkward to use the term sensory
dissonance.)

In the past decades, several models of sensory dissonance and
roughness have been proposed. A distinction can be made be-
tween curve-mapping models and auditory models. The curve-
mapping models (e.g. [2, 3, 4, 5]) perform a mapping of the fre-
quency component pairs of a sound onto a psychoacoustical curve
which expresses the dissonance value of the presented pair. The
auditory models rely on auditory processing and provide an ex-
planatory model for sensory dissonance. The approach is more
general in that any kind of sound, including noise, can be dealt
with. Daniel and Weber [6] have recently optimized the model of
Aures [7] which calculates roughness as a sum of the ’energy’ of
the beating frequencies in auditory channels. Pressnitzer [8] uses
a similar model but takes into account the effects of co-modulation
in different auditory channels.

In what follows, we propose an auditory model of roughness
which calculates the roughness using the energy of the beating fre-
quencies. But rather than estimating the modulation depth or using
a temporal filter for estimating the energy of the beating frequen-
cies, our method uses a Fourier analysis of the neural discharges in
the auditory channels. This approach relates the notion of rough-
ness to the notion ofsynchronization, a important concept in neu-
rophysiology which indicates the degree of a neuron’s total firing
rate that is phase-locked to the corresponding stimulus component
[9, 10].

Hence the model is called thesynchronization index model
(SIM). It allows a straightforward visualization of roughness along
two different scales: (i) roughness contributions with respect to
cochlear mechanical filtering on a Critical Band scale, and (ii)
roughness contributions with respect the synchronization indices
for the relevant beating frequencies on a frequency scale.

2. FACTS AND MODELS OF SENSORY DISSONANCE
AND ROUGHNESS

Studies of sensory dissonance and roughness have been conducted
from both an experimental and computational point of view.

2.1. Experimental Evidence

In a contribution to sensory dissonance, Plomp [11] concludes that
his experiments largely confirm v. Helmholtz’s findings [1]. In
particular, when two tones with small frequency differences are
simultaneously presented, we hear one frequency with a beating
of the amplitude. But at larger frequency differences it becomes
impossible to follow rapid successions of beats and the sound gets
a rough and unpleasant character, which is called (sensory)disso-
nance. When the frequencies widen even more, we hear two (or
perhaps even more) pitches. The maximum for dissonance was
postulated by v. Helmholtz to be in the order of 30-40 Hz but that
statement could not be confirmed by the experiments of Plomp.
Based on experimental findings, he extracted a rule of thumb sug-
gesting that the maximum dissonance corresponds to an interval
of about 25% of the critical bandwidth (Fig. 1), i.e. about 25 Hz
in the range below 500 Hz (taking roughly 100 Hz as the band-
width), and about 4-5 % of the frequency in the range above 500
Hz. Plomp’s findings, in other words, imply that the frequency of
the beats generating maximum dissonance increase with increas-
ing carrier frequency, rather than being constant over the whole
frequency range as v. Helmholtz suggested.

Later studies, based on amplitude modulated (AM) tones and
noises, confirm Plomp’s results, but provide additional details. In

DAFX-1



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

Figure 1:Psychoacoustical curve representing the degree of sen-
sory dissonance (roughness) in function of a critical band (CB).
The maximum roughness is at .25 CB.

working with AM tones, the termroughness, rather than sensory
dissonance, is then often used. Zwicker and Fastl [12, p.234] relate
roughness to three attributes: (i) the degree of amplitude modula-
tion (or the modulation index)m, (ii) the frequency of the modu-
lationfm, and (iii) the center frequency of the soundfc.1

• The dependency of the roughnessR on the degree of mod-
ulation m has been expressed as a power lawR ∼ mn.
Depending on the experimental setup,n can slightly vary
from 1.2 up to about2 [6, 13].

• For a 1000 Hz tone withm = 1 the maximum roughness
is found atfm 70 Hz. This corresponds to 0.4375 of the
critical band (of about 160 Hz), which appears to be higher
than Plomp’s suggestion to take 0.25 of the critical band.
However, a close inspection of the data2 reveals that the
discrepancy between Plomp’s data and Zwicker and Fastl’s
is perhaps less than would appear when applying the rule of
thumb (”0.25 of the critical band”).

• With respect tofc, the roughness curves seem to follow
an attenuated pattern in that the curve forfc 1000 Hz is
high, while the roughness curves for higher and lowerfc

are typically attenuated. A further characteristic is that for
fc ≥ 1000 Hz , maximum roughness is at 70 Hz (or even
slightly higher), while it is lower forfc < 1000 Hz.

• Recent results by Pressnitzer [8] show a dependency of rough-
ness on phase. In particular, the form of the amplitude en-
velope may play a role in the perception of roughness and
there are clear effects of co-modulation of phase. The latter
means that roughness is normally higher when the synchro-
nization in auditory channels is in phase. It is lower, when
the synchronization is not in phase. Hence, the total rough-
ness is not a simple linear addition of the roughness in the

1The parameters correspond to the parameters found in the classical
expression of an AM signal:s(t) = (1 + m.sin(2πfmt)).sin(2πfct)

2Thanks to D. Greenwood (personal communication, and Auditory
List)

auditory channels. In fine-tuning roughness models, phase
effects should be taken into account.

2.2. Computational Models

A first category of computational models of sensory dissonance
is based on acurve-mappingprinciple, i.e.: the mapping of all
frequency intervals or frequency component pairs present in the
spectrum of the sound to a psychoacoustical curve of sensory dis-
sonance. The dissonance of a complex tone is then defined to be
equal to the sum of the dissonances generated by each pair of ad-
jacent frequency components. A family of computational models
(e.g. [2, 3, 4, 5]) calculate sensory dissonance according to the fol-
lowing steps:

1. determination of the frequencies of the partials

2. matching of each possible interval of partials onto the psy-
choacoustical curve of Fig. 1

3. summation of all dissonance values.

Music theory, when dealing with sensory dissonance, tradi-
tionally draws on this model because it allows a straightforward
symbolic and hence highly abstract calculation of sensory disso-
nance that often suits the representation of music as a score. The
curve-mapping models moreover give a good fit with the tone per-
ception experiments because they are directly based on it. Sethares
[5] shows that curve-mapping models can go beyond the symbolic
input. In particular, the Fast Fourier Transform (FFT) can be ap-
plied to sounds, providing lists of amplitude-frequency pairs which
can then be processed with the curve-mapping model.

Although it was realized that sensory dissonance had to be ex-
plained on the basis of temporal properties of sounds [3, p.1457],
the early models relied on calculations using the mapping method.
As a result, the curve-mapping models are unable to handle differ-
ent important details such as amplitude (e.g. partials with differ-
ent amplitude), and phase effects, which are not dealt with at all.
Also noises cannot be handled, although many sounds in popular
as well as modern music include noises. Apart from their useful
applications in music theory, curve-mapping models thus have a
limited scope both in view of theoretical grounding and practical
application.

A second class of models is based on auditory modeling. Au-
res [7] has formulated anauditory model of sensory dissonance
and roughness that was intended to deal with the above mentioned
shortcomings. The model has recently been optimized by Daniel
and Weber [6]. In what follows, we propose an alternative view
based on the idea that roughness may be accounted for in terms of
the energy provided by the neural synchronization to beating fre-
quencies rather than a direct estimation of the modulation depth or
’energy’ of fluctuations. Our method uses Fourier analysis to esti-
mate the modulation depth. This allows a visualization of the beat-
ing components that contribute to sensory dissonance and rough-
ness.

3. NEURAL SYNCHRONIZATION AND SENSORY
DISSONANCE

3.1. The Synchronization Index Model

The synchronization index model consists of two parts: (a) a mod-
ule of the auditory periphery, called APM, and (b) a synchroniza-
tion index module, called SIM. In the present model, APM is the
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acoustical front end taken from [14], which is similar to the model
of Daniel and Weber [6], and Pressnitzer [8]. It simulates the
cochlear mechanical filtering using an array of overlapping band-
pass filters. The module provides rate-code patterns of neural dis-
charge at the level of the auditory nerve, representing the amount
of neural excitation during short time intervals.

A most important feature of the APM – on which our mod-
eling approach is built – is that temporal fluctuations, or beats,
are introduced as effective beating frequencies into the spectrum
of the neural rate-code patterns. Recall that an amplitude mod-
ulated sound with carrier frequencyfc and modulation frequency
fm shows only three frequencies in the spectrum, in particular:fc,
fc− fm, andfc + fm. Due to wave rectification, a property of the
frequency encoding in the cochlea which is due to a polarization
of the stereocillia [15, 16], the lower part of the modulated signal
is cut off, and as a result new frequencies are introduced of which
the most important ones correspond with the beating frequency
fm and its multiples. As a matter of fact, neurons may synchro-
nize with these modulation frequencies provided that they fall in
the frequency range where synchronization is physiologically pos-
sible [9] thus forming a basis for the detection of beats and hence,
the sensation of roughness.

According to Javel et al. [9, p. 520-521], the synchronization
index represents the degree of phase-locking to a particular fre-
quency that is present in the neural pattern. The index can be math-
ematically expressed as the (normalized) Fourier Series coefficient
at the frequency of interest. Normalization implies the division of
the Fourier amplitude by the DC or overall discharge rate, which
gives a rate-independent measure of neural synchronization. In a
similar way, Sach et al. [10] define the synchronization index as
the amplitude of the Fourier transform normalized by the average
rate. It shows the fraction of a unit’s total rate that is phase-locked
to the corresponding stimulus component.

In what follows, we give an analysis of this concept in view
of auditory modeling and aspects related to roughness. As a first
approximation, we could say that the degree of roughness can be
defined as the sum of the normalized magnitudes or ’energies’ of
the relevant beating frequencies in the Fourier spectrum. Obvi-
ously, in view of the above facts, a more sophisticated account
will be needed.

3.2. Formal Description, and Definitions

In this section, a formal description is given of possible ways of
how to deal with the neural discharge patterns from the point of
view of signal analysis. In this section, however, we describe some
general definitions and observations of synchronization in terms
of energy contributions. In a next section these concepts are then
adapted to roughness modeling.

3.2.1. Signal Decomposition and wave-rectification

The decomposition into frequency sub-bands is formally expressed
as:

APM : s(t) → d̃(t) = < dc(t) >c=1...C (1)

where the acronymAPM stands forauditory peripheral module,
anddc(t) specifies the probability of neural discharge (i.e. the so-
called rate-code) at intervals of 0.4 ms of the auditory channel
or nerve fiberc. The auditory channel is considered a filter with
a bandwidth equal to the critical bandwidth.C such filters are
considered. The APM is based on [14] but any other functional

equivalence model of the auditory periphery could be used. What
is needed is the output at the level of the auditory nerve fibers in
terms of rate-code, that is, the probability of neural firing for a
given time instance.

3.2.2. Analysis of Synchronization

A frequency analysis of the neural discharge patterns in the au-
ditory channels gives information about the synchronization of
the neurons to particular frequencies. In this model we take for
granted that the synchronization properties have been defined in
the APM. The short-term spectrum of the neural synchronization
in channelc is:

D(t, f, c) =

∫ +∞

t′=−∞
dc(t)w(t′ − t)e−j2πft′ dt′ (2)

wheredc(t) is the neural pattern in channelc, andw(t′ − t) is a
(hamming) window. This formula calculates the amount of syn-
chronization for each frequency. Themagnitudespectrum is then
defined as|D(t, f, c) |, and thephasespectrum as< D(t, f, c).

The synchronization index, according to the specifications given
above [9, 10], is defined as:

| I(t, f, c) | =

∣∣∣∣ D(t, f, c)

D(t, 0, c)

∣∣∣∣ (3)

whereD(t, 0, c) is the DC component or the average range of the
signal.

Different analysis approaches are now possible, given the fact
that the synchronization information is represented along three di-
mensions: time, frequency, and auditory channel. In adopting the
general modeling strategy that the concept of a model should be
as simple as possible we focus on two straightforward approaches
which both assume that roughness is somehow related to the en-
ergy of the neural synchronization. The first model (Model I) is
based on the idea that the energy of neural synchronization is first
computed in each individual auditory channel, and that the total
energy is then the sum of these channel energies. The second ap-
proach (Model II) assumes that the neural synchronization over all
channels is first combined and that the total energy is based on the
neural synchronization accumulated over all channels. In practice
it turns out that both approaches work reasonably well.

3.2.3. Model I

First consider the idea that the total energy of neural synchroniza-
tion is the sum of channel energies. The following definitions give
an account of different concepts used:

• The short-termenergy spectrumof neural synchronization
in channelc is:

D(t, f, c) = | I(t, f, c) | 2 (4)

Each frequency componentf gives the amount of synchro-
nization in terms of energy to this particular frequency. Each
component is called asynchronization index.

• The short-term energy spectrum of neural synchronization
over all channelsc is:

D(t, f) =

C∑
c=1

D(t, f, c) (5)

whereC is the total number of auditory channels.
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• The short-termenergyof neural synchronization in channel
c is defined as the sum of the energy of the neural synchro-
nization indices:

ED(t, c) =

∫
D(t, f, c) df (6)

From the previous definitions it follows that the total amount of
synchronization energy over all channels can be expressed in dif-
ferent ways:

ED(t) =
∫

D(t, f) df =
∫ ∑C

c=1 D(t, f, c) df

=
∑C

c=1 ED(t, c) =
∑C

c=1

∫
D(t, f, c) df

(7)
Equation 7 implies that is possible to visualize two aspects of

the energy as represented in the spatio-temporal representation at
the level of the auditory nerve. Visualization of the energy spec-
trum D(t, f) gives the energy of the neural synchronization along
a frequency axis. Visualization of the energy along the auditory
channelsED(t, c) gives the energy of neural synchronization along
the critical band scale. This double viewpoint will be used for the
representation of roughness.

3.2.4. Model II

The approach of Model I does not take into account possible ef-
fects of phase over all channels because the synchronization is
first calculated per channel, and afterwards summed. Model II first
sums the spectra:

• The short-term spectrum of neural synchronization over all
channels is:

D(t, f) =

C∑
c=1

I(t, f, c) (8)

The short-termenergy spectrumof neural sychronization is:

D(t, f) =

∣∣∣∣∣
C∑

c=1

D(t, f)

∣∣∣∣∣ 2 (9)

and the (short-term)energyof neural synchronization is:

ED(t) =

∫
D(t, f) df (10)

The quantities obtained in Equation 10 are different from those of
Equation 7. Furthermore, in Model II it is not possible to visualize
two aspects of the energy of neural synchronization because the
signal is summed over all channels.

4. ROUGHNESS MODELING

The SIM approach calculates roughness in terms of the ’energy’
of neural synchronization to the beating frequencies. The ’energy’
refers to a quantity which we derive from the magnitude spectrum.
Since the beating frequencies are contained in the lower spectral
area of the neuronal patterndc, the spectral part we are interested
in is defined as:

B(t, f, c) = F (f, c)D(t, f, c) (11)

whereF (f, c) is a filter whose magnitude spectrum is depending
on the channelc. In order to be able to reproduce the psychoa-
coustical data, the filters should become more narrow at auditory
channels whose center frequency is below 800 Hz. And the fil-
ters should be attenuated for high center frequencies as well (see
Sect. 5). In general, however, we can say thatB(t, f, c) represents
thespectrumof the neural synchronization to the beating frequen-
cies in channelc. The synchronization index of the beating fre-
quencies is given by:

| I(t, f, c) | =

∣∣∣∣ B(t, f, c)

D(t, 0, c)

∣∣∣∣ (12)

whereD(t, 0, c) is the DC-component of the whole signal. We
now assume that roughness is related to the ’energy’ of this nor-
malized Fourier transform.

In analogy with the previous section we consider two models:

4.0.5. Model I

Roughness is calculated in the individual channels and the total
roughness is the sum of the channel roughnesses. Given the above
discussion, it will be possible to visualize the contribution of the
synchronization energy along the axis of the auditory channels,
as well as along the axis of the beating frequencies. The short-
term ’energy’ spectrumof the neural synchronization to beating
frequencies in a particular auditory channelc is defined as:

B(t, f, c) = | I(t, f, c) | α (13)

whereα is a parameter which can be related to the power law
mentioned in Sect. 2.1 (1 < α < 2). In analogy with Equation
7 we then obtain the following relationships for the calculation of
roughness:

RB(t) =
∫

B(t, f) df =
∫ ∑C

c=1 B(t, f, c) df

=
∑C

c=1 EB(t, c) =
∑C

c=1

∫
B(t, f, c) df

(14)
This expression entails a proper visualization along the axis of au-
ditory channels and along the axis of the (beating) frequencies.

4.0.6. Model II

Model II is similar but based on the idea that the channels are first
combined so that the phase can be taken into account in a direct
way. The spectrum of the neural synchronization to beating fre-
quencies over all channels is:

B(t, f) =

C∑
c=1

B(t, f, c) (15)

The synchronization index of the beating frequencies is then de-
fined as:

| I(t, f) | =

∣∣∣∣ B(t, f)

D(t, 0)

∣∣∣∣ (16)

whereD(t, 0) is the DC-component summed over all channels,
i.e.D(t, 0) =

∑C
c=1 D(t, 0, c).

The short-term’energy’ spectrumof the overall neuronal syn-
chronization is:

B(t, f) = | I(t, f) | α (17)
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androughnessis defined as the sum of these energies:

RB(t) =

∫
B(t, f) df (18)

The addition of the neural synchronization spectra automatically
takes into account certain effects related to the phase. For exam-
ple, due to the phase delay in the lower auditory channels, it is
predictable that tones with a low carrier frequency will get less
roughness. The spread of beating energy over auditory channels
is somehow countered by phase delays in these channels, so that
the beating becomes less prominent. Expression 18 allows for a
visualization in terms of the beating frequencies. Additional con-
strains, such as those mentioned by Pressnitzer [8, p.165] could be
taken into account for dealing with the effect of phase but more
research is needed to fine-tune these aspects.

5. IMPLEMENTATION

The SIM for roughness has been implemented in Matlab on top of
the APM of Van Immerseel and Martens [14]. This APM has been
adapted for musical purposes. In particular, synchronization in all
channels is allowed up to 1250 Hz. Both APM and SIM form part
of the IPEM Toolbox for auditory-based musical analysis [17].

Given the general concept as described above, the implemen-
tation requires a specification of the filtersF (f, c). In the present
modeling, we choose elegance as an important criterium to de-
scribe the filters mathematically. The form of the filterF ′(f, c)
has first been defined according to the following formula’s:

F ′(f, c) = e
−8 f

fB

[
1− cos(2π

f

10fB
)

]
w(c) (19)

wherefB is the frequency range of the filter andf is running from
1 tofB , w(c) is a weight depending on the channelc. The weight
takes into account a linear decrease of the impact of the filter de-
pending on the auditory channel number:

w(c) = 1− 0.55c

C
) (20)

with c running from 1 to C (=40). The frequency rangefB is
defined such that it is narrow for the lower auditory channels below
800 Hz, broad at about 1000 Hz and again slightly more narrow at
frequencies higher than 1500 Hz.

A sigmoid function has been defined according to

S =
( c

C
).2

0.04 + ( c
C

)2.45 − 0.007c
(21)

The sigmoid function is used to define the frequency range as:

fB(c) = 10 + (300 ∗ S

Smax
); (22)

It means that the frequency range of the filter in the lowest auditory
channel is 10 Hz, and that this range is at most 310 Hz (around
1000 Hz). The values of S are normalized so that the maximum
value of S

Smax
is equal to one.

Given the set of filtersF (f, c), the sigmoid function (21) has
also been used to define where the maximum of the filter should
be located. Data indicate that the maximum around 1000 Hz is at
about 70 Hz. It is lower for low auditory channels.

fM (c) = 20 + (52 ∗ S

Smax
); (23)

This function starts at 20 Hz and the maximum is obtained at 72
Hz.

The precise location of the filter shapeF ′(f, c) on the fre-
quency axis is then determined by placing its maximum atfM (c).
The obtained set of filtersF (f, c) are shown in Fig. 2. Small
changes in parameters do not have a dramatic effect on the perfor-
mance of the model. In what follows, we give some examples of

Figure 2:Filters become more narrow in the lower auditory chan-
nels.

the output of the model, using the calculations according to Model
I. Model II is only slightly different.

6. APPLICATION TO PSYCHOACOUSTIC DATA

Figure 3 shows the curves for amplitude modulated sounds having
a differentfc. The modulating frequencyfm changes from 0 to
250 Hz, while the modulation indexm is 1. The figures shows a

Figure 3: Roughness in function of modulation frequency on dif-
ferent carrier frequencies.

good similarity with the figure in [12, p.232] but some more fine-
tuning is needed to bring down the roughness of the 125 Hz carrier.

7. APPLICATION TO MUSIC

Below we apply SIM to a tone complex that defines different mu-
sical intervals of a timbre over one octave. The harmonic tone
complex consists of a fundamental (f0) at 500 Hz and 5 harmon-
ics with equal amplitude. This tone is played together with a pitch
shifted copy. The shift over 5 seconds is linear in frequency up to
the upper octave (f0 1000 Hz). The roughness as calculated with
the synchronization index model can be compared the model of
[5], which uses the curve-mapping method of Plomp. Sethares’
model takes the frequency-amplitude values as input (no sound!)
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and calculates the curve using the psychoacoustical curve shown
in Fig. 1.

SIM, apart from its good agreement with this theoretical model
provides an additional cue in showing the ’spectral’ (=excitation in
the auditory channels) as well as ’temporal’ (=synchronization in-
dex) factors that contribute to roughness, as shown in Fig. 4. The
upper panel shows how the energy is distributed over the auditory
channels, and the middle panel shows how the energy of the beat-
ing frequencies contributes to the roughness curve shown in the
lower panel. According to the model, both the upper and middle
panel lead to the same curve. The points of minimal roughness
or sensory dissonance indicate a hierarchical order of intervals in
terms of roughness. This hierarchy can be musically exploited as
the points of minimum roughness may indicate candidates for a
musical scale.

Figure 4:Roughness of a harmonic tone complex.

8. CONCLUSION

In this paper, we introduced a new model of roughness based on
the concept ofsynchronization index, that is, the amount of neural
activation that is synchronized to the timing of the amplitudes of
the beating frequencies in the stimulus. The visualization provides
interesting cues for analyzing the factors that contribute to sensory
dissonance and roughness.
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