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ABSTRACT

In speech synthesis, concatenative data-driven synthesis methods
prevail. They use a database of recorded speech and a unit selec-
tion algorithm that selects the segments that match best the utter-
ance to be synthesized. Transferring these ideas to musical sound
synthesis allows a new method of high quality sound synthesis.
Usual synthesis methods are based on a model of the sound signal.
It is very difficult to build a model that would preserve the entire
fine details of sound. Concatenative synthesis achieves this by us-
ing actual recordings. This data-driven approach (as opposed to a
rule-based approach) takes advantage of the information contained
in the many sound recordings. For example, very naturally sound-
ing transitions can be synthesized, since unit selection is aware
of the context of the database units. The CATERPILLAR software
system has been developed to allow data-driven concatenative unit
selection sound synthesis. It allows high-quality instrument syn-
thesis with high level control, explorative free synthesis from ar-
bitrary sound databases, or resynthesis of a recording with sounds
from the database. It is based on the new software-engineering
concept of component-oriented software, increasing flexibility and
facilitating reuse.

1. INTRODUCTION

Concatenative data-driven synthesis methods use a large database
of source sounds, segmented into units, and a unit selection al-
gorithm that finds the units that match best the sound or phrase
to be synthesised, called the target. The selection is performed
according to the features of the units. These are characteristics ex-
tracted from the source sounds, e.g. pitch, or attributed to them,
e.g. phoneme class. The selected units are then transformed to
fully match the target specification, and concatenated. However,
if the database is sufficiently large, the probability is high that a
matching unit will be found, so the need to apply transformations
is reduced.

Concatenative synthesis systems based on unit selection use a
data-driven approach, as opposed to rule based approaches. In-
stead of supplying rules constructed by careful thinking, the rules
are induced from the data itself.

After a more detailed introduction into unit selection in speech
(1.1) and musical synthesis (1.2), and an attempt on a comparison
of the two (1.3), the bulk of the article is dedicated to the concate-
native data-driven sound synthesis system called CATERPILLAR,
developed by the author (section 2), followed by a few words on
software-engineering and system architecture (section 3), applica-
tions (section 4), future work (section 5), and conclusions (sec-
tion 6).

1.1. Unit Selection in Speech Synthesis

Concatenative unit selection speech synthesis from large databases
is used in a great number of Text-to-Speech systems for waveform
generation [1, 2, 3]. Its introduction resulted in a considerable gain
in quality of the synthesized speech. Unit selection algorithms at-
tempt to predict the appropriateness of a particular database speech
unit using linguistic features predicted from a given text to be syn-
thesized. The units can be of any length (non-uniform unit selec-
tion), from sub-phonemes to whole phrases, and are not limited to
diphones or triphones.

Those data-driven synthesis systems are generally considered
superior to rule-based parametric synthesis systems concerning
naturalness and intelligibility. Indeed, findings in other domains,
for instance in speech recognition [4], corroborate the general su-
periority of data-driven approaches.

1.2. Unit Selection in Musical Synthesis

Despite its promising approach and its success in speech synthesis
systems, concatenative data-driven methods are rarely used in mu-
sical synthesis. There are first attempts on singing voice synthesis
[5], and partial applications of data-driven methods to parametric
synthesis, e.g. [6].

Application of the approach of data-driven unit selection syn-
thesis from speech synthesis to musical sound synthesis allows a
new method of high quality sound synthesis. Usual sound syn-
thesis methods are based on a model of the sound signal. It is
very difficult to build a model that would realistically generate the
fine details of the sound. On the contrary, concatenative synthesis,
by using actual recordings, preserves entirely the fine details of
sound. If the database of recordings is large enough, a great num-
ber of sound events in many different contexts are available, so that
there is rarely the need to apply transformations, which always de-
grade the sound. The data-driven approach takes advantage of the
information contained in the many sound recordings. For example,
very naturally sounding transitions can be synthesized, since unit
selection is aware of the context of the database units, and selects
a unit containing the transition in the desired target context.

However, musical creation is an artistic activity, and is only
partly based on clearly defined criteria. Therefore, creative use
of the concatenative unit selection synthesis method is supported
through interactive and iterative free synthesis by the CATERPIL-
LAR system. This means that composers, musicians, and multi-
media creators can explore unit selection sound synthesis using
perceptually meaningful control features and high-level descrip-
tions of the source sounds. They can discover new sounds by
“browsing” arbitrary sound databases (not necessarily containing
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musical instruments). The system integrates them easily and is
extensible to additional features and new selection algorithms.

1.3. Comparison of Musical Synthesis and Speech Synthesis

Even from a very rough comparison between musical and speech
synthesis, some profound differences spring to mind, which make
the application of concatenative data-driven synthesis techniques
from speech to music non-trivial:

Speech is a-priori clustered into phonemes. In tonal music,
there are pitch classes, but in general, no clustering can be
presupposed.

In speech, the time position of synthesized units is intrinsi-
cally given by the natural duration of the selected units. In
music, precise time-points have to be hit.

In speech synthesis, intelligibility and naturalness are of
prime interest, and the synthesised speech is often limited to
“normal” informative mode. Musical synthesis uses many
modes of expressivity, and needs to experiment.

2. THE CATERPILLAR SYSTEM

The CATERPILLAR software system described in this section has
been developed to perform data-driven concatenative unit selection
sound synthesis.

Figure 1 shows a structural overview of the system. The sub-
tasks that it performs and that will be explained in detail in the
sections indicated in parenthesis, are:

Segmentation (2.1) and analysis into features (2.2) of the
source sounds, and possibly of an audio score

Generation of the target specification from a symbolic score
or from an audio score (2.3)

Handling of the sound and data files, and of the units in the
database (2.4)

Selection of units from the database according to given tar-
get features and an acoustic distance function (2.5)

Waveform synthesis by concatenation of selected units,
possibly applying transformations (2.6)

2.1. Segmentation

Before inclusion into the database, the source sounds have to be
time-segmented into units. In the CATERPILLAR system, this is
done in various ways:

By an external segmentation program described in [7], inte-
grated as a component (see section 3), which performs note
or phone segmentation.

When a score is given with the audio, e.g. from a MIDI file,
segmentation is done by alignment of the pitch contour, us-
ing a Dynamic Time-Warping algorithm. Information con-
tained in the score, e.g. MIDI note number or rest, the lyrics
sung, or playing instructions, are attached to the unit. This
symbolic data can later be exploited for unit selection.

Audio with a steady pulse is segmented into regularly
spaced units, given some hit-points in time and the desired
subdivision.

Target

Audio Score Symbolic ScoreSource Sounds

Unit Selection

Synthesis

Database

Analysis

Figure 1: Overall structure of the data-driven CATERPILLAR sys-
tem, arrows representing flow of data.

At last, segmentation can of course be manual, or manually
edited automatic segmentation.

On each note segment, a sub-segmentation is performed that fur-
ther subdivides it into an attack phase, followed by a sustain phase,
and a release phase [8]. The release phase and the attack phase of
the following unit together form a transition segment. For the mo-
ment, the attack phase is blindly set to 40 ms into the segment, the
release phase 40 ms before the end of the segment.

2.2. Analysis and Features

The source sound files are analysed by standard signal processing
methods. The analysis data for each unit is then used to calculate
the scalar features that describe it. Analysis is performed mostly
by external programs called as components (see section 3). They
perform, amongst others, analysis of pitch, energy, spectrum, ad-
ditive partials, and spectral envelope [9].

Features are characteristics analysed from, or attributed to
sound signals. There are three classes of features: continuous,
discrete, and symbolic:

Continuous features are calculated from the analysis data
over the duration of one unit. The raw data is used to compute
a vector of characteristic values for that unit and that feature, con-
taining:

the mean feature value

the standard deviation

minimum, maximum, and range of the feature

the average slope, giving the rough direction of the feature
movement

the normalised frequency spectrum of the feature in bands,
and the first 4 order moments of the spectrum. This reveals
if the feature has rapid or slow movement, or if it oscillates
(see figure 2).

The continuous features used for selection are: pitch, energy, spec-
tral tilt, spectral centroid, spectral flux, inharmonicity, and voicing
coefficient. How these are computed is explained in [7].
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Figure 2: Example of characteristic values of continuous features:
The raw features (pitch and energy) result in mean and standard
deviation over the duration of the unit, indicated by the length
of the dotted lines (top), and magnitude spectrum of the feature,
spectral centroid , and second order moment (bottom).

Discrete features take one numeric value per unit, e.g. MIDI
note number or number of notes played. Information about the
segment the unit came from, namely sound file id, start time in
the sound file, and unit duration, are available as discrete features
to the selection algorithm. This serves to address a specific unit,
which is useful for free synthesis when, at a certain target time, a
composer wants to force a specific unit to appear, or restrict the
selection algorithm to one source sound file.

Symbolic features take one symbolic value per unit, given
by or derived from the symbolic score. They are implemented as
discrete features with integer values.

The symbolic features used in CATERPILLAR are the phoneme
sung for a voice signal, the instrument class and subclass, the notes
played, and expressive performance instructions, such as staccato,
legato, trill, and dynamics (crescendo, diminuendo). A special
symbolic feature is the unit type, which can take the values pause
for a rest, note for a complete note unit, attack, sustain, or release
for sub-segmented units, or phrase for multi-note units. This way,
the unit type is available for selection.

Feature extensibility. The system is open to handle any pos-
sible feature. It is extensible, so that features can be added or
changed dynamically. See section 3 for more details. Additionally,
any feature can be manually attributed to the units, be it subjective
features (say, “glassiness”), or other information not automatically
derivable from the sounds.

2.3. Target Specification

The target features can come from two different sources, or be a
combination from both:

A symbolic score, e.g. from a MIDI file, contains discrete
note values and other control parameters, such as volume or bril-
liance. Also, high-level performance instructions, e.g. legato or
staccato, and the lyrics sung for a voice piece can be attached to
the symbolic score.

An audio score is a recording that is analysed to obtain certain
target features. Taking the complete target features from the audio
score allows resynthesizing it with sounds from the database.

To be usable by the unit selection algorithm, the target spec-
ification has to be segmented into a sequence of target units
and the target unit features have to be generated. A symbolic
score is segmented by the notes it contains, and the target features
are generated from the symbolic information. An audio score is
segmented and analysed just like sounds for the database (see sec-
tion 2.1). The resulting sequence of target units in either case is
sub-segmented into attack, sustain, and release phase, as for da-
tabase units, to give the unit selection algorithm more freedom in
combining transitions and sustained parts.

2.4. Database

The database holds references to the original sound files and to the
data files from analysis. It stores the units and the unit features.

As test case for high quality instrument synthesis, a database
made from pieces for solo violin (J.S. Bach’s Sonata and Partita,
over one hour of music, played by different violinists) is used.
For creative synthesis, various recordings of environmental, instru-
mental, voice, and electronic sounds are used.

A prototypical database subsystem has been implemented on
flat analysis data files and SDIF [10] unit feature files. The data-
base is clearly separated from the rest of the system, and solely
accessed via a database driver interface. Therefore, the simple da-
tabase can later be replaced by a full relational DBMS (database
management system), or use other existing sound databases. For
instance, sound databases using the emerging ISO MPEG-7 stan-
dard [11, 12] for indexing could be used.

The database can be browsed with the database explorer (fig-
ure 3), written in Matlab, that allows users to visualize and play
the units in the database.

Figure 3: Database explorer feature view: Each point represents
a unit, plotted according to two selectable characteristic values of
two features. Various characteristic values can be displayed with
the units, e.g. min/max, the standard deviation, or the mean slope
(the short lines extending from the units). The ellipse serves to
interactively select the units for real-time acoustic exploration of
the database. The currently played unit within the ellipse is high-
lighted by a little circle.
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2.5. Unit Selection

The starting point of the unit selection algorithm is a database of
units and a sequence of target units , both given by unit
feature values1 and . The unit selection algorithm incremen-
tally finds the units from the database that best match the given
synthesis target units. The quality of the match is determined by
two values, expressed as costs:

The target cost corresponds to the perceptual similarity of
the database unit to the current target unit . It is given by a
perceptual distance function as:

(1)

where the “sliding” context in a range of units around the current
target unit is compared with the context around the database
unit , with weights decreasing with distance (see figure 4).

Figure 4: Target context sub-costs of
for a context range of .

is a weighted sum of individual feature distance functions :

(2)

For discrete and symbolic features, a feature distance matrix is
used. The feature distance functions may be non-symmetric, e.g.
when comparing the feature unit duration, a database unit longer
than the target unit has a feature distance of zero, because it can be
shortened.

Note that each feature distance function has access to all
features of the unit to take care of interdependencies between fea-
tures. It is also aware of the context position, because the influence
of the context may depend on the values of certain features, e.g.
unit type.

The target cost also expresses the distortion introduced by pos-
sibly necessary transformation of the database unit to fully match
the target unit.

The concatenation cost predicts the discontinuity intro-
duced by concatenation of the unit from the database with the
preceding selected unit (see figure 5). It is given by a con-
catenation cost function , which is a weighted sum of feature
concatenation cost functions :

(3)

The concatenation cost depends on the unit type: concatenating an
attack unit allows discontinuities in pitch and energy, a sustain unit

1For the sake of simplicity, the different characteristic values of a con-
tinuous feature are considered as individual features here.

does not. Consecutive units in the database have a concatenation
cost of zero. Thus, if a whole phrase matching the target is present
in the database, it will be selected in its entirety, leading to non-
uniform unit selection. This also favours an expansion of a sub-
unit to its following sub-unit.

Combining the costs. Costs are combined in a weighted
sum of sub-costs to form the selection cost for unit :

(4)

The unit database can be seen as a fully connected state transition
network through which the unit selection algorithm has to find the
least costly path that constitutes the target [2]. Using the weighted
target cost as the state occupancy cost, and the weighted con-
catenation cost as the transition cost, the optimal path can be
efficiently found by a Viterbi algorithm (see figure 5).

Figure 5: Concatenation cost and target cost in unit selection.

The CATERPILLAR system currently uses a weighted Euclid-
ean distance function on the feature values, normalized by division
by the standard deviation.

Clustering. Finding the unit closest to a target unit, perform-
ing an exhaustive search is too slow when the database is large.
As an alternative, a -nearest-neighbours algorithm is used, i.e.
the search space is split up into a tree of hypercubes. To further
improve the performance of unit selection for large databases, the
data can be clustered, e.g. by the CART method (Classification and
Regression Trees, [13]), as used in speech synthesis [1, 14, 15].
Also, the search space can be pruned at each step: only the clos-
est units according to the target cost are included in the path
search.

2.6. Synthesis

The synthesis is performed in two steps: transformation and con-
catenation:

Transformation is done, if necessary, by one or more trans-
formation components to fully match the target features. The need
and the extent of transforming the units is reduced with a large da-
tabase. Therefore, simple methods are sufficient. Transformation
can affect the fundamental frequency, the energy, or the spectral
envelope. Pitch is transformed by resampling, energy transforma-
tion by multiplication, and the spectral envelope is changed by fil-
tering to approach the given spectral tilt or centroid.

For concatenation, a simple method is used for the moment,
implemented in a concatenation component: The units’ audio seg-
ments are joined with a slight overlap, and a crossfade of the over-
lapping part is performed.
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3. SOFTWARE ARCHITECTURE

The application of software-engineering principles bears multiple
advantages also for research. They are the key to the successful
development of a complex software system like CATERPILLAR.
The software-architecture is built according to an object-oriented
design with clearly separated subsystems, and relies on re-usable
components for improved flexibility and maintainability.

In the new concept of component-oriented software [16], a
system is built out of interacting components. Components are
independent binary units, whose interface is formally and contrac-
tually defined. They are expected to be the cornerstone of software
in the years to come. Indeed, looking at the software in use today,
one can see that the successful programs are often those that are
open to components, e.g. as plugins.

The most important advantage of components is that they fa-
cilitate reuse of software-parts, thus reducing development cost,
effort, and time. They avoid some problems of other methods of
reuse, such as function or class libraries. The binary deployment
assures a high level of encapsulation, allowing better separation of
concerns, and fewer problems when changing components. Very
modular and flexible systems are possible through late binding,
i.e. dynamic loading of one of several similar components chosen
at run-time. This allows easy comparison of different algorithms.

In the CATERPILLAR system, components are used for trans-
parent analysis-on-demand: An analysis component, which reads
sound descriptions and output features, is only started when a fea-
ture it computes is actually accessed. The results are stored per-
sistently in the database. As the control parameters for analysis
are also in the database, adding sounds and features, and chang-
ing components and parameters becomes completely transparent.
This means, that the user does not have to restart the analysis of the
whole data manually if a parameter or a component was changed
(with the risk of forgetting to re-analyse some files and leaving
inconsistent data around).

As the component interface also includes the dependencies on
the output of other components (e.g. additive harmonic analy-
sis needs spectral peaks and fundamental frequency), the required
data will also be recalculated, when needed. What’s more, be-
cause the component interface is formally defined, user interfaces
(command-line or graphical) for parameter input can be automati-
cally generated.

With regard to an easy applicability to the multi-media mar-
ket, standardized open interfaces and exchange formats have been
developed and used in the CATERPILLAR system:

The document standard XML is used for configuration files,
database description, and definition of the component inter-
faces.

MIDI is used for the scores, so that standard music software
can be used to edit target specifications.

The portable and extensible SDIF Sound Description In-
terchange Format [10] is used for importing and exporting
sound data and features, for data interchange between the
components, and to store segments and units.

4. APPLICATIONS

The practical applications of CATERPILLAR include:
High quality instrument synthesis from MIDI. Because the

CATERPILLAR system is aware of the context of the database as

well as the target units, it can create much more natural sounding
transitions than a sampler or any non-physical-modeling synthe-
sizer. Information attributed to the source sounds can be exploited
for unit selection, which allows high-level control of synthesis,
where the fine details lacking in the target specification are filled
in by the units in the database.

Free synthesis from arbitrary sound databases offers a
sound composer efficient control of the result by using percep-
tually meaningful features, such as spectral centroid. This type
of synthesis is interactive and iterative. The CATERPILLAR sys-
tem supports this by its graphical database browser and the ability
to freeze good parts from a synthesis and regenerate others, or to
force specific units to appear in the synthesis.

Resynthesis of audio with sounds from the database: A sound
or phrase is taken as the audio score and annotated with additional
information such as instrument type. It is then resynthesized with
the same pitch, amplitude, and timbre characteristics using units
from the database. One could, for example automatically replace
drum sounds in a recording.

Moreover, the central techniques of selection from large sound
databases, that are implemented in the CATERPILLAR system, can
be fruitfully used for other applications as well: For content based
retrieval of certain parts of sound recordings, or for research of
characteristics of musical expression (gestures).

5. FUTURE WORK

Future work includes fine-tuning of the distance function. Obvi-
ously, there are far too many weights to be sensibly tuned by hand2.
Instead, training the weights and thus the cost functions from the
database has to be considered, as described in [1, 2].

More features will be added, such as perceptually motivated
features related to a timbre space, phase coupling [17], and fea-
tures from bispectral higher order statistics [18].

To derive realistic target features from a symbolic score for a
given instrument, performance rules [19] could be studied. Alter-
natively, the symbolic score could be converted to an audio score
by playing it with a sample-based synthesizer. This would deliver
quite realistic target features for energy, spectral envelope, etc.

Alternatively, more information-rich score formats have to be
examined, for instance the Standard Music Description Language
SMDL [20], or others, summarized in [21]. However, there is a
much smaller number of works available than in MIDI file format.

The hypothesis that sub-segmentation (the subdivision of a
unit into many smaller units) doesn’t negatively affect the quality
of the synthesis must be verified.

The quality of the concatenation might be improved by op-
timizing the join points, either during synthesis, as suggested in
[22], or by pre-analysing the database as described in [23].

The need for integration of a PSOLA transformation compo-
nent for synthesis has to be studied [24]. It would allow indepen-
dent pitch manipulations and time-stretching with little degrada-
tion of the signal.

Concatenation using parametric interpolation on an additive
sinusoids plus residual signal model (harmonics plus noise) has to
be considered. This would interpolate the sinusoidal partials and
the residual spectral envelope. See [25] for an application to con-
catenative speech synthesis. Transformations would then become
straightforward.

2What’s more, that amounts to falling back to a rule-based approach.
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6. CONCLUSIONS

The CATERPILLAR system described in this article shows very
promising results in instrument synthesis, and surprising sounds
from free synthesis.

As is to be expected from the early applications of unit selec-
tion speech synthesis, the result is good most of the time, but there
are some very bad cases, where inappropriate units have been se-
lected. However, for musical composition, this doesn’t matter so
much, because certain units can interactively be forced to appear
or not to appear.

The CATERPILLAR system proves that applying the concept
of data-driven concatenative synthesis based on non-uniform unit
selection to musical synthesis is a valid approach.
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