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1. INTRODUCTION

Digital waveguide networks (DWNs) have recently been proposed
as a means of simulating the time-evolution of various physical
systems, especially within the context of musical sound synthesis
[1, 2, 3, 4, 5]. In 1D, the technique has been applied to vibrations
in acoustic tubes, and in strings; in this case, any uninterrupted
stretch of air or string (uninterrupted by changes in tube cross-
sectional area, terminations, tone-holes, bow/pick/hammer inter-
actions, variations in string density, etc.) is modelled as a single
bidirectional delay line, which directly implements a discrete ver-
sion of the travelling wave solution to the wave equation, given
by

(1)

Here, and are the space and time coordinates, respectively,
is the dependent variable (which could be transverse ve-

locity for an ideal string, longditudinal velocity for an ideal bar,
pressure deviation about the mean in an acoustic tube, voltage
across a uniform transmission line, etc.), and is the wave speed.
Scattering junctions are used in order to reflect and transmit the
signals (waves) carried in the delay lines across any such inter-
ruption. Both the scattering and wave transport in the delay lines
are passive operations, in that some measure of signal energy is
non-increasing as the simulation progresses. Such a simulation
will then be guaranteed stable, and will have associated with it a
number of numerically robust properties, especially with regard to
the inevitable signal and coefficient truncation which must occur
in any computer implementation [1].

It has been remarked [2, 4, 5] that the DWNs and meshes
mentioned above can be rewritten as finite difference schemes [6]
which solve the wave equation numerically. The wave equation
always describes the time-evolution of a system without any vari-
ation of material parameters (such as string or membrane density)
or losses, and is always derived from a first-order system of con-
servation laws. One goal of this paper is to show that DWNs can
be designed which can incorporate these variations and losses by
treating the first-order system directly. These DWNs are still pas-
sive and robust structures. They also can be identified directly with
finite difference methods, especially those for which the dependent
variables to be calculated are staggered in space and time, as per
finite difference time-domain (FDTD) methods [7, 8].

In particular, we will look at families of DWNs for a transmis-
sion line in 1D, with full variations in all the material parameters
(inductance, capacitance, resistance and shunt conductivity), and
in the presence of distributed time-varying sources. In the lossless,
source-free and constant-coefficient case, these structures simplify
to the well-known waveguide networks.

2. DIGITAL WAVEGUIDE NETWORKS

A digital waveguide network is simply a collection of connected
bidirectional delay lines. Operations in the network are assumed
to recur with a period that is an integer multiple of , henceforth
called the unit delay; the value of a signal at time is in-
dexed by an integer . A bidirectional delay line or waveguide
is a digital two-port, with inputs and , and outputs

and . For a unit-delay line (shown in Figure 1), the
inputs and outputs are related by

(2a)

(2b)

The signals are referred to as voltage waves. For a given waveg-

Figure 1: Left: Unit-delay bidirectional delay line. Right: Bidirec-
tional delay-line with sign-inversion.

uide of admittance , it is also possible to define current
waves by

(3)

for . We note here that we have used an “orientationless”
waveguide definition [9], which will simplify the link to multidi-
mensional wave digital filters that will be discussed in the com-
panion paper [10]; for this reason it will be necessary to introduce
the waveguide with sign inversion (see Figure 1). The waveguide
impedance can be defined, in either case, by .

Individual waveguides can be thought of as uniform transmis-
sion lines [1, 9]; Kirchoff’s Laws form the basis of their portwise
connection at the terminals. Signals superscripted with a (i.e.,
those exiting a given waveguide) impinge on such a connection,
and signals superscripted with a are reflected, and reenter the
waveguides. We do not go through a full derivation of this re-
flection and transmission, but simply state the resulting defining
equations of scattering junctions for parallel or series connections
of waveguides (of impedances , ):

(Series)

(Parallel)
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where the (series) junction current and (parallel) junction volt-
age are defined by

(5)

with the junction admittance and junction impedance given by

(6)

We also remark that the scattering junction is functionally identi-

Figure 2: Left: Series -port scattering junction, with port
impedances , . Right: Parallel -port junction,
with port admittances , .

cal to the adaptor in the wave digital filtering context [11]; for this
reason, we have used the adaptor representation (see Figure 2) in
schematic representations of DWNs.

Because the scattering operation enforces Kirchoff’s Laws by
definition, power (in a discrete sense [9]) is always conserved at a
scattering junction (see the companion paper [10] for more infor-
mation). Power is also conserved during the transmission of wave
variables through bidirectional delay lines [1], and hence a closed
network will be lossless.

It is also possible to introduce losses and sources in the same
way as in the wave digital filtering context; we do not (for reasons
of space) enter into a discussion of this subject here, but refer the
reader to [11]. We will, however, make use of these ideas in the
following section.

3. THE TRANSMISSION LINE EQUATIONS

The equations describing the time ( ) evolution of the current in
and voltage across a transmission line [12] are given by

(7a)

(7b)

where , , and are the inductance, capacitance, resistance and
shunt conductance per unit length. All are assumed positive func-
tions of , the spatial coordinate ( and are strictly positive).

and are source terms. If ,
and if and are constant, this system reduces to (1), with wave
speed .

3.1. Finite Differences

System (7) can be numerically integrated in the following way.
We define grid functions and , for even inte-
gers and to be approximations to and

respectively, where is the grid spacing, and is the
time step. The computational grid is shown in Figure 3.

Figure 3: Interleaved computational grid for the transmission line
equations

We apply a centered difference approximation to the partial
derivatives of (7), i.e.,

where represents either of or . To the loss and source terms of
(7), we may apply a centered time average, i.e.,

where stands for , , or .
The resulting difference system (after we have replaced the

continuous functions and by the grid functions and , will
be

(9a)

(9b)

where

(10a)

(10b)

with and

(11a)

(11b)

and the sources have been sampled as

Note that we leave the exact form of the second-order approxima-
tions and unspecified for the moment. System (9) is a second-
order (in both and ) approximation to (7). This interleaved
difference scheme is a 1D form of the finite difference time do-
main (FDTD) method [7]; it extends easily to systems in higher
dimensions [8, 9].
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3.2. DWN for the Transmission Line Equations

We show in this section that the DWN shown in Figure 4 is a scat-
tering form of the FDTD method discussed in Section 3.1. Par-
allel (grey) and series junctions (grey) are located at grid points

, even or odd respectively. At the parallel junctions, we
will be calculating junction voltages from the incoming
wave quantities, and at the series junctions we will calculate junc-
tion current . These can be simply identified with

and of system (9).

-1

-1

-1 -1

Figure 4: DWNs for the transmission line equations (7).

There are four waveguides connected to a given parallel junc-
tion at grid location : two, of delay , which connect to the
series junctions to the left and right, with admittances and

, respectively, a self-loop [1] of admittance and delay
, and a loss/source waveguide of admittance . Referring

to Figure 4, which shows the names of the various wave quanti-
ties impinging on the parallel junctions, we may write the defining
equation of the junction voltage (5), at location and time

as

(12)

where, from (6), we have set

(13)

Using definitions (4) and (2) repeatedly, using the signal flow-
graph of Figure , it is possible to show that

(14)

This may be identified with the first of system (9), if we set

(15)

and

(16)

(16) implies that

(17)

A similar derivation, beginning from a series junction at location
gives a difference equation which can be identified with the

second of system (9), if we set

(18)

for the junction impedance defined, from (6), by

(19)

The conditions (17) and (18) gives rise to several families of
DWNs which numerically solve the transmission line equations
(7). We call attention to three special types:

Type I: Voltage-centered
We set

(20)

and

(21)

so that the self-loop at the parallel junctions can be dropped from
the network entirely. (We use here and .)
Given that and , we
also set

(22)

In this case, the stability bound for the network comes from a pos-
itivity condition on (the only immittance which is possibly
negative). The condition is

(23)

Type II: Current-centered
We set

(24)

and

(25)

so that the self-loops at the series junctions can be dropped from
the network entirely. We also set

(26)

The stability bound for the network now comes from a positivity
condition on . The condition is

(27)

which is similar to the bound obtained for the type I configuration
(23).
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Type III: Balanced
In this case, we set the immittances of the connecting waveg-

uides to be constant; for example, we set

(28)

which implies that

(29)

The self-loop immittances can then be set, in accordance with
(18) and (17), as

(30)

(31)

Under the special choice of

(32)

the positivity condition on and leads to the bound

(33)

3.3. Comments

We make a few comments regarding these three DWN configura-
tions, all of which solve the transmission line equations according
to the centered difference scheme (9).

1) For the type I DWN, if and are zero, then there is no
scattering at the parallel junctions, which may be treated as simple
throughs; that is, the junction serves to connect two waveguides of
equal admittance (20). Similarly, if and are zero, then scatter-
ing at the series junctions in the type II DWN becomes a through
with sign inversion. Both these forms can then be downsampled,
so that the two bidirectional delay lines on either side of the non-
scattering junction may be combined into a single line of doubled
delay. The type III network does not share this property.

2) For , all three DWNs reduce to
the standard single bidirectional delay line used to solve the wave
equation (1).

3) The self-loops have been introduced as a means of accom-
modating local variations in the wave speed; they function as en-
ergy traps, storing a portion of the incoming energy for and thus
slowing down the rate of energy propagation. They are identical
to lumped wave digital capacitors (at the parallel junctions) and
inductors (at the series junctions).

4) These forms are very similar to so-called transmission line
matrix or TLM structures [13, 14].

5) The stability bounds for the type I and II DWNs are similar
in that they are close to the so-called CFL bound [6]; that is, the
space-step time-step ratio is bounded by the maximum of the
local wave speed (over complementary sets of grid points).
The bound for the type III DWN is distinct, in that it is away from
CFL. It is also very similar to the bound for the wave digital fil-
tering scheme [12] for the transmission line system. We will make
this link clear in the companion paper [10]. Most interestingly,
though all three DWNs are scattering forms of (9) (and thus must
all behave identically in the limit as and become small), the
positivity requirements on the network immittances (for passivity)
are different; this implies that the notions of passivity and stability
are not the same. We explore this question in more detail in [9].
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[5] Savioja, L. and Välimäki, V., “Reducing the Dispersion Er-
ror in the Digital Waveguide Mesh Using Interpolation and
Frequency-Warping Techniques”, IEEE Trans. Speech and
Audio Proc., 8(2):184–94, 2000.

[6] Strikwerda., J., Finite Difference Schemes and Partial Dif-
ferential Equations, Wadsworth and Brooks/Cole Advanced
Books and Software, Pacific Grove, Calif., 1989.

[7] Taflove, A., Computational Electrodynamics, Artech House,
Boston, 1995.

[8] Yee, K. S., “Numerical Solution of Initial Boundary Value
Problems Involving Maxwell’s Equations in Isotropic Me-
dia”, IEEE Trans. Antennas and Propagation, 14:302-7,
1966.

[9] Bilbao, S., Phd thesis (in progress).

[10] Bilbao, S., “Digital Waveguide Networks as Multidimen-
sional Wave Digital Filters”, submitted to Proc. COST G-6
Conf. on Digital Audio Effects, Verona, 2000.

[11] Fettweis, A., “Wave Digital Filters: Theory and Practice”,
Proc. IEEE, 74(2):270-327, 1986.

[12] Krauss, H. and Rabenstein, R., “Application of Multidimen-
sional Wave Digital Filters to Boundary Value Problems”,
IEEE Signal Processing Letters, 2(7):183-7, 1995.

[13] Christopoulos, C., The Transmission-Line Modelling
Method, Institute of Electrical and Electronics Engineers
Press , New York, 1995.

[14] Johns, P. and Beurle, R., “Numerical Solution of 2-
dimensional Scattering Problems Using a Transmission-line
Matrix”, Proc. IEE, 118:1203-8, Sept. 1971.

DAFX-4


