
FOXES TEAM
Reference Guide for Matrix.xla

Matrices
and

 Linear Algebra

Volume

2

R E F E R E N C E G U I D E F O R M A T R I X . X L A

Matrices and Linear Algebra

 2005, by Foxes Team
ITALY

leovlp@libero.it

5. Edition
1 Printing: June 2005

T U T O R I A L F O R M A T R I X . X L A

2

Index
About Matrix.xla ..6

MATRIX.XLA ...6
Why Matrix.xla has same functions that are also in Excel? ..6

Array functions..7
What is an array function...7
How to insert an array function..7

How to get help on line ...11

MATRIX installation...12
How to install ...12
Update a new version..14
How to uninstall ...14

About complex matrix format ..15

Functions Reference...17
Function M_ABS(V) ...18
Function M_ABS_C(V, [Cformat]) ...18
Function M_ADD(A, B) ..18
Function M_ADD_C(A, B, [Cformat])...18
Function M_BAB(A, B)...19
Function M_DET(Mat, Mat, [IMode], [Tiny]) ..19
Function M_DET_C (Mat, [Cformat])...20
Function M_DET3(Mat3) ...21
Function M_INV(Mat, [IMode], [Tiny])..21
Function Mat_Pseudoinv (A) ...22
Function M_POW(Mat, n) ..22
Function M_EXP(A, [Algo], [n])..22
Function M_EXP_ERR(A, n) ...23
Function M_PROD(A, B, ...) ..23
Function M_PRODS(Mat, k)..24
Function M_PRODS_C(Mat, scalar, [Cformat]) ..25
Function M_MULT3(Mat3, Mat)...26
Function M_SUB(A1, A2) ..26

T U T O R I A L F O R M A T R I X . X L A

3

Function M_SUB_C(A1, A2, [Cformat])...27
Function M_TRAC(Mat)...27
Function M_DIAG(Diag) ..27
Function MatDiagExtr(Mat, [Diag]) ..27
Function MT(Mat) ..28
Function MTC(Mat, [Cformat]) ...28
Function MTH(Mat, [Cformat]) ...29
Function M_RANK(A) ..29
Function M_DIAG_ERR(A)..29
Function M_TRIA_ERR(A) ..30
Function M_ID(n) ...30
Function ProdScal(v1, v2) ...31
Function ProdVect(v1, v2) ...31
Function VectAngle(v1, v2) ...31
Function MatEigenvalue_Jacobi(Mat, Optional MaxLoops) ..32

Eigenvalues problem with Jacobi step by step ...33
Function MatRotation_Jacobi(Mat)..35
Function Mat_Block(Mat,)..36
Function Mat_BlockPerm(Mat,) ...36
Function MatEigenvalue_QR(Mat) ..37
Function MatEigenvalue_QRC(Mat, [Cformat])...38
Function MatEigenvector(A, Eigenvalues, [MaxErr])...39
Function MatEigenvector_C(A, Eigenvalue, [MaxErr])..39
Function MatEigenvector_Jacobi(Mat, Optional MaxLoops)...41
Function MatEigenSort_Jacobi(EigvalM, EigvectM, [num]) ..41
Function MatEigenvalue_QL(Mat3, [IterMax])...42
Function MatEigenvalue3U(n, a, b, c) ...43
Function MatEigenvector3(Mat3, Eigenvalues, [MaxErr]) ..43
Function MatChar(A, x)..44
Function MatChar_C(A, z, [Cformat]) ...44
Function MatCharPoly(Mat)...45
Function MatCharPoly_C(Mat, [CFormat]) ...46
Function Poly_Roots(Coefficients, [ErrMax]) ..46
Function MatEigenvalue_max(Mat, [IterMax])...47

A global localization method for real eigenvalues...47
Function MatEigenvector_max(Mat, [Norm], [IterMax])...48
Function MatEigenvalue_pow(Mat, [IterMax]) ...49
Function MatEigenvector_pow(Mat, [Norm], [IterMax])...49

T U T O R I A L F O R M A T R I X . X L A

4

Function MatEigenvectorInv(Mat, Eigenvalue)..50
Function MatEigenvectorInv_C(Mat, Eigenvalue, [CFormat]) ...50

About perturbed eigenvalues..51
Matrices Generator ..53
Function Gauss_Jordan_step(Mat, [Typ], [IntValue])..56
Function SYSLIN(A, b, [IMode], [Tiny]) ...57
Function SYSLIN3(Mat3, v) ...58
Function SYSLIN_ITER_G(A, b, X0, Optional Nmax)...59
Function SYSLIN_T(Mat, b, [typ], [tiny]) ..60
Function SYSLIN_ITER_J(Mat, U, X0, Optional Nmax)..60
Function SYSLINSING(A, [b], [MaxErr])..61
Function TRASFLIN(A, x, Optional B) ...63

Matrix Geometric action..63
Function Gram_Schmidt(A) ...65

Gram-Schmidt's Orthonormalization...65
Double step Gram-Schimdt method ...66

Function Mat_Cholesky(A) ..67
Function Mat_LU(A, optional Pivot)...67
Function Mat_QR(Mat) ..69
Function Mat_QR_iter(Mat, [MaxLoops]) ..70
Function MatExtract(A, i_pivot, j_pivot) ...70
Function MatOrtNorm(A) ...71
Function Path_Floyd(G) ..72
Function Path_Min(G)..72

Graphs theory recalls..72
Shortest path ..75

Function SVD - Singular Value Decomposition...77
Function MatMopUp(M, [ErrMin]) ..79
Function MatCovar(A)..79
Function MatCorr(A) ..79
Function REGRL(Y, X, [ZeroIntcpt]) ...81
Function REGRP(Degree, Y, X, [ZeroIntcpt])...82
Function Interpolate(x, Knots, [Degree], [Points]) ...82
Function MatCmp(Coeff) ...83
Function MatCplx([Ar], [Ai], [Cformat])...84
Function Poly_Roots_QR(Coefficients)...84
Function Poly_Roots_QRC(Coefficients) ..85
Function MatRot(n, teta, p, q)..85
Conditioned Number..86
Function VarimaxRot(FL, [Normal], [MaxErr], [MaxIter]) ...87

T U T O R I A L F O R M A T R I X . X L A

5

Function VarimaxIndex(Mat, [Normal])..88
Function MatNormalize(Mat, [NormType], [Tiny]) ...88
Function MatNormalize_C(Mat, [NormType], [Cformat], [Tiny]) ..88
Function MatNorm(v, [NORM])..89
Function M_MULT_C(M1, M2, [Cformat]) ...90
Function M_INV_C(A, [Cformat])...91
Function ProdScal_C(v1, v2,)...91
Function SYSLIN_C(A, b, [Cformat])...92
Function Simplex(Funct, Constrain, [Opt]) ..92
Function RRMS(v1, [v2]) ...94
Function MatPerm(Permutations)..95
Function Mat_Hessemberg(Mat) ...95
Function Mat_Adm(Branch)...96

Linear Electric Network...96
Thermal Network ..98

Function Mat_Leontief(ExTab, Tot) ...100
Input Output Analysis..100

Function JoinRow(R1, R2, [R3]...)...101
Function JoinCol(C1, C2, [C3]...)...101

Matrix Tool ...102
The Matrix toolbar..102

Selector tool..102
Matrix Generator...105

Macros stuff. ..107
Macro Gauss-step-by-step ...107
Macro Shortest-Path...108
Macro Draw Graph ...109
Macro Block reduction ..110

References ...111

T U T O R I A L F O R M A T R I X . X L A

 6

About Matrix.xla
About Matrix.xla
MATRIX.XLA
Matrix.xla is an Excel addin that contains useful functions for matrices and linear
Algebra:

Norm. Matrix multiplication. Similarity transformation. Determinant. Inverse.
Power. Trace. Scalar Product. Vector Product.

Eigenvalues and Eigenvectors of symmetric matrix with Jacobi algorithm.
Jacobi's rotation matrix. Eigenvalues with QR and QL algorithm.
Characteristic polynomial. Polynomial roots with QR algorithm. Eigenvectors
for real and complex matrices

Generation of random matrix with given eigenvalues and random matrix with
given Rank or Determinant. Generation of useful matrix: Hilbert's,
Houseolder's, Tartaglia's. Vandermonde's

Linear System. Linear System with iterative methods: Gauss-Seidel and
Jacobi algorithms. Gauss Jordan algorithm step by step. Singular Linear
System.

Linear Transformation. Gram-Schmidt's Orthogonalization. Matrix
factorizations: LU, QR, SVD and Cholesky decomposition.

This tutorial is divided into two parts. The first part explains with practical examples how to solve
several basic topics about matrix theory and linear algebra. The second part is the reference
manual of Matrix.xla

Why Matrix.xla has same functions that are also in Excel?
Yes. Same functions like determinant, inversion, multiplication, transpose, etc. are both in Excel
and in Matrix.xla. They perform the same tasks. And in many case they return the same values.
But they are not exchangeable in every situations.

The main difference is into the algorithms used; or in other words, in the way
that the functions are implemented. In Matrix.xla the algorithms are open and
people can verify how each function works. The function that performs matrix
inversion in Excel and in Matrix.xla, for example, can give different results,
especially in high accuracy calculation. The main difference is that Matrix.xla

Inversion function uses the popular Gauss-Jordan algorithm -explained in many books and sites
- while the Excel built-in functions are code-proprietary. In other few cases we have simply
create new functions to avoid the original verbose names (MTRANSPOSE(), or
MATR.TRASPOSTA () in Italian version, are substituted by the more handy MT())

Chapter

1

Matrix.xla
algorithms
are open

T U T O R I A L F O R M A T R I X . X L A

 7

Array functions
What is an array function
A function that returns multiple values is called "array function". Matrix.xla contains lots of these
functions. All functions that return a matrix are array functions. Inversion, multiplication, sum,
vector product, etc. are examples of array functions. On the contrary, Norm and Scalar product
are scalar functions because they return only one value.

In a worksheet, an array function returns always a rectangular (n x m) range of
cells. To insert this function, select before the (n x m) range where you want to
insert the function, then, you must give the keys sequence
CTRL+SHIFT+ENTER; The sequence must be given just after inserting the
function parameters. Keep down both key CTRL and SHIFT (do not care the
order) and then press ENTER.

If you miss this sequence or give only the ENTER key, the function always returns the first cell of
the array

How to insert an array function
The following example explains, step-by-step, how it works

System solution
Assume to have to solve a 3x3 linear system. The solution will be a vector of 3rd dimension.

Ax = b
Where:

The function SYSLIN returns the solution
x; but to see all the three values you must
select before the area where you want to
insert these values.

Now insert the function by menu or by icon

 as well

=

431
221
111

A

=

3
2
4

b

T U T O R I A L F O R M A T R I X . X L A

 8

Select the area of matrix A "A5:C7" and the constant vector b "E5:E7"

Now - attention! - give the "magic" keys sequence CTRL+SHIFT+ENTER

That is:

• Press and keep down the CTRL and SHIFT keys

• Press the ENTER key

T U T O R I A L F O R M A T R I X . X L A

 9

All the values will fill all the cells that you have selected.

Note that Excel shows the function around two braces { }. These symbols mean that the function
return an array (you cannot insert them by yourself).

An array function has several constrains. Any cell of the array, cannot be modified or deleted. To
modify or delete an array function you must selected before all the array's cells.

Adding two matrices
The CTRL+SHIFT+ENTER rule is valid for any function or operation when the result is a matrix
or a vector

Example - Adding two matrices

We can use the M_ADD() function of Matrix.xla but we can also use directly the addition
operator "+".

In order to perform this addition, follow these steps.

1) Enter the matrices into the spreadsheet.

2) Select empty cells so that a 2 × 2 range is highlighted.

3) Write a formula that adds the two ranges. Either write =B4:C5+E4:F5 directly or write "=",
then select the first matrix; after, write "+" and then select the second matrix. Do not press
<Enter>. At this point the spreadsheet should look something like the figure below. Note
that the entire range B8:C9 is selected.

+

 −
10
01

12
21

T U T O R I A L F O R M A T R I X . X L A

 10

4) Press and hold down <CTRL> + <SHIFT>

5) Press <ENTER>.

If the procedure is followed correctly, the spreadsheet should now look something like this

This trick can work also for matrix subtraction and for the scalar-matrix multiplication, but not for
the matrix-matrix multiplication.

Let's see this example that show how to calculate the linear combination of two vectors

It's useful, isn't?

T U T O R I A L F O R M A T R I X . X L A

 11

How to get help on line
Matrix.xla provides help on line that can be recall in the same way of any other Excel function
When you have selected the function that you need in the function wizard, press F1 key

Of course you can call the help on-line also by double clicking on the Matrix.hlp file or from
the starting pop-up window or from the “Matrix Tool” menu bar

F1

Note that all the
functions of this addin
appear under the
same category
“Matrix” in the Excel
function wizard

T U T O R I A L F O R M A T R I X . X L A

 12

 MATRIX installation
MATRIX addin for Excel 2000/XP is a zip file composed by two files:

• MATRIX.XLA Excel addin file
• MATRIX.HLP Help file
• MATRIX.CSV Functions information(only for XNUMBERS addin)
• FUNCUSTOMIZE.DLL1 Dynamic Library for addin setting

How to install
Unzip and place all the above files in a folder of your choice. The addin is contained entirely in
this directory. Your system is not modified in any other way. If you want to uninstall this package,
simply delete its folder - it's as simple as that!

To install, follow the usual procedure for installing an Excel addin:

1) Open Excel

2) From the Excel menu toolbar select "Tools" and then select "Add-ins"..

3) Once in the Addins Manager, browse for “Matrix.xla” and select it

4) Click OK

Nella versione italiana di Excel, "Addin Manager" si chiama "Componenti aggiuntivi" e si trova nel menu <Strumenti> <
Modelli e aggiunte...>

1 FUNCUSTOMIZE.DLL appears by courtesy of Laurent Longre (http://longre.free.fr)

T U T O R I A L F O R M A T R I X . X L A

 13

After the first installation, matrix.xla will be add to the Addin' list manager

When Excel starts, all addin checked in the
Addin Manager will be automatically loaded

If you want to stop the automatic loading of
matrix.xla simply deselect the check box
before closing Excel

If all goes OK you should see the welcome popup of
matrix.xla. This appears only when you select "on" the
check box of the Addin Manager. When Excel
automatically loads Matrix.xla, this popup remains hidden.

The Matrix Icon is added to the main menu bar.
Clicking on it the Matrix Toolbar appears

The Matrix category. All the functions contained in this addin will be visible by the Excel
function wizard under the Matrix category.

T U T O R I A L F O R M A T R I X . X L A

 14

Update a new version
When you update a new version you must replace the older files with the new version.

Do not keep two different versions on your PC, and, overall, never load two different version
because Excel would make mesh.

How to uninstall
This package never alter your system files

If you want to uninstall this package, simply delete its folder. Once you have cancelled the
Matrix.xla file, to remove the corresponding entry in the Addin Manager list, follow these steps:

1) Open Excel

2) Select <Addin...> from the <Tools> menu.

3) Once in the Addin Manager, click on the Matrix.xla

4) Excel will inform you that the addin is missing and ask you if you want to remove it from
the list. Give "yes".

T U T O R I A L F O R M A T R I X . X L A

 15

About complex matrix format

Matrix.xla supports 3 different complex matrix formats: 1) split, 2) interlaced, 3) string

 Split format Interlaced format String format

As we can see in the first format the complex matrix [Z] is split into two separate matrices:
the first contains the real values and the second one the imaginary values. It is the default
format

In the second format, the complex values are written as two adjacent cells, so a single
matrix element is fitted in two cells. The columns numbers are the same of the first format
but the values are interlaced one real column is followed by an imaginary column and so
on.
This format is useful when the elements are returned by complex functions

The last format is the well known “complex rectangular format”. Each element is written as
a string a+ib; therefore the matrix is still squared. Apparently is the most compact and
intuitive format but this is true only for integer values. For decimal values the matrix may
become illegible. We have also to point out that these elements, being strings, cannot be
formatted with the standard tool of Excel.

T U T O R I A L F O R M A T R I X . X L A

 16

WHITE PAGE

T U T O R I A L F O R M A T R I X . X L A

 17

Functions Reference

Functions Reference
This chapter lists all functions of MATRIX.XLA addin. It is the printable
version of the on-line help file MATRIX.HLP

Gauss_Jordan_step
Gram_Schmidt
Interpolate
JoinCol
JoinRow
M_ABS
M_ABS_C
M_ADD
M_ADD_C
M_BAB
M_DET
M_DET_C
M_DET3
M_DIAG
M_DIAG_ERR
M_EXP
M_EXP_ERR
M_ID
M_INV
M_INV_C
M_MULT_C
M_MULT_TPZ
M_MULT3
M_POW
M_PROD
M_PRODS
M_PRODS_C
M_RANK
M_SUB

M_SUB_C
M_TPZ_ERR
M_TRAC
M_TRIA_ERR
Mat_Adm
Mat_Blok
Mat_BlokPerm
Mat_Cholesky
Mat_Hessemberg
Mat_Hilbert
Mat_Hilbert_inv
Mat_Householder
Mat_Leontief
Mat_LU
Mat_Pseudoinv
Mat_QR
Mat_QR_iter
Mat_Tartaglia
Mat_Vandermonde
MatChar
MatChar_C
MatCharPoly
MatCharPoly_C
MatCmp
MatCorr
MatCovar
MatCplx
MatDiagExtr
MatEigenvalue_Jacobi

MatEigenvalue_max
MatEigenvalue_pow
MatEigenvalue_QL
MatEigenvalue_QR
MatEigenvalue_QRC
MatEigenvalue3U
MatEigenvector
MatEigenvector_C
MatEigenvector_Jacobi
MatEigenvector_max
MatEigenvector_pow
MatEigenvector3
MatEigenvectorInv
MatEigenvectorInv_C
MatExtract
MatMopUp
MatNorm
MatNormalize
MatOrtNorm
MatPerm
MatRnd
MatRndEig
MatRndEigSym
MatRndRank
MatRndSim
MatRot
MatRotation_Jacobi
MT
MTC

MTH
Path_Floyd
Path_Min
Poly_Roots
Poly_Roots_QR
Poly_Roots_QRC
ProdScal
ProdScal_C
ProdVect
REGRL
REGRP
RRMS
Simplex
SVD_D
SVD_U
SVD_V
SYSLIN
SYSLIN_C
SYSLIN_ITER_G
SYSLIN_ITER_J
SYSLIN_T
SYSLIN_TPZ
SYSLIN3
SYSLINSING
TRASFLIN
VarimaxIndex
VarimaxRot
VectAngle

Chapter

2

T U T O R I A L F O R M A T R I X . X L A

 18

Function M_ABS(V)
Returns the absolute value ||V|| (Euclidean Norm) of a vector V

∑= 2
ivV

The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix

∑= 2
ijF

aA

Function M_ABS_C(V, [Cformat])
Returns the absolute value ||V|| (Euclidean Norm) of a complex vector V
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix
The optional parameter Cformat sets the complex input format(default = 1)

See About complex matrix format

Function M_ADD(A, B)
Returns the sum of two matrices

For definition:

Example of sum of (2 x 2) matrices

Note: EXCEL has a simply way to performs the addiction of two arrays. For details see How to insert an
array function...

Function M_ADD_C(A, B, [Cformat])
Returns the sum of two complex matrices

T U T O R I A L F O R M A T R I X . X L A

 19

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex format of input/output (default = 1)

Function M_BAB(A, B)
Returns the product:

BABC 1−=

This operation is also called "similarity transform" of matrix A by matrix B
Similarity transform plays a crucial role in the computation of eigenvalues, because they leave the
eigenvalues of matrix A unchanged.

For real symmetric matrices, B is orthogonal. The similarity transformation is the also called "orthogonal
transform"

Function M_DET(Mat, Mat, [IMode], [Tiny])
Returns the determinant of a square (n x n) matrix.
IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false.
Integer computation is intrinsically more accurate but also more limited because it may easily reaches the
overflow error. Use IMODE only with integer matrices of moderate size.
Tiny (default is 0) sets the minimum round-off error; any value in absolute less than Tiny will be set to
zero.

For a n = 1

 [] 1111det aa =

For a n= 2

12212211

2221

1211det aaaa
aa
aa

−=

For a n= 3

122133233211132231322113122331332211

333231

232221

131211

det aaaaaaaaaaaaaaaaaa
aaa
aaa
aaa

−−−++=

T U T O R I A L F O R M A T R I X . X L A

 20

Well, clearly the computation of the determinant is one of the most tedious of all Math. Fortunately that we
have the Numeric Calculus...!

Example - The following matrix is singular but only the integer computation can give the exact answer

Function M_DET_C (Mat, [Cformat])
This function computes the determinant of a complex matrix.
The argument Mat is an array (n x n) or (n x 2n) , depending of the format parameter
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex format of input/output (default = 1)
A complex (split or interlaced) matrix must have always an even number of columns

The example shows how to compute a determinant for a complex matrix written in three different formats.

The first complex matrix is in the split
format (default): real and imaginary
values are in two separated matrices.

The second example shows the
same matrix in interlaced format:
imaginary values are adjacent to real
parts.

The last example shows the
rectangular string format

T U T O R I A L F O R M A T R I X . X L A

 21

Function M_DET3(Mat3)
This function computes the determinant of a tridiagonal matrix.
The argument Mat3 is an (n x 3) array representing the (n x n) matrix

A triangular matrix is:

55

444

333

222

11

000
00

00
00
000

ba
cba

cba
cba

cb

In order to save space we can handle
only the 3 diagonal vectors

Example: to find the determinant of a
20x20 tridiagonal matrix we pass to
the function only 52 values (the first
cell of a and the last of c are always
0) instead of 400 values.

Function M_INV(Mat, [IMode], [Tiny])
Returns the matrix inverse of a given square matrix

1−= AB

IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false.
Integer computation is intrinsically more accurate but also more limited because it may easily reaches the
overflow error. Use IMODE only with integer matrices of moderate size.
Tiny (default is 0) sets the minimum round-off error; any value in absolute less than Tiny will be set to
zero.
If the matrix is singular the function returns "singular".
If the matrix is not squared the function returns "?"

Example: the following matrix is singular but only the M_INV function with integer computation can give
the right answer

T U T O R I A L F O R M A T R I X . X L A

 22

Function Mat_Pseudoinv (A)
Computes the Moore-Penrose pseudoinverse of a (n x m) matrix
Def: the minimum-norm least squares solution x to a linear system

bAxbAx

x
−⇒= min

is the vector

 () bAAAAx TT +−
==

1

The matrix +A is called the pseudoinverse of A
If the matrix A has dimension (n x m), its pseudoinverse has dimension (m x n)
One of the most important application of the SVD decomposition is

TVDUA ⋅⋅=

TUDVA 1−+ ⋅=

Note the psudoinverse coincides with the inverse for non-singular square matrices.

Function M_POW(Mat, n)
Returns the integer power of a given square matrix

48476 time

...
n

n AAAAAB ⋅⋅==

Function M_EXP(A, [Algo], [n])
This function approximates the exponential series expansion of a given square matrix [A]

[] ∑
∞

=
+=

1
!

1

n

n
n

A AIe

This function uses two alternative algorithm to approximates the infinite summation: the first one uses the
popular power's series

T U T O R I A L F O R M A T R I X . X L A

 23

errAAAAInAEXP n
n +++++= !
13

6
12

2
1 ...),(

For n sufficiently larger, the error becomes negligible and the sum approximates the matrix exponential
function. The parameter n fixes the max term of the series. If omitted the expansion continue until the
convergence is reached; this means that the norm of the nth matrix term becomes less than Err = 1e−15.

ErrAn
n <!
1

Take care using this function without n; especially for larger matrix, the evaluation time can be very long.

The second method, more efficient, uses the Padè approximation2. It is recommendable especially for
larger matrices.
You can switch the algorithm by the optional parameter Algo. If "P" (default) the function uses the Padè
approximation; else it uses the power's series

Function M_EXP_ERR(A, n)
This function returns the truncation n-th matrix term of the series expansion of a square matrix [A]. It is
useful to estimate the truncation error of the series approximation

n
n AnAEXP !
1),(=

See also Function M_EXP(A, [n]) for matrix exponential series

Function M_PROD(A, B, ...)
Returns the product of two or more matrices

BAC ⋅=

As know the product is defined:

Where j is summed over for all possible value for i and k

Dimension rule: If A is (n x m) and B is (m x p) , then the product is a matrix (n x p)

Note: If A and B are square (n x n) matrices, also the product is a square (n x n) matrix.

Writing out the product explicitly

2 This routine was developed by Gregory Klein, who kindly consented to add it to this package

T U T O R I A L F O R M A T R I X . X L A

 24

Where:

Matrix multiplication is associative. Thus:

But, generally, is not commutative:

M_PROD() can perform the product of several matrices also with different dimensions.

...21 ⋅⋅== ∏ AAAY j j

NB: If you multiply matrices with different dimension pay attention to the dimension rules above. This
function does not check it. The function will return #VALUE if this rule is violate.

Function M_PRODS(Mat, k)
Returns a matrix multiplied for a scalar
For example:

⋅⋅
⋅⋅

=

2221

1211

2221

1211

akak
akak

aa
aa

k

It can be nested in other function. For example, if the range A1:B2 contains the matrix 2x2 [1 , 2, / -3 , 8]

M_DET(M_PRODS(A1:B2; 3)) returns the determinant 126 of the matrix [3 , 6, / -9 , 24]

() () CBACBA ⋅⋅=⋅⋅

ABBA ⋅≠⋅

T U T O R I A L F O R M A T R I X . X L A

 25

Note: EXCEL has a simply way to performs the multiplication of an array by a scalar. For details see How
to insert an array function...

Function M_PRODS_C(Mat, scalar, [Cformat])
Performs the complex matrix multiplication for a scalar.

⋅⋅
⋅⋅

=

2221

1211

2221

1211

akak
akak

aa
aa

k

The parameter Mat is a (n x m) complex matrix or vector
The parameter scalar can be complex or real number, in split or string format.
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex format of input/output (default = 1)

See About complex matrix format

Example. Performs the following complex multiplication

()

−−
+−+−

−+
−=

jjj
jj

jj
jC

1049
1455417
30554

2

We can use either the split or string format

This function multiplies also a complex vector for a complex number

and a real vector for a complex number

T U T O R I A L F O R M A T R I X . X L A

 26

Function M_MULT3(Mat3, Mat)
This function performs the multiplication of a 3-diagonal matrix and a vector or a rectangular matrix
Mat3 is a (n x 3) array
Mat can be a vector (n x 1) or even a rectangular matrix (n x m)
Result is a vector (n x 1) or a matrix (n x m)
This function is useful when you have to multiply a tridiagonal matrix larger than 256 x 256 for a vector
because Excel cannot manage matrices larger than 256 columns.

Example
The diagonal and sub-diagonals are passed to the function as vertical vectors

=⋅ xA

⋅

16

15

3

2

1

1615

1515

32

221

11

...

...000

...000
..................
00...0
00...
00...0

x
x

x
x
x

ba
cb

ba
cba

cb

Note how compact and efficient this input is. This is true overall for larger matrices

Function M_SUB(A1, A2)
Returns the different of two matrices

21 AAC −=

Excel can also perform matrix subtraction in a very efficient way by the array-arithmetic.

T U T O R I A L F O R M A T R I X . X L A

 27

Function M_SUB_C(A1, A2, [Cformat])
Returns the different of two complex matrices

21 AAC −=

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex format of input/output (default = 1)

Function M_TRAC(Mat)
Returns the trace of a square matrix, thus the sum of all elements of the first diagonal

∑= iiaAtrace)(

Function M_DIAG(Diag)
Returns the diagonal matrix having the vector "Diag" as the diagonal

Example:

Function MatDiagExtr(Mat, [Diag])
This function extracts the diagonals of a matrix3
The optional parameter Diag sets the diagonal to extract.

3 (Thanks to an idea of Giacomo Bruzzo)

T U T O R I A L F O R M A T R I X . X L A

 28

Diag = 1 (default) extracts the first diagonal; Diag = 2 extracts the secondary one.

Function MT(Mat)
Returns the transpose of a give matrix, thus the matrix with rows and columns exchanged

This function is identical to TRANSPOSE() Excel built-in function

Function MTC(Mat, [Cformat])
Returns the transpose of a complex matrix, thus the matrix with rows and columns exchanged

+−
+

=⇒

++
−

=
jjj

j
A

j
jj
j

A T

634
0221

0

6322
41

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex format of input/output (default = 1)
Use CTRL+SHIFT+ENTER to insert this function

Example. Transpose the following (3 x 2) complex matrix

T U T O R I A L F O R M A T R I X . X L A

 29

Function MTH(Mat, [Cformat])
Returns the transpose-conjugate of a complex matrix

−−+

−
=⇒

++
−

=
jjj

j
A

j
jj
j

A H

634
0221

0

6322
41

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string

Function M_RANK(A)
Returns the rank of a given matrix4
It computes the sub-space of Ax = 0, using the SYSLINSING function: then counts null column-vectors of
sub-space.

Examples:

When Det = 0 the Rank is always less then the max dimension n
Differently from the determinant, rank can be computed also for rectangular matrices.
In that case, the rank can’t exceed the minimum dimension; that is, for a 3x4 matrix the maximum rank is
3.

Function M_DIAG_ERR(A)
Returns the "diagonalization" error of a given square matrix
This function computes and returns the mean of the absolute values out of the first diagonal
It is useful to measure the "distance" from the diagonal form of a square matrix

4 (Thanks to the original routine developed by Bernard Wagner.)

T U T O R I A L F O R M A T R I X . X L A

 30

Function M_TRIA_ERR(A)
Returns the "triangularization" error of a given square triangular matrix
This function computes and returns the minimum of the mean of the absolute values of the upper and
lower element out of the first diagonal
It is useful to measure the "distance" from the triangular form of a square matrix

−

= ∑∑
<> ji

ij
ji

ijtria aa
nn

err || , ||min2
2

Example: A triangularization algorithm has computed the following matrices. What is the average error?

Function M_ID(n)
Returns the identity square matrix.
This function is useful in nested expression

Example: Compute the matrix A − λ I for the parameter λ = 1

Note that we have used the power array
arithmetic of Excel

But we could use the following nested
expression:
{=M_ADD(A10:C12,D10*M_ID(3))}

∑
≠−

=
ji

ija
n)(n

||1error diag 2

T U T O R I A L F O R M A T R I X . X L A

 31

Function ProdScal(v1, v2)
Returns the scalar product of two vectors

ii vvVV ,2,121 ⋅=• ∑

Note that if V1 and V2 are the same vectors, this function returns the square of its module.

22 vvvvVV iii ==⋅=• ∑∑

Note that if V1 and V2 are perpendicular, the scalar product is zero. In fact another definition of scalar
product is:

)cos(122121 α⋅⋅=• VVVV

Vectors can be in vertical or
horizontal format as well.

Function ProdVect(v1, v2)
Returns the vector product of two vectors

−
−
−

=

×

=×

12212211

32113112

31223221

32

22

12

31

21

11

21

vvvv
vvvv
vvvv

v
v
v

v
v
v

VV

Note that if V1 and V2 are parallels, the vector product is the null vector.

Function VectAngle(v1, v2)
Computes the angle between the two vectors V1, V2 .
The angle is defined as:

Vectors can be in
vertical or horizontal
form as well.

T U T O R I A L F O R M A T R I X . X L A

 32

⋅
•

=
21

21arccos
vv
vvα

Function MatEigenvalue_Jacobi(Mat, Optional MaxLoops)
This function performs the Jacobi's sequence of orthogonal similarity transformation and returns the last
matrix of the sequence. It works only for symmetric matrices.
The optional parameter MaxLoops (default=100) sets the max steps of the sequence.
The Jacobi's algorithm can be used to find both eigenvalues and eigenvectors of symmetric matrices

n
TTT

nnn
T

nn

TTT

T

PPPAPPPPAPA

PPAPPPAPA

PAPA

... ...

21121

21122122

111

=⋅⋅=

=⋅⋅=

⋅⋅=

−

For n sufficiently large, the sequence {Ai} converge to a diagonal matrix, thus

[]λ=
∞→ nn

Alim

While the matrix

PPPPPU nnn 231....−=

Converges to the eigenvectors of A.

All these matrices A, U, P can be obtained by the functions:
MatEigenvalue_Jacobi
MatEigenvector_Jacobi
MatRotation_Jacobi

Example: Solve the eigenvalues problem of the following symmetric matrix

=

720
262
025

A

T U T O R I A L F O R M A T R I X . X L A

 33

As we can see, the Jacobi's method has found all Eigenvalues and Eigenvectors with few iterations (10
loops)
The function MatEigenvalue_Jacobi() returns in range A7:C9 the diagonal matrix of the eigenvalues.
Note that elements out of the first diagonal have an error less than 10^-16.
At the right side - in the range D7:F9 - the function MatEigenvector_Jacobi() returns the orthogonal matrix
of the eigenvectors.
Compare with the exact solution

−−
−

=

=

=

3/23/23/1
3/13/23/2
3/23/13/2

 ,
900
060
003

 ,
720
262
025

UA λ

Note that you can test the approximate results by the similarity transformation

UAU ⋅= −1λ

You can use the standard matrix inversion and multiplication functions or the M_BAB() function also in
this package, as you like. Note that - only in this case - the inversion of matrix is very simple, because:

TUU =−1

Eigenvalues problem with Jacobi step by step
Suppose you want to study about each step of the Jacobi's method. The functions
MatEigenvalue_Jacobi(), MatEigenvector_Jacobi() and MatRotation_Jacobi() are useful if you set
the parameter MaxLoop=1. In this case, they return the first step of Jacobi's iteration. Here how they
work.

A1 = MatEigenvector_Jacobi(A)
A2 = MatEigenvector_Jacobi(A1)
A3 = MatEigenvector_Jacobi(A2)
......
A10 = MatEigenvector_Jacobi(A9)

Each matrix is one step of Jacobi's Iterative method

=

720
262
025

A

T U T O R I A L F O R M A T R I X . X L A

 34

To obtain quickly the above iterations follow these simple rules:
At the first time, insert in range A7:C9 the function MatEigenvalue_Jacobi(A3:A7).
Give the "magic" key sequence CTRL+SHIFT+ENTER to paste an array function
Leave the range A7:C9 selected and copy it (CTRL+C)
Select the following range A11 and paste it (CTRL+V)
Copy it (CTRL+C)
Select the following range A15 and paste it (CTRL+V)
And so on.
By the sequence -copying and pasting- you can perform all Jacobi's iterations, as you like.
In the middle, we see the Jacobi's rotation matrices sequence. We can easily obtain it by the function
MatRotation_Jacobi() in the same way as eigenvalues matrix

P1 = MatRotation_Jacobi(A)
P2 = MatRotation_Jacobi(A1)
P3 = MatRotation_Jacobi(A2)
Etc.

This function search for the max absolute values out of the first diagonal and generates an orthogonal
matrix in order to reduce it to zero by similarity transformation

111 PAPA T ⋅= .

Finally, at the right, we see the iterations of eigenvectors matrix. It can be derived from the rotation matrix
by the following iterative formula:

 1

11

−⋅=
=

nnn UPU
PU

T U T O R I A L F O R M A T R I X . X L A

 35

Function MatRotation_Jacobi(Mat)
This function returns the Jacobi's orthogonal rotation matrix of a given symmetric matrix.
This function searches for the max absolute values out of the first diagonal and generates an orthogonal
matrix in order to reduce it to zero by similarity transformation

111 PAPA T ⋅= . Where: P1 = MatRotation_Jacobi(A)

For further details see Function MatEigenvalue_Jacobi(Mat, Optional MaxLoops)

Example - find the rotation matrix that makes zero the highest non-diagonal element of the following
symmetric matrix.

-5 -4 -1 -3 4

-4 -6 0 -2 5

-1 0 5 4 8

-3 -2 4 -5 1

4 5 8 1 -10

The rotation matrix, in that case is

1 0 0 0 0

0 1 0 0 0

0 0 cos(α) 0 sin(α)

0 0 0 1 0

0 0 -sin(α) 0 cos(α)

Where the angle α is given by the formula:

−

=
3355

352atan
2
1

aa
aα

The highest absolute values are a53 = a35 = 8 (in red)
The similarity transformation with the rotation matrix will make
zero just these elements.

T U T O R I A L F O R M A T R I X . X L A

 36

Function Mat_Block(Mat,)
Transforms a sparse square matrix (n x n) into a block-partitioned matrix
From theory we know that, under certain conditions, a square matrix can be transformed into a block-
partitioned form (also called block-triangular form) by similarity transformation.

PAPB T =

where P is a (n x n) permutation matrix.

For returning the permutation matrix see the function Mat_BlockPerm

Note that not all matrices can be transformed in block-triangular form. From theory we know that it can be
done if, and only if, the graph associated to the matrix is not strong connected. On the contrary, if the
graph is strong connected, we say that the matrix is irreducible. A dense matrix without zero elements, for
example, is always irreducible.

Example:

Function Mat_BlockPerm(Mat,)
Returns the permutation matrix that trasforms a sparse square matrix (n x n) into a block-partitioned
matrix. Under certain conditions, a square matrix can be transformed into a block-partitioned form (also
called block-triangular form) by similarity transformation.

PAPB T =

where P is a permutation matrix (n x n).

This function returns the permutation vector (n); for transforming it into a permutation matrix use the
Function MatPerm

Example. Find the permutation matrix that transforms the given matrix into block triangular form

T U T O R I A L F O R M A T R I X . X L A

 37

Note that not all matrices can be transformed in block-triangular form. If the transformation fails the
function returns “?”. This usually happens if the matrix is irreducible.

Function MatEigenvalue_QR(Mat)
This function performs the diagonal reduction of a given matrix by the generalized QR method5, and
returns the approximate eigenvalues, real or complex.
It returns an (n x 2) array

The example below shows that the given matrix has two complex conjugate eigenvalues and only one
real eigenvalue

5 This function uses a reduction of the EISPACK FORTRAN HQR and ELMHES subroutines (April 1983)
HQR nad ELMHES are the translation of the ALGOL procedure.
 NUM. MATH. 14, 219-231(1970) by Martin, Peters, and Wilkinson.

T U T O R I A L F O R M A T R I X . X L A

 38

Example. Find the eigenvalues of the following symmetric matrix. Being symmetric, there are only n real
distinct eigenvalues. So the function returns only an (n x 1) array

Function MatEigenvalue_QRC(Mat, [Cformat])
This function performs the diagonal reduction of a given complex matrix with complex QR method6, and
returns the approximate eigenvalues real or complex as an (n x 2) array.
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex format of input/output (default = 1)
See About complex matrix format

Example. Find the eigenvalues of the following complex matrix.

The matrix could be also passed in compact string format

Note that the result is always in split format

6 This function uses a reduction of the EISPACK FORTRAN COMQR and CORTH subroutines (April 1983)
COMQR is a translation of the ALGOL procedue
MATH. 12, 369-376(1968) by Martin and Wilkinson.

T U T O R I A L F O R M A T R I X . X L A

 39

Function MatEigenvector(A, Eigenvalues, [MaxErr])
This function returns the eigenvector of a matrix A (n x n) associated to the given eigenvalue

vAv λ=

If "Eigenvalues" is a single value, the function returns a (n x 1) vector. Otherwise if "Eigenvalues" is a
vector of eigenvalues, the function returns the (n x n) matrix of eigenvectors.
The optional parameter MaxErr is useful when the eigenvalues are affected by round-off error. In that
case the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix. If
omitted, the function tries to detect by itself the suitable MaxErr for the approximate eigenvalues

Function MatEigenvector_C(A, Eigenvalue, [MaxErr])
This function returns the complex eigenvector associates to a complex eigenvalue of a real or complex
matrix A (n x n)

The function returns an array of two columns (n x 2): the first column contains the real part, the second
column the imaginary part.
It returns an array of four columns (n x 4) if the eigenvalue is double. The first two columns contain the
first complex eigenvector; the last two columns contain the second complex eigenvector. And so on.
The optional parameter MaxErr (default 1E-10) is useful only if your eigenvalue has an error. In that case
the MaxErr should be proportionally increased (1E-8, 1E-6, etc.). Otherwise the result may be a NULL
matrix.

Look at this example:

T U T O R I A L F O R M A T R I X . X L A

 40

The given matrix has 3 eigenvalues:

 2 , 5+j , 5−j

For each eigenvalue, the function
MatEigenvector_C returns the associate
eigenvector that, in general, will be complex.

Note that for the real eigenvalue 2, the
function returns a real eigenvector

Note also that for conjugate eigenvalues will
get also conjugate eigenvectors

The function works also for complex matrices. Example assume to have to find the eigenvector of the
following matrix for the given eigenvalue

j
jj
jj

A −=

−+−
++−

= 5 ,
3851

531
λ

Thus, the eigenvector for j−= 5λ
is

−
−

=
j
j

2
1

u

T U T O R I A L F O R M A T R I X . X L A

 41

Function MatEigenvector_Jacobi(Mat, Optional MaxLoops)
This function performs the Jacobi's orthogonal similarity transformation sequence and returns the last
orthogonal matrix. It works only for symmetric matrices.
The optional parameter MaxLoops (default=100) sets the max steps of the sequence.

This function returns the orthogonal matrix Un that transforms to a diagonal form the symmetric matrix A,
for n sufficiently high

[] n
T
n UAU ⋅≅λ

The matrix Un is composed by eigenvectors of A

For further details see Function MatEigenvalue_Jacobi

Function MatEigenSort_Jacobi(EigvalM, EigvectM, [num])
This function7 sorts of the eigenvalues and returns the first eigenvector associated to the absolute highest
eigenvalue.
EigvalM is the diagonal eigenvalues (n x n) matrix and EigvectM is the (n x n) eigenvector unitary matrix
as returned by MatEigenValue_Jacobi and MatEigenVector_Jacobi.
The optional parameter num (default num = n) sets the number of the vectors returned

Example

7 This function appears thanks to the courtesy of Carlos Aya

T U T O R I A L F O R M A T R I X . X L A

 42

 Function MatEigenvalue_QL(Mat3, [IterMax])
This function returns the real eigenvalues of a tridiagonal symmetric matrix. It works also for
unsymmetrical tridiagonal matrix having its eigenvalues all real.
The optional parameter Itermax sets the max iteration allowed (default Itermax =200).
This function use the efficient QL algorithm
If the matrix has not all real eigenvalues this function returns "?"
This function accepts both tridiagonal square (n x n) matrices and (n x 3) rectangular matrices.

Example. Find all eigenvalues of the following 19 x 19 matrix

Note that all 19 eigenvalues are close
each other, in the short interval

2.18.0 << kλ

Other algorithms have difficult in this
pathological case.
On the contrary the QL algorithm works
fine giving an high general accuracy.

T U T O R I A L F O R M A T R I X . X L A

 43

Function MatEigenvalue3U(n, a, b, c)
Returns the eigenvalues of a tridiagonal uniform (n x n) matrix.

...............

...00

...0

...0

...00

ba
cba

cba
cb

For the uniform tridiagonal matrices, there is a nice close formula giving all eigenvalues for any size of the
matrix dimension. See chapter “Tridiagonal uniform matrix”.

Example :
find the eigenvalues of the 40 x 40 tridiagonal uniform matrix having a = 1, b = 3, c = 2.
Because a*c = 2 > 0 , all eigenvalues are real.

find the eigenvalues of the 40 x 40 tridiagonal uniform matrix having a = 1, b = 3, c = −2.
Because a*c = −2 < 0 , all eigenvalues are complex.

Function MatEigenvector3(Mat3, Eigenvalues, [MaxErr])
This function returns the eigenvector of associate eigenvalue of a tridiagonal matrix A

vAv λ=

If Eigenvalues is a single value, the function returns a (n x 1) vector. Otherwise if the parameter
Eigenvalues is a vector of all eigenvalues of matrix A, the function returns a matrix (n x n) of eigenvectors.
Note: the eigenvectors returned by this function are not normalized.

The optional parameter MaxErr is useful only if your eigenvalues are affected by an error. In that case
the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix. If omitted, the
function tries to detect by itself the best error parameter

This function accepts both tridiagonal square (n x n) matrices and (n x 3) rectangular matrices.
The second form is useful for large matrices.

Example.
Given the 19 x 19 tridiagonal matrix having eigenvalue L = 1, find its associate eigenvector

It was been demonstrated that for these matrices:

• for n even - all eigenvalues are real if a*c>0; all eigenvalues are
complex otherwise.

• for n odd - all n-1 eigenvalues are real if a*c>0; all n-1 eigenvalues
are complex otherwise. The last n eigenvalue is always b.

T U T O R I A L F O R M A T R I X . X L A

 44

Function MatChar(A, x)
This function returns the characteristic matrix at the value x.

xIAC −=

where A is a real square matrix; x is a real number.
The determinant of C is the characteristic polynomial of the matrix A

Function MatChar_C(A, z, [Cformat])
This function returns the complex characteristic matrix at the value z.

IAC z−=

where A can be real or complex square matrix; z can be real or complex number.
The determinant of C is the characteristic polynomial of the matrix A

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex format of input/output (default = 1)

Complex (split or interlaced) matrix must have always an even number of columns

T U T O R I A L F O R M A T R I X . X L A

 45

Example. Compute the matrix I A λ− for j51−=λ
where A is the complex matrix

+−−
+++

−−+
=

jj
jjj

jj
A

105021
214221

02163

Example. Compute the matrix I A λ− for j21+=λ
where A is the real matrix

−

−
=

501
121
013

A

Function MatCharPoly(Mat)
This function returns the coefficients of the characteristic polynomial of a given matrix. If the matrix has
dimension (n x n), then the polynomial has nth degree and n+1 coefficients.
As know, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa. This
function uses the fast Newton-Girard formulas to find all the coefficients.

Solving this polynomial (by any method) can be another way to find eigenvalues

In the example the characteristic polynomial
of matrix A is

1629918)det(23 +−+−=− λλλλIA

T U T O R I A L F O R M A T R I X . X L A

 46

Note. Computing eigenvalues trough the characteristic polynomial is in general less efficient than other
decomposition methods (QR, Jacoby), but became a good choose for low dimension matrices (typically <
6°) and for complex eigenvalues

See also Function Poly_Roots(Coefficients, [ErrMax])

Function MatCharPoly_C(Mat, [CFormat])
This function returns the complex coefficients of the characteristic polynomial of a given complex matrix. If
the matrix has dimension (n x n), then the polynomial has nth degree and n+1 coefficients.
As know, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa.
This function uses the Newton-Girard formulas to find all the coefficients.

It supports 3 different matrix formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex format of input/output (default = 1)

The function always returns an array of 2 columns

As we can see the characteristic polynomial of the above complex matrix is

jzjzjzjzzP 248)222()79()25()(234 +++−+++−=

Function Poly_Roots(Coefficients, [ErrMax])
This function returns the roots of a given polynomial
Coefficients parameter is the array of n+1 coefficients
ErrMax optional parameter sets the max error for roots approximation (default = 1E-13)

This function uses the Lin-Bairstow algorithm for the factorization of a nth degree polynomial into a
square polynomial and a (n-2)th degree polynomial. The process is applied recursively to the (n-2)th
polynomial, and so on, until the degree of the reduced polynomial becomes 2 or 1.

Note. This process is very fast, and robust but may not converge under certain conditions: for example if
the polynomial has multiple roots. In that case we can try to reduce the accuracy by the ErrMax
parameter, setting 1E-9, or 1E-6. For high degree polynomial you can use also the Poly_Root_QR
function in MATRIX. For high accuracy or for stiff polynomials you can find more suitable rootfinder
routines in XNumbers.xla addin

Eigenvalues. If the given polynomial is the characteristic polynomial of a matrix (returned, for example,
by the MatCharPoly()) this function returns the eigenvalues of the matrix itself.
Computing eigenvalues trough the characteristic polynomial is in general less efficient than other
decomposition methods (QR, Jacoby), but became a good choose for low dimension matrices (typically <
6°) and for complex eigenvalues.

T U T O R I A L F O R M A T R I X . X L A

 47

Example: find the eigenvalues of the following matrix

Function MatEigenvalue_max(Mat, [IterMax])
Returns the dominant eigenvalue of a matrix.
Dominant eigenvalue, if exists, is the one with the maximum absolute value.
Optional parameter: IterMax sets the maximum number of iterations allowed (default 1000).
This function uses the power’s iterative method

Power's method - Given a matrix A with n eigenvalues, real and distinct, we have

||...|||| 21 nλλλ >>
Starting with a generic vector x0, we have:

Note. This algorithm is started with a random generic vector. Many times it converges, but some times not. So if one
of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-try it.

A global localization method for real eigenvalues
This method is useful for finding the radius of the circle containing all real eigenvalues of a given matrix
Example. Find the circle containing all eigenvalues of the following matrix

10 8 -5 2
8 4 3 -2
-5 3 6 0
2 -2 0 -2

The matrix is symmetric so all its
eigenvalues are real.

The matrix trace gives us the sum of eigenvalues, so we can get the center of the circle by:

n
Atracec)(

=

We find the dominant eigenvalues λ1 by the function MatEigenvalue_max

1
1 lim λ=+

∞→
k

T
k

k
T
k

k yy
yy

1||
 lim u

y
y

k

k

k
=

∞→

Note: we can also use the nested
function:
 {=Poly_Roots(MatCharPoly(A))}

0xAy k
k =

T U T O R I A L F O R M A T R I X . X L A

 48

The radius can be found by the formula
cr −= 1λ

We have found the center C = (4.5 ; 0) with R = 11.7. If we plot the circle and the roots, we observe a
general good result

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15 20 25

Eigenvalues
λ1 = 16.2
λ2 = 8.3
λ3 = -0.55
λ4 = -6.0

This method works also for non symmetric matrices, having real eigenvalues.
Example - find the circle containing all eigenvalues of the following matrix

90 -7 0 4

-5 98 0 12

-2 0 95 14

9 3 14 102

-20

-15

-10

-5

0

5

10

15

20

55 60 65 70 75 80 85 90 95 100 105 110 115 120

Eigenvalues
l1 = 114.1
l2 = 101.1
l3 = 91.3
l4 = 78.49

Function MatEigenvector_max(Mat, [Norm], [IterMax])
Returns the dominant eigenvector of matrix Mat
The dominant eigenvector is related to the dominant eigenvalue.
Optional parameters are:
IterMax: sets the maximum number of iterations allowed (default 1000).
Norm: if TRUE, the function returns a normalized vector |v|=1 (default FALSE)

Remark: This function uses the power’s iterative method
For further details see function MatEigenvalue_Max

T U T O R I A L F O R M A T R I X . X L A

 49

Note. This algorithm is started with a random generic vector. Many times it converges, but some times not. So if one
of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-try it.

Function MatEigenvalue_pow(Mat, [IterMax])
This function returns all eigenvalues of a given matrix.
Optional parameters are:
IterMax: sets the maximum number of iterations allowed (default 1000).
Norm: if TRUE, the function returns a normalized vector |v|=1 (default FALSE)

This function uses the power’s iterative method. This algorithm works also for non-symmetric matrices
with low-moderate dimension

Note. This algorithm is started with a random generic vector. Many times it converges, but some times not. So if one
of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-try it.

Example: find all eigenvalues and eigenvectors of the given matrix

We have used the functions MatEigenvalue_pow and MatEigenvector_pow. We can see the small values
instead of 0. This is due to the round-off errors. If you want to clean the matrix from these round-off
errors, use the function MatMopUp

Function MatEigenvector_pow(Mat, [Norm], [IterMax])
This function returns all eigenvectors of a given matrix.
Optional parameters are:
IterMax: sets the maximum number of iterations allowed (default 1000).
Norm: if TRUE, the function returns normalized vectors |v|=1 (default FALSE)

This function uses the power’s iterative method. This algorithm works also for non-symmetric matrices
with low-moderate dimension

See also function MatEigenvalue_pow

T U T O R I A L F O R M A T R I X . X L A

 50

Function MatEigenvectorInv(Mat, Eigenvalue)
This function returns the eigenvector of associate eigenvalue of an (n x n) matrix A using the inverse
iterative algorithm

 vAv λ=

If Eigenvalues is a single value, the function returns a (n x 1) vector. Otherwise if Eigenvalues is a vector
of all eigenvalues of matrix A, the function returns a matrix (n x n) of eigenvector.
The eigenvector is normalized with norm = 2 .
This method is adapted for eigenvalues affected by large error, because it is more stable than the
singular system resolution.

Example. Given a matrix A and its eigenvalues λi , find the eigenvectors associated

Function MatEigenvectorInv_C(Mat, Eigenvalue, [CFormat])
This function returns the eigenvector of associate eigenvalue of a complex matrix A (n x n) by the inverse
iteration algorithm

vAv λ=

If "Eigenvalue" is a single value, the function returns a complex vector. Otherwise if "Eigenvalues" is a
complex vector, the function returns the complex matrix of the associated eigenvectors.

The inverse iteration method is adapted for eigenvalues affected by large error, because is more stable
than the singular system resolution of the other function MatEigenvector_C .

Example. Find all eigenvectors of the following complex matrix, having the following eigenvalues

4+3j 2-4j 4+5j 5-4j
1+2j 2 1+2j 2-j
-2+4j 4+2j -2+2j 2+6j
3-3j -3-3j 3-3j 1-3j

] 2j , i , 3j1 , 4 [−+=λ

T U T O R I A L F O R M A T R I X . X L A

 51

About perturbed eigenvalues
Many times we know only an approximation of the true eigenvalue. When the error is large the stability of
the algorithm for finding the associate eigenvector plays a crucial role. The above example shows a
critical situation because all eigenvalues are very closed each others, having only 4% of difference. In this
case a little error of the eigenvalues could get large error in eigenvectors. In this situation came handy the
inverse iterative algorithm. It shows a large stability. Let’s see this example
First of all we define a sensitivity coefficient for measuring the instability.

Instability Sensitivity

λ
λ

λλ
λ

λ

*

*

, ∆
⋅

∆
=

−
⋅

−
= ∑∑

u
u

u
uu

S iii
u

Where:

λ = eigenvalue
λ* = perturbed eigenvalue
u = eigenvector
u* = perturbed eigenvector

Now we compare the response of two different algorithms at the perturbed eigenvalue: the singular linear
system solving (traditional method) and the iterative inverse algorithm. The first one is used by
MatEigenvector() function while the last one is used by the MatEigenvector_inv() function.

 Singular linear system method Iterative inverse method
λ λ ∆ λ λ ∆ λ

100 100.0001 0.0001 100.3 0.3

u u |∆ u| u |∆ u|
1 0.99981665 1.83E-04 1.00000000 0

12 12.00028336 2.36E-05 12.00000085 7.12E-08
7 7.00005834 8.33E-06 7.00000046 6.58E-08

-3 -3.00003333 1.11E-05 -3.00000020 6.58E-08
-1 -1.00000000 0 -1.00000007 6.58E-08

The iterative inverse algorithm returns an eigenvector affected by a very small error even if the error of
the eigenvalues is heavier (0.3%). On the other hand the first method computes a sufficently accurate
eigenvector only if the eigenvalue error is very little (0.0001%). Note that for higher errors the first method
fails, returning the null vector.
On the contrary the iterative inverse algorithm tolerates large amount of error in eigenvalue. This can be
showed by the instability factor

Singular linear system method Iterative inverse method
λ ∆ λ | u | Σ|∆ u| λ ∆ λ | u | Σ|∆ u|

100.0001 0.0001 14.28 0.000226 100.3 0.3 14.28 2.69E-07

S1 = 15.85 S2 = 6.3E-06

T U T O R I A L F O R M A T R I X . X L A

 52

As we can see the difference is quite evident. In the last case the hill-conditioned matrix (eigenvalues
very close each others), exhibits an instability factor of the iterative inverse algorithm less then 105 times
the other one. Clearly this is a good reason for using it.

T U T O R I A L F O R M A T R I X . X L A

 53

Matrices Generator
This is a set of useful tools for generating several types of matrices

Function MatRnd(n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse])
Function MatRndEig(Eigenvalues, [MatInteger])
Function MatRndEigSym(Eigenvalues)
Function MatRndRank(n, [Rank], [Det], [MatInteger])
Function MatRndSim(n, [Rank], [Det], [MatInteger])
Function Mat_Hilbert (n)
Function Mat_Hilbert_inv(n)
Function Mat_Householder(x)
Function Mat_Tartaglia(n)
Function Mat_Vandermonde(x)

Function MatRnd(n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse])
Generates a random matrix
Parameters are:

n = rows
m = columns (default m = n)

Typ = ALL (default) - fills all cells
 SYM - symmetrical
 TRD - tridiagonal
 DIA - Diagonal
 TLW - Triangular lower
 TUP - Triangular upper
 SYMTRD Symmetrical tridiagonal

MatInteger = True (default) for integer matrix, False for decimal
Amax = max number allowed
Amin = min number allowed
Sparse = decimal, from 0 to 1; 0 means no sparse (default), 1 means very sparse

Note: The generation is random; it’s means that each time that you recalculate this function, you get
different values

Function MatRndEig(Eigenvalues, [MatInteger])
Returns a general real matrix with a given set of eigenvalues

T U T O R I A L F O R M A T R I X . X L A

 54

Function MatRndEigSym(Eigenvalues)
Returns a symmetric real matrix with a given set of eigenvalues

Function MatRndRank(n, [Rank], [Det], [MatInteger])
Returns a real matrix with a given Rank or Determinant
Note: if Rank < max dimension then always Det = 0

Function MatRndSim(n, [Rank], [Det], [MatInteger])
Returns a real symmetric matrix with a given Rank or Determinant
Note: if Rank < max dimension then always Det = 0

Function MatRndUni(n, [MatInteger])
Returns an unitary matrix (Det=1)

Function Mat_Hilbert(n)
Returns the (n x n) Hilbert's matrix
Note: this matrix is always decimal

Function Mat_Hilbert_inv(n)
Returns the inverse of the (n x n) Hilbert's matrix.
Note: this matrix is always integer

Hilbert's matrices are a strongly hill-conditioned and are useful for testing algorithms
In the example below we see a (4 x 4) Hilbert matrix and its inverse.

Function Mat_Householder(x)
Returns the Householder matrix of a given vector x = (x1, x2, ...xn) by the formula:

22
X

XXIH
T

−=

This kind of matrices are used in several important algorithms as, for example, the QR decomposition

Function Mat_Tartaglia()
Returns the Tartaglia's matrix
This kind of matrix is a hill-conditioned and is useful to test same algorithms
In the example below we see a (5 x 5) matrix

T U T O R I A L F O R M A T R I X . X L A

 55

Definition: Tartaglia's matrix is defined as

11 =ja

∑
=

−=
j

k
kiij aa

1
)1(

Function Mat_Vandermonde(x)
Returns the Vandermonde's matrix of a given vector x = (x1, x2, ...xn)

This matrix is very common in many field of numeric calculus like the polynomial interpolation
Example: Find the 4th degree polynomial that fits the following table

x y
-2 600
-1 521
1 423
4 516
6 808

The generic 4th degree polynomial is
4

4
3

3
2

210)(xaxaxaxaaxp ++++=

We can find the coefficients a = (a0, a1, a2, a3, a4) solving the
linear system

W a = y Where W is the Wandermonde's matrix

T U T O R I A L F O R M A T R I X . X L A

 56

Function Gauss_Jordan_step(Mat, [Typ], [IntValue])
This function, also available in macro version, has been developed for didactic scope. It can trace, step
by step, the diagonal reduction or triangular reduction of a matrix by the Gauss-Jordan algorithm.
Optional parameter Typ can be "D" (default) for Diagonal or "T" for Triangular
Optional parameter IntValue = TRUE forces the function to conserve integer values through all steps.
Default is FALSE.
The argument Mat is the complete matrix (n x m) of the linear system
Remember that for a linear system:

bAx =
A is the system square matrix (n x n)
x is the unknown vector (n x 1)
b is the vector of constant terms (n x 1)

[]bAC ,=
C is the complete matrix of the system

Example - Study the Gauss-Jordan algorithm for the following system

 A =

First of all, put all columns in an adjacent 3x4 matrix, example the range A1:D3. Select the cells where
you want the matrix of the next step; example the range A5:D7. Insert the array-function

As we can see, the algorithm has exchanged rows 1 and 3, because the pivot a11 was 0
Now, with the range A5:D7 still selected, copy the active selection by CTRL+C
Move to the cell A9 give the command CTRL+V. The new step will be performed. Continuing in this way
we can visualize each step of the elimination algorithm

0 -10 3
2 1 1
4 0 5

105
17
91

b =

T U T O R I A L F O R M A T R I X . X L A

 57

The process ends when the 3x3 matrix is became an identity matrix. The system solution appears in the
last column (4, -6, 15)

For further details see: Several ways for using the Gauss-Jordan algorithm

Function SYSLIN(A, b, [IMode], [Tiny])
This function solves a linear system by the Gauss-Jordan algorithm.
The argument A is the matrix (n x n) of the linear system
The argument b is a (n x 1) vector or a (n x m) matrix
The optional parameters:IMODE switch (default False) sets the floating point (False) or integer
computation (True). Integer computation is intrinsically more accurate but also more limited because it
may easily reaches the overflow error. Use IMODE only with integer matrices of moderate size.
The optional parameter Tiny (default is 0) sets the minimum round-off error; any value in absolute less
than Tiny will be set to 0.
If the matrix is singular the function returns "singular"
If the matrix is not squared the function returns "?"
If non-singular, returns the vector solution or the matrix solution of the given system.
Remember that for a linear system:

bAx =
A is the system square matrix (n x n)
x is the unknown vector (n x 1) or the unknown matrix (n x m)
b is the vector of constant terms (n x 1) or a (n x m) matrix of constant terms

As known, the above linear equation has only one solution if - and only if -, Det(A) ≠ 0
Otherwise the solutions can be infinite or even nothing. In that case the system is called "singular". See
Function SYSLINSING(Mat, Optional V)

=

⋅

⇒=

m

m

m

m

m

m

b
b
b

b
b
b

b
b
b

x
x
x

x
x
x

x
x
x

aaa
aaa
aaa

BAX

3

2

1

32

22

12

31

21

11

3

2

1

32

22

12

31

21

11

33321 3

232221

3 11211

T U T O R I A L F O R M A T R I X . X L A

 58

Parameter b can also be a matrix of m columns. In that case SYSLIN solves simultaneosly a set of m
systems.

Function SYSLIN3(Mat3, v)
This function solves a tridiagonal linear system.
The argument Mat3 is the array (n x 3) representing the (n x n) matrix of the linear system
Remember that for a linear system:

A x = v
A is the system square matrix (n x n)
x is the unknown vector (n x 1)
v is the constant terms vector (n x 1)

As known, the above linear equation has only one solution if - and only if -, det(A) ≠ 0
Otherwise the solutions can be infinite or even nothing. In that case the system is called "singular".

=

⋅

5

4

3

2

1

5

4

3

2

1

55

444

333

222

11

000
00

00
00
000

v
v
v
v
v

x
x
x
x
x

ba
cba

cba
cba

cb

Example - let' se how to solve a 16 x 16
tridiagonal linear system A x = y
We pass to the function only 46 values (the
first cell of a and the last of c are always 0)
instead of 256 values.

Tip: note that this trick allows to solve systems
larger that 256 x 256 (the max square matrix in
Excel worksheet)

T U T O R I A L F O R M A T R I X . X L A

 59

Function SYSLIN_ITER_G(A, b, X0, Optional Nmax)
This function performs the iterative Gauss-Seidel algorithm for solving a linear system and has been
developed for didactic scope in order to study the convergence of the iterative process.

bxA =⋅][

Parameter A is the system matrix (range n x n)
Parameter b is the system vector (range n x 1)
Parameter x0 is the starting approximate solution vector (range n x 1)
Parameter Nmax is the max step allowed (default = 1)

The function returns the vector at Nmax step; if the matrix is convergent, this vector approaches to the
exact solution.

In the example below it is shown the 20th iteration step of this iterative method.
As we can see, the values approximate the exact solution [4, -3, 5]. Precision increase with steps (of
course, for convergent matrix)

For Nmax=1, we can study the iterative method step by step

x1 = SYSLIN_ITER_G(A, b, x0)
x2 = SYSLIN_ITER_G(A, b, x1)
x3 = SYSLIN_ITER_G(A, b, x2)
......................................
x20 = SYSLIN_ITER_G(A, b, x19)

In the example below we see the trace of iteration values

T U T O R I A L F O R M A T R I X . X L A

 60

Usually, the convergence speed is quite low, but it can be greatly accelerate by the Aitken's extrapolation
formula, also called as "square delta extrapolation"

Function SYSLIN_T(Mat, b, [typ], [tiny])
This function solves a triangular linear system by the forward and backward substitutions algorithms. It
returns a vector or a matrix solution of a given system.
The argument Mat is the matrix (n x n) of the linear system
Remember that for a linear system:

bAx =
A is the triangular - upper or lower - system square matrix (n x n)
x is the unknown (n x 1) vector or the (n x m) unknown matrix
b is a constant (n x 1) vector or a constant (n x m) matrix

As known, the above linear system has only one solution if - and only if -, det(A) <> 0
Otherwise the solutions can be infinite or even nothing. In that case the system is called "singular".

The parameter b can be also a (n x m) matrix B. In that case the function returns a matrix solution X of
the multiple linear system
Parameter typ = "U" or "L" switches the function to solve for upper-triangular (back substitutions) or lower-
triangular system (forward substitutions); if omitted the function automatically detects the type of the
system.
Optional parameter Tiny (default is 0) sets the minimum round-off error; any value in absolute less than
Tiny will be set to 0.

Example of (7 x 7) system

Function SYSLIN_ITER_J(Mat, U, X0, Optional Nmax)
This function performs the iterative Jacobi's algorithm for solving a linear system and was developed for
didactic scope in order to study the convergence of the iterative process.

bxA =⋅][

Parameter A is the system matrix (range n x n)
Parameter b is the system vector (range n x 1)
Parameter x0 is the starting approximate solution vector (range n x 1)
Parameter Nmax is the max step allowed (default = 1)

The function returns the vector at Nmax step; if the matrix is convergent, this vector is closer to the exact
solution.

T U T O R I A L F O R M A T R I X . X L A

 61

This function is similar to the SYSLIN_ITER_G function.
For further details see Function SYSLIN_ITER_G(Mat, U, X0, Optional Nmax)

Function SYSLINSING(A, [b], [MaxErr])
Singular linear system can have infinite solutions or even nothing. This happens when DET(A) = 0.
In that case the following equations:

0=
=

Ax
bAx

The above equation define an implicit Linear Function - also called Linear Transformation - between the
vector spaces, that can be put in the following explicit form

dCxy +=
Where C is the transformation matrix and d is the known vector; C has the same dimension of A, and d
the same of b

This function returns the matrix C in the first n columns; eventually, a last column contains the vector d
(only if b is not missing). If the system has no solution, this function returns "?"

Optional parameter MaxErr set the relative precision level; elements lower than this level are force to
zero. Default is 1E-15.

This version solves also systems where the equations number is less than the variables number; In other
words, A is a rectangular matrix (n x m) where n < m

Example: Solve the following system

The determinant of the matrix A is 0. The system has infinite solution given by matrix C and vector d

Example 1: Find the solution of the following homogeneous
system

0
20162
710

1081

3

2

1

=

⋅

−−− x
x
x

Because the determinant is 0, the homogeneous system has
always solutions; they can be put in the following form

 Cxy =

T U T O R I A L F O R M A T R I X . X L A

 62

Looking at the first diagonal of the matrix C we discover 1 at the column 3 and row 3. This means that x3
is the independent variable; all the others are dependent variables. This means also that the rank of
matrix is 2.

−=

⇒

⋅

−=

3

3

3

3

2

1

3

2

1

3

2

1

7
46

100
700

4600

x
x
x

y
y
y

x
x
x

y
y
y

Changing values to the independent variable x3 we get all the solution of the given system

Example 2: Find the solution of the following homogeneous system

=−+
=−+

=−+

036279
0523913

043

321

321

321

xxx
xxx

xxx

By inspection of the first diagonal, we see that there are 2 elements different from 0. So the independent
variables are x2, and x3. This means that the rank of matrix is 1

 +−
=

⇒

⋅

 −
=

3

2

32

3

2

1

3

2

1

3

2

1 43

100
010
430

x
x

xx

y
y
y

x
x
x

y
y
y

It is easy to prove that this linear function is a plane in R3. In fact, eliminating the variable x2 and x3 we
get:

321 43 yyy +−=
And substituting the variables y1, y2, y3 with the usually variables x, y, z, we get:

043 =−+ zyx

Example 3: Find the solution of the following non-homogeneous system

bAx =

−=

⋅

−−− 0
4

0

20162
710

1081

3

2

1

x
x
x

As we can see, the rank of the given system is 2; so there is one
independent variable x3. The solutions can be writing as:

dCxy +=

−

+
=

⇒

−+

⋅

−=

3

3

3

3

2

1

3

2

1

3

2

1

7
3246

0
4

32

100
700

4600

x
x

x

y
y
y

x
x
x

y
y
y

T U T O R I A L F O R M A T R I X . X L A

 63

Function TRASFLIN(A, x, Optional B)
This function performs the Linear Transformation

bAxy +=
Where:
A is the (n x m) matrix of transformation
b is the (n x 1) known vector default is the null vector
x is the (m x 1) vector of independent variables
y is the (n x 1) vector of dependent variables

This function accepts also matrices for x and b; in that case the matrix transformation is

BAXY +=
Where:
A is the matrix (n x m) of transformation
B is the known matrix (n x p); default is the null vector
X is the matrix of independent variables (m x p)
Y is the matrix of dependent variables (n x p)

Matrix Geometric action
Linear transformation have a useful geometric interpretation8.
Take a point x (x1, x2) of the plane and compute the linear transform y = [A] x, where A (2 x 2) matrix; the
point y (y1, y2) . We wonder if there is a geometrical relation between the point x and y.
The relation exist and became evident if we perform the transformation of the points belong to the unitary
circle.
In Excel we can easily generate the unitary circle pattern with the formula

x = (cos(k⋅∆α) , sin(k⋅∆α)) for k = 1, 2 …N where ∆α = 2π/N

Because x is a row-vector (more adapted to form Excel list) is useful to have the dual Linear Transform
for row-vectors

TTTT bAxy +=
Here a possible arrangement.

8 A smart, cool, geometric description was developed by Todd Will at University of Wisconsin-La Crosse. I suggest to
have a look at his web pages http://www.uwlax.edu/faculty/will/svd/ . . For those that think that Linear Algebra cannot
be amusing. Don’t miss them.

T U T O R I A L F O R M A T R I X . X L A

 64

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

The blue line corresponds to the unitary circle points; the pink line belongs to the transformed y points.
Thus, the circle has been transformed into a centred ellipse; if we add also b ≠ 0, we get a translated
ellipse. Each point of unitary circle has been projected on the ellipse.

We have to point out that the projection is not
radial but it happens in a very strange way. Look
at the imagine to the right. It shows how a point
on the circle moves on the ellipse, before and
after the linear transformation.
It seems as if the circle would be enlarged
(stretched), and then rotated (like a “whirlpool”).

Other dimensions
The effect is the same – changing the
denomination – in higher dimension

Space Original pattern Transf. pattern
R2 circle ⇒ ellipse
R3 sphere ⇒ ellipsoid
Rn hyper-sphere ⇒ hyper-ellipse

-4

-3

-2

-1

0

1

2

3

4

-4 -2 0 2 4

T U T O R I A L F O R M A T R I X . X L A

 65

Function Gram_Schmidt(A)
This function performs the orthonormalization of a base vectors by the Gram-Schmidt's method
Argument A is a (n x n) matrix containing n independent vectors.
This function returns the orthogonal matrix U; each vector has |νi| = 1 and νi ⊥ νj

 Where

This function is very sensible to the round-off errors.
For larger matrices see Function MatOrtNorm(Mat)

Gram-Schmidt's Orthonormalization
This popular method is used to build an orthogonal-normalized base from a set of n independent vectors.

()nvvvv ,.... , , 321
The orthogonal bases U is built with the following iterative algorithm

For k = 1, 2, 3...n

k

k
k

k

j
jjkkk

w
wu

uuuvw

=

•−= ∑
−

=

1

1
)(

Developing this algorithm, we see that the vector k is built with the previous k-1 vectors

3

3
322311333

2

2
211222

1

1
1

)()(

)(

w
wuuuvuuvvw

w
wuuuvvw

v
vu

=⇒•−•−=

=⇒•−=

=

At the end, all vectors of the bases U will be orthogonal and normalized.
This process is performed by the function Gram_Schmidt(Mat)

This method is very straightforward, but it's also very sensible to the round-off errors. This happens
because the error propagates itself along the vectors from 1 to n

≠⇔
=⇔

=•
ji
ji

vv ji 0
 1()nvvvvU ..., , , 321=

T U T O R I A L F O R M A T R I X . X L A

 66

Double step Gram-Schimdt method
One method to reduce the error propagation is the following

1) First of all we apply the normal method in order to obtain a first approximate base U
2) At the second step we repeat the orthonormalization with the transpose of the bases U
3) At the end we transpose again the bases obtained from the 2° step.
This method is performed by the function Function MatOrtNorm(Mat)

The following flow-chart illustrated better how this method works

Orthonormalization
Gram-Schimidt

Initial
matrix

[A]

matrix step 1
[V]

matrix step 2
[W]

Transpose
matrix
[V] T

Matrice
trasposta

[W] T

Orthonormalization
Gram-Schimidt

Matrix W has error lower than matrix V

In order to measure the round-off errors we take the scalar products between the first vectors and all the
others

nn uueuueuue •=•=•= 1131132112 ...

This graph below show this errors for a typical matrix of 8° order, orthogonalized with single and double
step Gram-Schmidt method

1E-18

1E-16

1E-14

1E-12

1E-10

1E-08

1E-06

0.0001

0 1 2 3 4 5 6 7 8 9
V e ctors

Round error of Gram-Schmidt a lgorithm

double step

single s tep

Base of 8 vectors
Error(n)= | V1.Vn |

As we can see the improving is sensible even from a (3 x 3) matrix

T U T O R I A L F O R M A T R I X . X L A

 67

Function Mat_Cholesky(A)
This function returns the Cholesky decomposition of a symmetric matrix

TLLA ⋅=
Where A is a symmetric matrix, L is a lower triangular matrix
This decomposition works only if A is positive definite. That is:

vvAv ∀>⋅⋅ 0
or, in other words, that the eigenvalues of A are all-positive. This function returns always a matrix.
Inspecting the diagonal elements of the matrix returned we can discover if the matrix is positive definite: if
they are all positive then also the matrix A is positive definite.

Example - Say if the given matrices are positive definite

 A B
3 1 2 5 2 1
1 6 4 2 2 3
2 4 7 1 3 1

On the left, we see the decomposition of matrix A; the
triangular matrix L has all diagonal elements positive;
then the matrix A is positive definite and all its
eigenvalues are positive.
On the contrary, the decomposition of the matrix B
shows a negative number at the position 33; then we
can say that B is not positive definite and same of its
eigenvalues are negative.

This decomposition is useful also to solve the so-called "generalized eigen-problem"

Function Mat_LU(A, optional Pivot)
This function returns the LU decomposition of a given square matrix A. It uses the Crout's algorithm

⋅

==

33

2322

131211

2331

21

00
0

1
01
001

β
ββ
βββ

αα
αLUA

Where L is a lower triangular matrix, and U is upper triangular matrix
If the square matrix has (n x n) dimension, this function returns a matrix (n x 2n) where the first n columns
are the matrix L and the last n columns are the matrix U.
The parameter Pivot (default=TRUE) activates the partial pivoting.
Note: that if partial pivot is active (TRUE) the LU decomposition may refer to a permutation of A.

T U T O R I A L F O R M A T R I X . X L A

 68

Note: LU decomposition without pivoting does not work if the first element of diagonal of A is zero

The LU decomposition are often used to solve linear system

 A x = b ⇒ LU x = b ⇒ L (Ux) = b

The original system is now split into two simpler systems.

 L y = b (1)

 U x = y (2)

First of all, we solve the vector y from the system (1), then, substituting y into (2), we solve for the vector
x. Solving a triangular system is quite simple.

For a good and accurate explanation of this method see [2]

When pivoting is activate the right decomposition formula is A = P L U , where P is a permutation matrix

This function can return also the permutation matrix in the last n columns

Globally, the output of Mat_LU function will be:

Columns 1, n Matrix L
Columns n+1, 2n Matrix U
Columns 2n+1, 3n Matrix P

Example: find the factorization of the following 3x3 matrix A

−= ∑

−

=

1

1

1 i

j
jiji

ii
i yab

a
y

For i = 1, 2, ...N

Forward substitution. For lower triangular
system like L y = b

−= ∑

+=

N

ij
jiji

ii
i xyx

1

1 β
β

For i = N, N-1, ...2, 1

Backward substitution. For upper triangular
system like U x = y

T U T O R I A L F O R M A T R I X . X L A

 69

Function Mat_QR(Mat)
This function performs the QR decomposition of a square (n x n) matrix

RQA ⋅=

Where Q is orthogonal and R is upper triangular matrix

In this version9 Mat_QR can factors also a rectangular (n x m) matrix. It returns a matrix (m x (n + n)),
where the first (m x n) block is Q and the first n rows of the (m x n) second block is R. The last m − n rows
of the second block are 0.

The QR decomposition is the base for an efficient method for calculating the eigenvalues. See also the
function MatEigenvalue_QR(Mat, Optional MaxLoops, Optional Acc)

Example 1°: Perform the QR decomposition for the given square matrix

Example 2° Perform the QR decomposition for the given rectangular matrix

9 Thanks to Ola Mårtensson

T U T O R I A L F O R M A T R I X . X L A

 70

Function Mat_QR_iter(Mat, [MaxLoops])
This function performs the diagonalization of a symmetric matrix by the QR iterative process
The heart of this method is the QR iterated decomposition

nnnnnn QRARQA
QRARQA
QRARQA

RQAQRA

=⇒=
=⇒=
=⇒=
=⇒=

+1

223222

112111

1

If the matrix A has:

Then the sequence converges to the diagonal matrix of eigenvalues

[]λ=+∞→ 1lim nn
A

If the matrix is not symmetric the process gives a triangular matrix where the diagonal elements are still
the eigenvalues.
Optional parameter MaxLoops (default 100) sets the max iteration allowed.

Example.

Function MatExtract(A, i_pivot, j_pivot)
Returns the sub-matrix extract from A by eliminating one row and one column
i_pivot =row to eliminate
j_pivot = column to eliminate

T U T O R I A L F O R M A T R I X . X L A

 71

Function MatOrtNorm(A)
This function performs the orthogonalization with the double-step Gram-Schmidt algorithm
Argument A is a (n x n) matrix containing n independent vectors.
This function returns the orthogonal matrix U; each vector has norm = 1

See also Function Gram_Schmidt(Mat)

Example - Perform the orthogonalization of the given matrix with the Gram-Schmidt methods (single e
double step)

Under both the matrices we
have computed the scalar
product of the vectors in order to
evaluate the round-off errors

As we can see double step
method has errors about 10
times lower.

≠⇔
=⇔

=•
ji
ji

vv ji 0
 1()nvvvvU ..., , , 321= Where:

T U T O R I A L F O R M A T R I X . X L A

 72

Function Path_Floyd(G)
This function, now available also in macro version, returns the matrix of all pairs shortest-path of a graph.
This is an important problem in Graph-Theory and has applications in several different fields:
transportation, electronics, space syntax analysis, etc.
The all-pairs shortest-path problem involves finding the shortest path between all pairs of vertices in a
graph that can be represented as an adjacency matrix [G] in which each element aij - called node -
represents the "distance" between element i and j. If there is not a link between two nodes, we leave the
cell blank or we can set any not numeric symbol you like: for example "x"
This function uses the Floyd's sequential algorithm

Example. - A simple directed graph and its adjacency matrix G

1 2

4 3

1

1
3

4

3

Function Path_Min(G)
Returns a vector contains the shortest path of a graph; the row and column of the cell
This function uses the Path_Floyd() function to find the all-pairs shortest path of the given graph G

Path_Min(G) => [path_min, i_min ; j_min]

Graphs theory recalls
Find the shortest distance between 6 sites drown in the following road map

The map can be reassumed into the following matrix

1 2 3

4 5 6

18 Km

10

15 Km

10 Km

8 Km

5 Km

8 Km

9 Km

24 Km

T U T O R I A L F O R M A T R I X . X L A

 73

 city 1 city 2 city 3 city 4 city 5 city 6
city 1 0 18 x 10 x x
city 2 18 0 15 10 8 x
city 3 x 15 0 x 9 8
city 4 10 10 x 0 x 24
city 5 x 8 9 x 0 5
city 6 x x 8 24 5 0

In the cell 1,2 we fill the distance between city 1 and city 2 , that is 18 Km;
In the cell 1,3 we fill "x" because there is not a direct way between city 1 and city 3.
In he cell 1,4 we fill the distance between city 1 and city 4 , that is 10 Km.
And so on...

We observe that the matrix is symmetric because the distance dij is the same of dji; so we really have to
compute only half matrix.
The above matrix - "adjacent matrix" - reports only the direct distance between each couple of city.
But we can join, for example, city 1 and city 3 in several different paths:
city 1 - city 2- city 3 = 18 + 15 = 33 Km
city 1 - city 4 - city 6 - city 3 = 10 + 24 + 8 = 42 Km etc.

The first one is the shortest distance path for city 1 and city 3
We can repeat this research for any other couple and find the shortest path for all couple of city. But it will
tedious. The Floyd algorithm automates just this task. Applying this algorithm to the above matrix we get
the following matrix

 city 1 city 2 city 3 city 4 city 5 city 6
city 1 0 18 33 10 26 31
city 2 18 0 15 10 8 13
city 3 33 15 0 25 9 8
city 4 10 10 25 0 18 23
city 5 26 8 9 18 0 5
city 6 31 13 8 23 5 0

This matrix reports the shortest distance between each couple of city
For example the shortest distance between city 1 and city 5 is 26 Km

 city 1 city 2 city 3 city 4 city 5 city 6
city 1 0 18 33 10 26 31
city 2 18 0 15 10 8 13
city 3 33 15 0 25 9 8
city 4 10 10 25 0 18 23
city 5 26 8 9 18 0 5
city 6 31 13 8 23 5 0

1 2 3

4 5 6

18 Km

10 Km

15 Km

10 Km

8 Km

5 Km

8 Km

9 Km

24 Km

T U T O R I A L F O R M A T R I X . X L A

 74

For example the shortest distance between city 3 and city 4 is 25 Km

 city 1 city 2 city 3 city 4 city 5 city 6
city 1 0 18 33 10 26 31
city 2 18 0 15 10 8 13
city 3 33 15 0 25 9 8
city 4 10 10 25 0 18 23
city 5 26 8 9 18 0 5
city 6 31 13 8 23 5 0

As we can see to find the shortest paths is simple for a low set of nodes, but becomes quite heavy for
larger set of nodes.

The thing are more difficult if the paths are "oriented"; for example if one or plus ways are only one
direction

Let see this example

The adjacent matrix is built in the same way; the only different is that in this case is not symmetric.
For example between the node 1 and node 2 there is a direct path of 1 km, but it is not true the contrary

 node 1 node 2 node 3 node 4
node 1 0 1 x x
node 2 x 0 1 3
node 3 x x 0 x
node 4 3 x 4 0

1 2 3

4 5 6

18 Km

10 Km

15 Km

10 Km

8 Km

5 Km

8 Km

9 Km

24 Km

1 2

4 3

1 km

3 km
1 km

3 km

4 km

T U T O R I A L F O R M A T R I X . X L A

 75

Applying the Floyd algorithm we get the following matrix

 node 1 node 2 node 3 node 4
node 1 0 1 2 4
node 2 6 0 1 3
node 3 x x 0 x
node 4 3 4 4 0

Reading this matrix is simple:

To go from node 1 to the node 2 there's the shortest path of 1 km; on the contrary, from node 2 to node 1
there's the shortest path of 6 km

 node 1 node 2 node 3 node 4
node 1 0 1 2 4
node 2 6 0 1 3
node 3 x x 0 x
node 4 3 4 4 0

 node 1 node 2 node 3 node 4
node 1 0 1 2 4
node 2 6 0 1 3
node 3 x x 0 x
node 4 3 4 4 0

We note that from node 3 there is not any path to reach any other nodes. The row of node 3 has all "x"
(means no path) except for itself. But it can be reached by all other nodes.

Let's see how use this array function in Excel

Shortest path
First of all, write the adjacent matrix (we have drown also columns and rows header but they are not
indispensable)

Now choose the site of you want to insert the shortest-path matrix; that is the matrix returned by function
Path_Floyd. It must insert as an array function. That returns a 6 x 6 matrix
Example. Assume that you choose the area below the first matrix: select the area B10:G15 and now
insert the function Path Floyd(). Now you must input the adjacent matrix; select the area B2:G7 of the first
matrix

1 2

4 3

1 km

3 km
1

3

4 km

1 2

4 3

1 km

3 km 1 3 km

4 km

T U T O R I A L F O R M A T R I X . X L A

 76

Now gives the keys sequence CTRL+SHIFT+ENTER
That is:

1. Press and keep down the CTRL and SHIFT keys
2. Press the ENTER key

All the solution's values fill all the cells that you have
selected.
Note that Excel shows the function around two braces { }
These symbols mean that the function return an array.

The matrix returned is the shortest-path matrix

T U T O R I A L F O R M A T R I X . X L A

 77

Function SVD - Singular Value Decomposition

Function SVD_U(A)
Function SVD_D(A)
Function SVD_V(A)

Singular Value Decomposition of a (n x m) matrix A provides 3 matrices, U, D, V performing the
following decomposition10:

TVDUA ⋅⋅=

Where: p = min(n, m)

U is an orthogonal matrix (n x p)
D is a square diagonal matrix (p x p)
V is an orthogonal matrix (m x p)

Each of the above functions returns one of the SVD matrices.

For example

T

⋅

⋅

=

−
−

2
2

2
2

2
2

2
2

2
2

6
6

2
2

6
6

3
6

10
03

0

01
10
11

T

⋅

⋅

=

 −
−

2
2

6
6

2
2

6
6

3
6

2
2

2
2

2
2

2
2

0

10
03

011
101

T

⋅

⋅

=

 −−

2
1

2
3

2
3

2
1

2
2

2
2

2
2

2
2

20
06

20
13

Example. Find the SVD decomposition for the given matrix

From the D matrix of singular values we get the max and min values to compute the condition number m
11 , used to measure the ill-conditioning of a matrix. In fact, we have:

m = 9.361 / 0.1 = 93.61

The SVD decomposition of a square matrix return always square matrices of the same size, but for a
rectangular matrix we should take a bit more attention to the correct dimensions.
Let’s see this example

10 Some authors give a different definition for SVD decomposition, but the main concept is the same.
11 Respect to the norm 2

T U T O R I A L F O R M A T R I X . X L A

 78

Sometime it happens that the matrix is singular or “near singular”. The SVD decomposition evidences this
fact and allows computing the matrix rank in a very fast way. You have to count the singular values
greater than zero (or a small value, usually 1E-13). For this scope we need only the singular values
matrix returned by the function SVD_D(). Let’s see.

Denomination. The matrix returned by the SVD are usually called:

U (hanger), D (stretcher), V (aligner).

So the decomposition for a matrix A can be written12

(any matrix) = (hanger) x (stretcher) x (aligner)

12 For further details see the “Introduction to the Singular Value Decomposition” by Todd Will, UW-La Crosse,
Wisconsin, 1999 and “Matrices Geometry & Mathematic” by Bill Davis and Jerry Uhl

In this example the true
rank of the given (5x5)
matrix is only 3,
because there are only
3 singular value different
from zero.

T U T O R I A L F O R M A T R I X . X L A

 79

Function MatMopUp(M, [ErrMin])
This function eliminates all round-off errors from a matrix. Each element that is absolute less than ErrMin
is substituted by zero.

⇒

<⇒
=

otherwise0

ErrMin0 j i
j i

a
a

Parameter ErrMin is optional (default ErrMin = 1E-15)

Function MatCovar(A)
Returns the covariance matrix (m x m) of a given matrix (n x m)
The (column) covariance is definite by the following formulas:

1,..m , 1,..mfor ,))((
1

1

 ==−−= ∑
=

jiaaaac jjk

n

k
iiknji

Where

See also the matrix correlation function MatCorr()
This function is similar to COVAR built-in function for two variables.

Function MatCorr(A)
Returns the correlation matrix (m x m) of a given matrix (n x m)
The correlation matrix is definite by the following formulas:

...m j..m i
aaaa

c
ji

n

k
jjkiikn

ji 1,1for ,
))((

1

1

 ==
⋅

−−
=

∑
=

σσ

Where:

 ...miaa
n

k
ikni 1for .

1

1 == ∑
=

 ...miaa
n

n

k
iiki 1for ,)(1

1
 =−= ∑

=
σ

1,..mfor ,
1

1 == ∑

=
jaa

n

k
jknj

T U T O R I A L F O R M A T R I X . X L A

 80

Note. Correlation matrix has always diagonal =1
See also the matrix covariance function MatCovar

Example - find the covariance and the correlation matrix for the following data table:

x1 7 4 6 8 8 7 5 9 7 8
x2 4 1 3 6 5 2 3 5 4 2
x3 3 8 5 1 7 9 3 8 5 2

There are three variables x1, x2, x3 and 10 data observations. The matrix will be 3 x 3.
In the first columns A, B, C we have arranged the row data (orientation is not important).
In the last row we have calculate the statistics: average ix and standard deviation xiσ for each column.

In the column D, E, F we have calculated the normalized data; that is the data with average = 0 and
standard dev. = 1.

We have calculated each column ui with the following simple formulas:

At the right we have calculated the covariance matrices for both row and normalized data: They are
always symmetric.
At the right-bottom side we have calculated the correlation matrix for the row data; we note that the
correlation matrix of row data and the covariance matrix of normalized data are identical. That is:

 Covariance(Normalized data) ≡ Correlation(Row data)

The function MatCorr() is useful to get the correlation matrix without performing the normalization process
of the given data.

Correlation is a very powerful technique to detect hidden relations between numeric variables

Example - In an experimental test it was measured the oxygen respired by 10 persons. Of each of them it
was taken his age and his weight. We want to discover if the respired oxygen depends by age or by
weight or by both. The test data are in the following table

Age 44 38 40 44 44 42 47 43 38 45
Weight 85.84 89.02 75.98 81.42 73.03 68.15 77.45 81.19 81.87 87.66
Oxygen 120.94 129.47 116.55 122.92 118.57 114.73 125.37 119.20 127.10 127.52

xi

iij
ij

xx
u

σ
−

=

T U T O R I A L F O R M A T R I X . X L A

 81

Function REGRL(Y, X, [ZeroIntcpt])
Computes the multivariate linear regression with the SVD method.
Parameter Y is the (n x 1) vector of the dependent variable.
Parameter X is a list of independent variable. It may be a (n x 1) vector for monovariable regression or a
(n x m) matrix for multivariate regression.
Parameter ZeroIntcpt, if present, forces the Y intercept to zero: Y(0)= 0
The function returns the (m+1) coefficients of the linear regression. For monovariate regression, it returns
two coefficients [a0, a1]; the first one is the intercept of Y-axis, the second one is the slope.

Example - find the linear best fit for the following data table

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14
y 5.12 6.61 8.55 10.07 11.35 12.47 13.48 14.41 15.27 16.07 16.82 17.54 18.22 18.86

The linear model for one independent variable is: y = a0 + a1 x

The coefficient r2, between 0 and 1, measures how good is the fit (0 bad - 1 perfect)
In Matrix.xla there is not a specific function for that, but it can be easily computed by the standard statistic
functions and using the formula

()
())var(

)ˆvar(ˆˆ
2

2
2

y
y

yy
yy

r =
−

−
=

∑
∑

In the correlation matrix we
discover a relative high level of
correlation for
 a23 = a32 = 0.78 (the max is 1)

This means that between
variable 2 and 3 there is a tight
relation.
On the contrary, we note a
weak dependence between
variable 1 and 3

T U T O R I A L F O R M A T R I X . X L A

 82

Function REGRP(Degree, Y, X, [ZeroIntcpt])
Computes the polynomial regression f(x) of a dataset of points [xi, yi].
Parameter Degree set the degree of the polynomial.
Parameter Y is a (n x 1) vector of the dependent variable.
Parameter X is a (n x1) vector of the independent variable.
Parameter ZeroIntcpt, if present, forces the intercept to zero: f(0)= 0
The function returns the coefficients of the polynomial regression [a0, a1, a2, ...am].
where m is the degree of the regression model

m
mxaxaxaaxf ...)(2

210 +++=

Example: Given a table of (x, y) points, find the 6th degree polynomial approximating the given data

Function Interpolate(x, Knots, [Degree], [Points])
It returns the polynomial interpolation of a set of data points [xi, f(xi)].
Parameter x is the point to interpolate. It can be also a vector of interpolation points.
Parameter knots is a matrix (n x 2) of data point [xi, f(xi)].
Parameter degree, set the degree of interpolation polynomial (default degree = 2)
Parameter points, set the number of points subset for the polynomial regression. If omitted, the function
assumes: points = degree +1

This function uses the piecewise interpolation method. Interpolation is exact if the number of points is
equal to degree +1. Interpolation is approximated with the Least Squares if the number of points is
greater then degree +1

The function returns interpolation value y at x point. If x is a vector, the function returns a vector. In this
case you must insert the function with CTRL+SHIFT+ENTER sequence

Example. Perform the sub tabulation with step = 0.1 of a given table with 7 knots, using the parabolic
interpolation (polynomial degree = 2)

T U T O R I A L F O R M A T R I X . X L A

 83

This function can be used also for “data smoothing”. This problem is common when the points are derived
from experimental measurements. See chapter “Interpolate” of Vol. 1.

Function MatCmp(Coeff)
Returns the companion matrix of a monic polynomial, defined as:

Parameter Coeff is the complete coefficients vector. If an ≠ 1, the coefficients are normalized before
generating the companion matrix
Example:

T U T O R I A L F O R M A T R I X . X L A

 84

Function MatCplx([Ar], [Ai], [Cformat])

Converts 2 real matrices into a complex matrix
Ar is the (n x m) real part and Ai is the (n x m) imaginary part
The real or imaginary part can be omitted. The function assumes the zero-matrix for the missing part.
Example

A pure real matrix can be written into

MatCplx(Ar) = [] []0jAr +
A pure imaginary matrix can be written as

MatCplx(, Ai) = [] []iAj+0 (remember the comma before the 2nd argument)

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex format of input/output (default = 1)

Use CTRL+SHIFT+ENTER to insert this function

This function is useful for passing a real matrix to a complex matrix function, such as, for example the
M_MULT_C. If we have to multiply a real matrix for a complex vector, we can use the M_MULT_C
function; but, because this function accepts complex matrices, we have to convert the matrix A into a
complex one (with a null imaginary part) by the MatCplx function and then pass the result to the
M_MULT_C. In other words we have simply to nest the two functions like that

Function Poly_Roots_QR(Coefficients)
This function returns all roots of a given polynomial
Parameter Coefficients is a (n+1 x 1) vector, where n is the degree of the polynomial
This function uses the QR algorithm. The process consists of finding the eigenvalues of a companion
matrix with the given polynomial coefficients.
This process is very fast, robust and stable but may not be converging under certain conditions. If the
function cannot find a root it returns “?”. Usually it suitable to solve polynomial up to 10th degree with a
good accuracy (1E-9 – 1E-12)

Example: Find all roots of the following polynomial of 8 degree

P(x) = 240 − 68x −190x2 − 76x3 + 79x4 + 28x5 −10x6 − 4x7 + x8

T U T O R I A L F O R M A T R I X . X L A

 85

As we can see the polynomial has four real and four complex conjugate roots

Function Poly_Roots_QRC(Coefficients)
This function returns all roots of a given complex polynomial
Parameter Coefficients is a (n+1 x 2) array, where n is the degree of the polynomial
If the function cannot find a root it returns “?”. Usually this function is suitable to solve polynomial up to 10
degree
This function uses the QR algorithm. The process consists of applying iteratively the QR decomposition to
the complex companion matrix.

Example. Find all the roots of the following polynomial

jzjzjzjzzP 248)222()79()25()(234 +++−+++−=

Function MatRot(n, teta, p, q)
Returns the orthogonal matrix (n x n) that performs the planar rotation over the plane defined by axis p
and q
Parameter teta sets the angle of rotation in radiant
Parameter p and q are the columns of the rotation and must be: p <> q and p ≤ n and p ≤ n

Example: In the 3D space, the canonical rotation matrices are

T U T O R I A L F O R M A T R I X . X L A

 86

3q, 2p 3q , 1p 2q 1,p ======

−

 −

 −

10
0

001
 ,

0
010

0
 ,

100
0
0

s
sc

cs

sc
cs
sc

Where:

)(sin ,)cos(θθ == sc

Note that all rotation matrices have determinant = 1

Example. Given two vectors in R2 (v1, v2) , found the same vectors after a rotation of 30° deg

The transformation formula is:

⋅

 −
=

1221

1211

1221

1211

)cos()sin(
)sin()cos(

vv
vv

ww
ww

θθ
θθ

That can be arranged in the following way:

Conditioned Number
This number is conventionally used to indicate how a matrix is ill-conditioned
Formally the conditioned number of a matrix is defined by the SVD decomposition as the ratio of the
largest (in magnitude) element to the smallest element of diagonal matrix
Given the SVD decomposition:

TUDVA = where:],...,,[332211 nndddddiagD =

The conditioned number is

A matrix is ill-conditioned if its conditioned number is very large. For a 32bit double precision arithmetic
this number is about 1E12. In this package there is not a specific function that returns this number, but it
can be easily calculate by the D matrix returned by the function SVD_D

min

max

||
||

jj

ii

d
dc =

-2

-1

0

1

2

-2 -1 0 1 2

T U T O R I A L F O R M A T R I X . X L A

 87

Function VarimaxRot(FL, [Normal], [MaxErr], [MaxIter])
This function computes the orthogonal rotation for a Factors Loading matrix using the Kaiser's Varimax
method for 2D and 3D factors
Parameter FL is the Factor Loading matrix to rotate (n x m). The number of factor m, at this release, must
be only 2 or 3.
Optional parameter Normal = True/False chooses the "Varimax normalized criterion". That is, indicates if
the matrix of loading is to be row normalized before rotation (default = False)
Optional parameter MaxErr set sets the accuracy required (default = 10^-4). The algorithm stops when
the absolute difference of two consecutive Varimax values is less of MaxErr
Optional parameter MaxIter sets the maximum number of iterations allowed (default=500)

Algorithm
The Varimax rotation procedure was first proposed by Kaiser (1958). Given a numberOfPoints ×
numberOfDimensions configuration A, the procedure tries to find an orthonormal rotation matrix T such
that the sum of variances of the columns of B*B is a maximum, where B = AT and * is the element wise
(Hadamard) product of matrices. A direct solution for the optimal T is not available, except for the case
when numberOfDimensions equals two. Kaiser suggested an iterative algorithm based on planar
rotations, i.e., alternate rotations of all pairs of columns of A.
For Varimax criterion definition see Varimax Index

This function is diffused, by now, in the almost principal (and expensive) statistics tools, because, on the
contrary, it is very rare in freeware software, we have added to our add-in.
Let's see how it works with one popular example

Example 2D- Initial Factors Matrix

 Factor 1 Factor 2

Services 0.879 -0.158

HouseValue 0.742 -0.578

Employment 0.714 0.679

School 0.713 -0.555

Population 0.625 0.766

Rotate Factors Matrix: method Varimax

As we can see the varimax index is incremented after the varimax rotation method. Each variable has
maximized or minimized its factors values

The goal of the method is to try to
maximize one factor for each
variable. This will make evident
which factor is dominant (more
important) for each variable.

T U T O R I A L F O R M A T R I X . X L A

 88

Function VarimaxIndex(Mat, [Normal])
Returns the Varimax value of a given Factor matrix Mat
Varimax is a popular criterion Kaiser (1958) to perform orthogonal rotation of Factors Loading matrices.
Usually, the rotation stops when Varimax is maximized
Optional parameter Normal = True/False indicates if the matrix is to be row normalized before computing

Formula
Varimax, for a matrix A with p row and k column (p x k) is defined as following (*):

2

1

2

1

14

1 1
)()(∑ ∑∑∑

= == =

−=

k

j

p

i
jip

k

j

p

i
ji aaV

Where:

=⇒

=⇒

=
truenormal

a
a

falsenormala
b

i

ji

ji

ji

Function MatNormalize(Mat, [NormType], [Tiny])
Returns the normalized vectors of a real (n x m) matrix.
The optional parameter Normtype indicate what normalization is performed
The optional parameter Tiny set the minimum error level (default 2E-14)

|| minv
vu i

i =

Normtype = 1. All vector’s components are scaled to the min of the
absolute values

|| v
vu i

i =

Normtype = 2 (default). All vectors are length = 1

|| maxv
vu i

i =

Normtype = 3. All vector’s components are scaled to the max of the
absolute values

Example - Normalize the following 3x3 matrix

Function MatNormalize_C(Mat, [NormType], [Cformat], [Tiny])
Returns the normalized vectors of a complex (n x m) matrix.
This function supports 3 different complex formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex format of input/output (default = 1)

Example - Normalize the following complex vector

T U T O R I A L F O R M A T R I X . X L A

 89

Function MatNorm(v, [NORM])
Return the norm of a matrix or vector
Parameter v can be a vector or a matrix; optional parameter Norm sets the specific norm to compute
(default 2 for vectors, and 0 for matrices)

The norm returned can be:

For vectors

Norm = 1 Absolute sum ∑=
i

ivv ||
1

Norm = 2 Euclidean norm ∑=
i

ivv 2
2

Norm = 3 (also infinite) Maximum absolute ()||max
3 ii vv =

For matrices

Norm = 0 Frobenius norm ∑∑=
i j

ijaA 2
0

)(

Norm = 1 Maximum absolute column sum

= ∑

i
ijj aA ||max

1

Norm = 2 Euclidean norm ()AAA Tρ=
2

Norm = 3 (also infinite) Maximum absolute row sum

= ∑

j
iji aA ||max

3

Note: the norm 2 for vectors and norm 0 for matrices give the same values of M_ABS function

Example: Find norm 0, 1, 2, 3 for the given 4x3 matrix

T U T O R I A L F O R M A T R I X . X L A

 90

Function M_MULT_C(M1, M2, [Cformat])
Performs the complex matrix multiplication.
If the dimension of the matrix M1 is (n x m) and M2 is (m x p) , then the product is a matrix (n x p)
This function now supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex format of input/output (default = 1)

M1 = A + j B M2 = C + j D

where A, B, C, D are real matrices

Example:

+−
−−−−⋅

−−
−−+−

−
=

1410
11

21

4210
1231
321

i
ii

i

i
ii

ii
C

The calculus can be also performed in
the handy string rectangular format. We
have only to set the Cformat parameter
to 3

Of course, this function can be used for
multiplying a matrix and a vector

Note that the
imaginary parts of
matrices must be
always inserted even
if they are all 0 (real
matrices).

T U T O R I A L F O R M A T R I X . X L A

 91

Function M_INV_C(A, [Cformat])
Complex matrix inversion
The complex matrix A must be square
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex format of input/output (default = 1)
Complex (split or interlaced) matrix must have always an even number of columns

Function ProdScal_C(v1, v2,)
Returns the scalar product of two complex vectors

() ()kimre
k

kimre ibbiaaba −⋅+=• ∑
rr

Note that the imaginary parts of vectors must be always inserted even if they are all 0 (real matrices).

In string format we can write complex numbers as string “a+ib”.
Look at the same example. Note the third optional parameter cformat = 3

T U T O R I A L F O R M A T R I X . X L A

 92

Function SYSLIN_C(A, b, [Cformat])
This function solves a complex linear system by the Gauss-Jordan algorithm.
Returns the vector solution of the given system
This function now supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex format of input/output (default = 1)
Remember that for a linear system:

bAx =
A is the system complex square matrix (n x n)
x is the unknown complex vector (n x 1)
b is the constant complex vector (n x 1)

As known, the above linear equation has only one solution if - and only if -, Det(A) <> 0

Example - solve the following complex 3x3 linear system

−=++−
−−=+−++−

+=+−+

ixxi
ixixix

ixixix

311 4)21(
11)1()23(

105 3)2(

32

321

321

We can also use directly the complex string format “a+bj”, Simply set the parameter cformat = 3

Function Simplex(Funct, Constrain, [Opt])
This function perform the linear optimization with the Simplex method
Funct is the array (1 x n) containing the coefficients of the linear function to optimize
Constrain is the array (m x n+2) containing the coefficients of m linear constrain and the type of
constrain (“<” , “>”, “=”)
Opt set the optimization type: 1 (default) for maximization, 0 for minimization.

A typical linear programming problem – also called linear optimization – is the following.

−
−−

+
=⋅

−−
−−+−

−

i
i
i

i
ii

ii

311
11

105

4210
1231
321

x

T U T O R I A L F O R M A T R I X . X L A

 93

Maximize the function z

nn xaxaxaz ...2211 ++=

With the following constrains:

0≥ix

and for j=1 to m

12211 ... cxbxbxb njnjj ≤++

This function accepts the constrains symbols: “<” , and also “>”, and “=”

This function returns:
If an optimal solution exists – that is: all constrains are satisfied and the function is maximized – then it
returns the solution vector and, in the last cell, the corresponding function value
If the constrains region is unbounded – that is, if the region is not closed - a finite solution cannot exist
and the function return “inf”. Typically it happens when the constrains are insufficient
If the constrains region is bounded, but the solution doesn’t exist, the function returns “?”. Typically it
happens when you add too many constrains

Note: The columns of Constrain must be n+2, where n is the columns of the function coefficients. If this
condition is not true, the function returns “??”. Typically it happens when you select region with wrong
dimensions.

Now lets see how it works.

Example: find the maximum of the function:

F(x,y)= 1.2 x + 1.4 y

With the following constrains:

40 x +25 y =< 1000
35 x + 25 y = < 980
25 x + 35 y =< 875

Note that it is indifferent to write “<” or “<=” for the constrain symbols
The solution is about:

x = 16.935 , y = 12.903 , f(x, y) = 38.387

This function accept also mixed constrain symbols
Let’s see this example

Maximize z = x1 + x2 + 3 x3 – 0.5 x4

T U T O R I A L F O R M A T R I X . X L A

 94

With all the x variables non-negative and also with:

x1 + 2 x3 <= 10
2 x2 - 7 x4 <= 0
x2 – x3 + 2 x4 >= 10
x1 + x2 + x3 +x4 = 9

Function RRMS(v1, [v2])
This function computes the root mean squares of the regression residuals.
The argument v1 and v2 are vectors (n x 1) or (1 x n)
If the second vector is omitted the function returns simply the root mean squares of the vector

()∑
=

−=
n

i
ii vv

n
rrms

1

2
21

1

()∑

=

=
n

i
iv

n
rms

1

2
1

1

This function can be used to return the average difference between two matrices

Example - Two different algorithms have given the following inverse matrices. Measure the average error.

T U T O R I A L F O R M A T R I X . X L A

 95

Function MatPerm(Permutations)
Returns the permutations matrix. It consists of sequence of n unitary vectors.
The parameter is a vector indicating the sequence.

For the 4x4 matrices space, we have

==

1000
0100
0010
0001

) , , , (4321 uuuuI

A permutations matrix is indicated by a sequence vector, like for example:

==

0010
0001
1000
0100

) , , , ()2 ,1 ,4 ,3(2143 uuuuP

Function Mat_Hessemberg(Mat)
Returns the Hessemberg form of a square matrix
As known a matrix is in Hessemberg form if all values under the lower sub-diagonal are zero.

...............

...00

...0

...

...

4443

343332

24232221

14131211

aa
aaa
aaaa
aaaa

T U T O R I A L F O R M A T R I X . X L A

 96

Function Mat_Adm(Branch)
Returns the Admittance Matrix of a Linear Passive Network Graph.

Branch is a list of 3 columns giving the basic information
of each branch:
 node+, node-, admittance .
The number of rows must be equal to the branches of
the graph

n-n+ y = a + bj

I

A complex admittance has a real part (conductance) and an imaginary part (susceptance). In this case
you have to provide a 4 columns list.

Nodal Analysis gives the following equation to solve the
linear passive network, where V is the vector of nodal
voltage, I is the vector of nodal current and [Y] is the
admittance matrix.
If N+1 is the number of nodes, then the matrix
dimension will be (N x N).
(usually the references nodes is set at V = 0)
V, I, [Y] are in general complexes

 [] IVY =⋅

−=

=
=

∑
≠
=

ijij

N

ik
k

ikii

Yy

Yy
Y 0][

The function returns an (N x 2*N) array. The first N columns contain the real part and the last N columns
contain the imaginary part. If all branch-admittances are real, also the matrix will be real and the function
return a square (N x N) array.

Linear Electric Network
Nodal Analysis is widely used for Electric Network. A passive linear network is composed by four basic
components: Resistor, Inductor, Capacitor and Current Source. In sinusoidal state, with constant
frequency, the admittance branch can be derived by the following formulas

Resistor Value R (ohm) Admittance y = 1/R

Capacitor Value C (farad) Admittance y = j ω C

Inductor Value L (henry) Admittance y = −j 1/(ω L)

Current source
 Value I (ampere) I = Ire + j Iim

Where : ω = 2 π f (rad / s)

Example. Compute the admittance matrix of the following linear passive electric network and find the
nodal voltage

0.1 j 0.2 j 0.1 j

−0.2 j0.1 0.25

 0.1

0.1

1.21

V1 V2 V3 V4

T U T O R I A L F O R M A T R I X . X L A

 97

The network has 8 branches, mixed real and complex, and 4 nodes (the ground is the references node
and is set to 0). So the network list has 8 rows and 4 columns. The independent currents generators are
indicated in another list. The linear complex system can be solved by the SYSLIN_C.

T U T O R I A L F O R M A T R I X . X L A

 98

Thermal Network
There are also other networks than electrical ones, that can be solved with the same method. The same
principles can be applied, for example to study one dimensional heat transfer.

One-Dimensional Conduction Heat Transfer.

The rate of conduction heat transfer through a material,
having thermal conductivity “k”, is proportional to the
temperature gradient across the material

() ()LHLH TTgTT

d
kQ −−=−⋅−=

TH

TL

d

Q

Thus, the network equations are the same of the electric network after replacing:

I (ampere) electric current ⇔ Q (cal/s) rate of conduction heat
V (volt) Voltage ⇔ T (° Kelvin) temperature
g (siemens) electric conductance ⇔ g (cal/m s °K) thermal conductance

Example: Find the temperature profile through a sandwich material of 3 layers

TH TL

T1 T2

d1
d1 d2 d3

QH QL

Layer d (cm) K (cal /cm s °C)
1 0.1 0.04
2 0.4 0.12
3 0.2 0.08

Where:

 TH = 400 ° C

 TL = 20 ° C

 QH = TH ⋅k1/d1 = 160 cal/s

 QL = TL ⋅k3/d3 = 8 cal/s

Internal temperature T1 and T2 are unknowns

The thermal networks equivalent to the above sandwich are shown in the following figures: the right one
is obtained after substituting the temperature sources with theirs equivalent heat sources

T1 T2 TLTH

g1 g12 g3

Where thermal conductance are:

g1 = k1/d1, g12 = k2/d2, g3 =k3/d3

A spreadsheet calculus can be arranged as the following

T1 T2

QH = TH·g1

g1

g12

g3
QL = TL·g3

T U T O R I A L F O R M A T R I X . X L A

 99

With the internal temperature T1 and T2 we can easily draw the thermal profile along the material

Temperature along sandw ich material

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

°C

cm

If [A] is the admittance
matrix, the vector of
temperature can be
solved with the
following formula

T = [A]−1 Q

T U T O R I A L F O R M A T R I X . X L A

 100

Function Mat_Leontief(ExTab, Tot)
Returns the Leontief inverse matrix of the Input-Output Analysis Theory.
Parameter ExTab is the interindustry exchange table (or IO-table). This table lists the value of the goods
produced by each economy sector and how much of that output is used by each sector.
Parameter Tot is the total production vector

Input Output Analysis
Recall theory definition. Input Output Analysis is an important branch of economics that uses linear
algebra to model interdependence of industries. Assuming EX the Exchange table

[]ijxEX =

The Technology matrix (or Consuption matrix) is

=

j

ij

X
x

A

where Xj is the total production of the j-th sector

The Leontief inverse matrix is .

1)(−−= AIL

If D is the Final Demand vector the production X is given by the following formula.

XLD ⋅=

Example. Giving the following Exchange table of Goods and Services in the U.S. for 1947 (in billions of
1947 dollars), find the Leontief matrix and calculate the production for a final demand of

Supply Purchasing

sectors
 total

sectors Agriculture Manufact. Services output
Agriculture 34.69 4.92 5.62 85.5
Manufact. 5.28 61.82 22.99 163
Services 10.45 25.95 42.03 219

.

Sectors demand
Agriculture 45
Manufact. 74
Services 130

As we can see, in order
to satisfy the demand of
agriculture = 45,
manufacturing = 74, and
Services = 130, the total
production should be
increased of 8.7% for the
agriculture, 0.3% for the
manufacturing and
decreased of -5.4% for
services

T U T O R I A L F O R M A T R I X . X L A

 101

Function JoinRow(R1, R2, [R3]...)
This function builds a matrix using separated rows
R1, R2, .up to R8..are (1 x m) array having the same dimension m. They can be also rectangular (n x m)
arrays having the same width.
The rows can be located in any part of the sheet

Function JoinCol(C1, C2, [C3]...)
This function builds a matrix using separated columns
C1, C2, .up to C8..are (n x 1) array having the same dimension n. They can be also rectangular (n x m)
arrays having the same height.
The columns can be located in any part of the sheet

The functions JoinRow and JoinCol can be nested each other for building matrices.

Here we have used the array formula

{=JoinRow(JoinCol(A2:C4,E2:E4),A7:D7)}

for building the (4 x 4) matrix

T U T O R I A L F O R M A T R I X . X L A

 102

Matrix Tool

The Matrix toolbar
This floating toolbar is useful for several tasks: selecting and pasting scraps of matrices; generating
different kind of matrices and several useful matrix operations. And, of course, it can be used also for
recalling the Matrix help-on-line. You can show It by clicking on the Matrix icon

 (Matrix.xla v.1.9)

 Topics available are:
• Selector tool select matrix pieces
• Generator tool generate random and special matrices
• Macros starter for macros stuff
• Help call the on-line manual

Selector tool.
It can be used for selecting several different matrix formats: diagonal, triangular, tridiagonal, adjoin, etc.
Simply select any cell into the matrix and choose the menu item that you want.

Chapter

3

T U T O R I A L F O R M A T R I X . X L A

 103

Automatically the “Selector tool” works on the max area bordered by empty cell that usually correspond to
the full matrix. If you want to restrict the area simply select the sub-matrix that you want before starting
the Selector macro

For example if you need to select the
lower sub diagonal; simply select the
sub-matrix containing the diagonal
[10,9,5,4,1].
Then choose the menu item:
Selector\diagonal 1st

If you start the macro without selecting any matrix
cell, the following pop-up window appears asking
you the top-left and the bottom-right corners of the
range that you want to select. By the combo box
you can choose the selection format that you like
The Paste button call the Paster tool

Scraps Paster tool.
The selection of matrix’s parts is obtained by a multi range selection. Excel cannot copy it. If you try to
give the usual sequence CTRL+C you will have an error.

For this task comes in handy this smart little
macro for pasting the range or multi-range that
you have previous selected.
After chosen the Paster item from the menu a
window pop-up appears. Simply indicate the
destination top-left corner and chose OK.
That’s all
The destination cells will be filled with the values
of the selected cells. No format will be copied.
Only plain values.

Of course this tool has other interesting options. Let’s see.

Fill unselecting cells with zero: check this if you fill all other cell of the matrix with zero. This is useful to
build a new matrix with a part of the original one.
Example: If you want to build a new lower triangular matrix with the element of another one, you can use
this simply option and the result will be similar to the following:

T U T O R I A L F O R M A T R I X . X L A

 104

Change the target range: Normally the range is copied as
is. But sometime we need to reformat the geometry of the
given range. This happens, for example when we want to
extract the diagonal elements from a given matrix and to
convert it in a vertical vector.
In this case, after you have selected the diagonal, check the
option vertical
The diagonal element will be... “verticalized”.

Some time we need the inverse of this transformation: from a
vertical vector, we have to build the diagonal matrix having
the vector elements on its diagonal.
For that select the vector that contains the elements. Start the
Scraps Paster tool and check the zero and diagonal option.
Giving OK, you will generate the matrix to the left

Or we can extract an adjoint sub-matrix.
For example, select the a33 element and
choose the menu Selector\adjoint. Than
activate the Paster. Indicate the top-left
corner and select the option “Adjoint”.
The macro will copy the selected
elements rebuilding a new 5x5 matrix

Flip. We can also invert the order of
rows or columns of the target matrix
For example, select the full matrix
(ctrl+shift+*) and run the “Paster tool”,
choosing the flip vertical option.

The matrix target can also be the same of the original one. In that case the changing will be done "on
place" of the same matrix. Of course the transformation has sense only if the source and target range
have the same dimensions: that is for square matrices. For example, assume you want transpose a
square matrix on the same site

Select the range B2:E5 and
then run the “Paster tool”,
choosing the B2 as target
corner and Transpose as
option.
The result will be the transpose
matrix in the same range

T U T O R I A L F O R M A T R I X . X L A

 105

Matrix Generator
This smart macro can generate different kind of matrices

Random

Generate random matrices with the following parameter:
dimension, max e min values, format: full, triangular, tridiagonal,
symmetric, decimals number.

Rank / Determinant

Generate random matrices with given rank or determinant

Eigenvalues

Generate random matrices having given eigenvalues

Hilbert

Generate Hilbert’s matrices

Hilbert inverse

Generate the inverse of Hilbert’s matrices

Tartaglia

Generate Tartaglia’s matrices

Toeplitz Generate Toeplitz’s matrices

Using this macro is quite simple: select the area that you want to fill with the matrix and then start the
macro by the Matrix.xla toolbar.

Random matrix with given format

Parameters:
Random numbers x are generated with the
following constrains:

Max value: upper limit of x
Min value: lower limit of x
Decimals: fix the decimals of x
Int checkbox: numbers x are integers

Sym checkbox: the matrix will be symmetric
Sparse: percentage (between 0 and 1) of non-
zero elements to the total elements. The number 1
(default) means full matrix

Starting from: top-left matrix corner

T U T O R I A L F O R M A T R I X . X L A

 106

Random matrix with given eigenvalues

Eigenvalues: vertical range containing the real
eigenvalues.

Random matrix with given determinant or rank

Generate a square matrix with given determinant
or rank

Dimension: matrix dimension
Rank: rank of the matrix. For default is set equal to
the dimension. If it is less than the dimension, the
determinant is automatically set to 0.
Starting from: top-left matrix corner
Determinant: sets the determinant of the random
matrix
Sym: generate a symmetric random matrix
Int: generate a random matrix with integer values

Tartaglia’s matrix
Generate the Tartaglia’s matrix with given dimension. See Function Mat_Tartaglia()

Hilbert’s matrix
Generate the Hilbert’s matrix with given dimension. See Function Mat_Hilbert()

T U T O R I A L F O R M A T R I X . X L A

 107

Macros stuff.
This menu contains several macros performing useful tasks.

Macro versus Function
In Matrix package there are worksheet functions that perform the same tasks of the macros. The reason
is that macros are more suitable for large matrices and heavy long computation.
On the other hand, functions are suitable for automatic recalculation, but we have to say that Excel
becomes very slow for large worksheet full of active functions.
You should see when it is convenient using macros or functions.

 Macros available are:

Matrix operations Real Matrix operation

Complex matrix operations Complex Matrix operation

Eigen-solving Eigenvalues / Eigenvector for real and complex matricies

Gauss-step-by-step Matrix reduction step by step with Gauss-Jordan algorithm

Shortest Path Shortest paths matrix of a distance matrix

Draw Graph Flow-Graph drawing of a distance matrix

Block reduction Matrix block reduction with permutation matrix

Clean-up Eliminate the tiny values

Round Round values

Macro Gauss-step-by-step

This macro performs all steps to reduce a given matrix into a triangular or diagonal form by the Gauss
and Gauss-Jordan algorithm.
This macro works like the function Gauss_Jordan_step except that it traces all multiplication coefficients
as well all the swap actions.

Using this macro is very easy. Select the matrix that you want to reduce and start the macro from the
menu: >macros > Gauss step by step

For example, if you want to invert the following 3x3 matrix, add the 3x3 identity matrix to its right

then, select the 3x6 range and start the macro

T U T O R I A L F O R M A T R I X . X L A

 108

The reduction type options make the
reduction to diagonal form (Gauss-Jordan) or
to triangular (Gauss)

The pivoting options force the algorithm to
search always the max pivot along the
column (partial pivoting) or, on the contrary,
only when the diagonal element is zero.

The first strategy is adopted for reducing the
round off error, while the second one, more
simple, is common in didactic applications

The process are traced below the original matrix.

Usually the coefficients for the linear combination
are shown to the right…

Of course the determinant changes.
In this example we see that the determinant of the
new matrix A1 is -3 times the one of the original
matrix A

…as well the exchange action

Of course also the determinant changes sign.

For further examples see the chapter Gauss-Jordan algorithm.

Macro Shortest-Path

This macro generates the shortest-path matrix from a given distance-matrix . It works like the function
Path_Floyd except that it accepts larger matrices (up to 255 x 255)

Using this macro is very easy. Select the matrix that you want to reduce and start the macro from the
menu: >macros > Shortest path

In the example below we see a 20 x 20 distance matrix

T U T O R I A L F O R M A T R I X . X L A

 109

For default, the output matrix begin from cell D5, just below the input matrix.

Macro Draw Graph

This useful stuff draws a simple graph from its adjacent matrix. (There is now equivalent function for this
macro). Using this macro is very easy. Select the matrix and start the macro from the menu:

 >macros > Graph > Draw

T U T O R I A L F O R M A T R I X . X L A

 110

Macro Block reduction

This macro transforms a square sparse matrix into a block-partitioned form using the score-algorithm.
This macro works like the functions Mat_Blok and Mat_BlokPerm except it is more adapt for large
matrices.
Using this macro is very easy. Select the matrix and start the macro at the menu:

 >macros > Block reduction

 111

References

[1] "LAPACK -- Linear Algebra PACKage" 3.0, Update: May 31, 2000

[2] "Numerical Analysis" F. Sheid, McGraw-Hill Book Company, New-York, 1968

[3] "Numerical Recipes in FORTRAN 77- The Art of Scientific Computing" - 1986-1992
by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical
Recipes Software

[4] "Nonlinear regression", Gordon K. Smyth, John Wiley & Sons, 2002, Vol. 3, pp 1405-
1411

[5] "Linear Algebra" vol 2 of Handbook for Automatic Computation, Wilkinson, Martin,
and Peterson, 1971

[6] “Linear Algebra” Jim Hefferon, Saint Michael’s College, Colchester (Vermont), July
2001.

[7] “Linear Algebra - Answers to Exercises” Jim Hefferon, Saint Michael’s College,
Colchester (Vermont), July 2001

[8] “Calcolo Numerico” Giovanni Gheri, Università degli Studi di Pisa, 2002

[9] “Introduction to the Singular Value Decomposition” by Todd Will, UW-La Crosse,
University of Wisconsin, 1999

[10] “Calcul matriciel et équation linéaires”, Jean Debord, Limoges Cedex, 2003

[11] “Leontief Input-Output Modelling” Addison-Wesley, Pearson Education

[12] “Computational Linear Algebra with Models”, Gareth Williams, (Boston: Allyn and
Bacon, 1978), pp. 123-127.

[13] “Scalar, Vectors & Matrices”, J. Walt Oler, Texas Teach University, 1980

[14] EISPACK Guide, “Matrix Eigensystem Routines”, Smith B. T. at al. 1976

 112

WHITE PAGE

 113

Analytical Index

A

adjacency; 72
adjacent matrix; 73; 74; 75
Admittance; 98

B

block; 36; 37

C

characteristic polynomial; 45
Cholesky; 66
coefficients; 83
companion; 83
complex; 20; 92; 93; 94
Conduction; 100
Consuption; 102
correlation; 79
covariance; 79
Crout; 67

D

Demand; 102
determinant; 20
diagonal; 27
dominant; 47; 48

E

eigenvalue; 32; 46; 47; 49
eigenvector; 32; 39; 48; 49
error; 30
Exchange table; 102

F

Factors Loading; 88
Floyd; 72
format; 20; 92; 93; 94

G

Gauss-Jordan; 56; 94
Gauss-Seidel; 59
Gram-Schmidt; 65; 71
graph; 36; 72
Graph; 98

H

heat; 100
homogeneous linear system; 61

I

identity; 30
Input Output Analysis; 102
Interpolate; 82

J

Jacobi; 32; 33; 34; 40; 60
JoinCol; 103
JoinRow; 103

K

Kaiser; 89

L

Leontief; 102
Lin-Bairstow; 46
Linear Function; 61
linear regression; 81
linear system; 94
Linear Transformation; 61; 63
LU decomposition; 67

M

M_ABS; 18
M_ABS_C; 18
M_ADD; 18
M_ADD_C; 18
M_BAB; 19
M_DET; 19
M_DET_C; 20
M_DET3; 20
M_DIAG; 27
M_DIAG_ERR; 30
M_EXP_ERR; 23
M_ID; 30
M_INV; 21
M_INV_C; 93
M_MULT_C; 92
M_POW; 22
M_PROD; 23

 114

M_PRODS; 24
M_PRODS_C; 25
M_RANK; 29
M_SUB; 27
M_SUB_C; 27
M_TRAC; 27
M_TRAC(); 47
M_TRIA_ERR; 30
Mat_Adm; 98
Mat_Block; 36
Mat_BlockPerm; 36
Mat_Cholesky; 66
Mat_Hessemberg; 98
Mat_Hilbert; 53
Mat_Hilbert_inv; 53
Mat_Householder; 53
Mat_Leontief; 102
Mat_LU; 67
Mat_Pseudoinv; 22
Mat_QR; 69
Mat_Tartaglia; 53
Mat_Vandermonde; 53
MatChar; 44
MatChar_C; 44
MatCharPoly; 45
MatCharPoly_C; 46
MatCmp; 83
MatCorr; 79
MatCovar; 79
MatCplx; 83
MatDiagExtr; 28
MatEigenSort_Jacobi; 41
MatEigenvalue_Jacobi; 32
MatEigenvalue_pow; 49
MatEigenvalue_QL; 41
MatEigenvalue_QR; 38
MatEigenvalue_QRC; 38
MatEigenvalue3U; 43
MatEigenvector; 39
MatEigenvector_C; 39
MatEigenvector_Jacobi; 40
MatEigenvector_pow; 49
MatEigenvector3; 43
MatEigenvectorInv; 50
MatEigenvectorInv_C; 50
MatExtract; 71
MatMopUp; 79
MatNorm; 90
MatNormalize; 89
MatNormalize_C; 89
MatOrtNorm; 71
MatPerm; 97
MatRnd; 53
MatRndEig; 53
MatRndEigSym; 53
MatRndRank; 53
MatRndSim; 53
MatRot; 85
MatRotation_Jacobi; 34
Moore-Penrose; 22

MT; 28
MTC; 28
MTH; 29

N

network; 99
Network; 99; 100
Newton-Girard; 45
Nodal Analysis; 99
Norm; 90
normalized; 89

O

optimization; 95
orthogonal; 19; 34; 69; 85; 88
orthogonalization; 71

P

partioned; 36
partitioned; 36
Path; 72
Path_Floyd; 72; 75
Path_Min; 72
permutation; 36
permutations; 97
Poly_Roots; 46
Poly_Roots_QR; 84
Poly_Roots_QRC; 85
polynomial; 46; 83
polynomial regression; 81
positive definite; 67
power; 22
power’s iterative method; 49
ProdScal; 30
ProdScal_C; 93
product; 23
production; 102
ProdVect; 31
pseudoinverse; 22

R

rank; 29
REGRL; 81
REGRP; 81
residuals; 97
root mean squares; 97
rotation; 34; 85; 88
round-off errors; 79
RRMS; 97

S

scalar product; 30
sensitivity; 51
shortest-path; 72
similarity; 19
Simplex; 95
Singular linear system; 61

 115

Singular Value Decomposition; 77
SVD; 77; 81; 86
SYSLIN; 7; 57
SYSLIN_C; 94
SYSLIN_ITER_G; 59
SYSLIN_ITER_J; 60
SYSLIN3; 58
SYSLINSING; 61

T

Technology; 102
temperature; 100
trace; 27
transpose; 28

TRASFLIN; 63
triangular; 36; 67; 69

U

unitary; 54; 97

V

Varimax; 88; 89
VarimaxIndex; 89
VarimaxRot; 88
VectAngle; 31
vector product; 31

 116

 2005, by Foxes Team
ITALY

leovlp@libero.it

5. Edition
5 Printing: June. 2005

