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About Matrix.xla 
About Matrix.xla 
MATRIX.XLA 
Matrix.xla is an Excel addin that contains useful functions for matrices and linear 
Algebra:  

Norm. Matrix multiplication. Similarity transformation. Determinant. Inverse. 
Power. Trace. Scalar Product. Vector Product.  

Eigenvalues and Eigenvectors of symmetric matrix with Jacobi algorithm. 
Jacobi's rotation matrix.  Eigenvalues with QR and QL algorithm. 
Characteristic polynomial. Polynomial roots with QR algorithm. Eigenvectors 
for real and complex matrices 

Generation of random matrix with given eigenvalues and random matrix with 
given Rank or Determinant. Generation of useful matrix: Hilbert's, 
Houseolder's, Tartaglia's. Vandermonde's 

Linear System. Linear System with iterative methods: Gauss-Seidel and 
Jacobi algorithms. Gauss Jordan algorithm step by step. Singular Linear 
System.  

Linear Transformation. Gram-Schmidt's Orthogonalization. Matrix 
factorizations: LU, QR, SVD and Cholesky decomposition.   

 
This tutorial is divided into two parts. The first part explains with practical examples how to solve 
several basic topics about matrix theory and linear algebra. The second part is the reference 
manual of Matrix.xla 

 

Why Matrix.xla has same functions that are also in Excel? 
Yes. Same functions like determinant, inversion, multiplication, transpose, etc. are both in Excel 
and in Matrix.xla. They perform the same tasks. And in many case they return the same values. 
But they are not exchangeable in every situations.  

The main difference is into the algorithms used; or in other words, in the way 
that the functions are implemented. In Matrix.xla the algorithms are open and 
people can verify how each function works. The function that performs matrix 
inversion in Excel and in Matrix.xla, for example, can give different results, 
especially in high accuracy calculation. The main difference is that Matrix.xla 

Inversion function uses the popular Gauss-Jordan algorithm -explained in many books and sites 
- while the Excel built-in functions are code-proprietary. In other few cases we have simply 
create new functions to avoid the original verbose names (MTRANSPOSE(), or 
MATR.TRASPOSTA () in Italian version, are substituted by the more handy MT() ) 

Chapter 

1 

Matrix.xla 
algorithms 
are open 
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Array functions 
What is an array function 
A function that returns multiple values is called "array function". Matrix.xla contains lots of these 
functions. All functions that return a matrix are array functions. Inversion, multiplication, sum, 
vector product, etc. are examples of array functions. On the contrary, Norm and Scalar product 
are scalar functions because they return only one value. 

In a worksheet, an array function returns always a rectangular (n x m) range of 
cells. To insert this function, select before the (n x m ) range where you want to 
insert the function, then, you must give the keys sequence 
CTRL+SHIFT+ENTER; The sequence must be given just after inserting the 
function parameters. Keep down both key CTRL and SHIFT (do not care the 
order) and then press ENTER.  

If you miss this sequence or give only the ENTER key, the function always returns the first cell of 
the array 

 

How to insert an array function 
The following example explains, step-by-step, how it works 

System solution 
Assume to have to solve a 3x3 linear system. The solution will be a vector of 3rd dimension. 

Ax = b 
Where: 

 

 

The function SYSLIN returns the solution 
x; but to see all the three values you must 
select before the area where you want to 
insert these values. 

 

Now insert the function by menu or by icon 

 as well   
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Select the area of matrix A "A5:C7" and the constant vector b "E5:E7" 

 

 
 

Now - attention! - give the "magic" keys sequence CTRL+SHIFT+ENTER  

That is: 

• Press and keep down the CTRL and SHIFT keys 

• Press the ENTER key 



T U T O R I A L  F O R  M A T R I X . X L A  

 9

 

All the values will fill all the cells that you have selected. 

 
 

Note that Excel shows the function around two braces { }. These symbols mean that the function 
return an array (you cannot insert them by yourself). 

 

An array function has several constrains. Any cell of the array, cannot be modified or deleted. To 
modify or delete an array function you must selected before all the array's cells. 

 

Adding two matrices 
The CTRL+SHIFT+ENTER rule is valid for any function or operation when the result is a matrix 
or a vector 

Example - Adding two matrices  

 

We can use the M_ADD() function of Matrix.xla but we can also use directly the addition 
operator "+".    

In order to perform this addition, follow these steps. 

1) Enter the matrices into the spreadsheet. 

2) Select empty cells so that a 2 × 2 range is highlighted.  

3) Write a formula that adds the two ranges. Either write =B4:C5+E4:F5 directly or write "=", 
then select the first matrix; after, write "+" and then select the second matrix. Do not press 
<Enter>. At this point the spreadsheet should look something like the figure below. Note 
that the entire range B8:C9 is selected.  









+







 −
10
01

12
21
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4) Press and hold down <CTRL> + <SHIFT>  

5) Press <ENTER>. 

If the procedure is followed correctly, the spreadsheet should now look something like this 

 

 
 

This trick can work also for matrix subtraction and for the scalar-matrix multiplication, but not for 
the matrix-matrix multiplication. 

Let's see this example that show how to calculate the linear combination of two vectors   

 

 
 

It's useful, isn't? 
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How to get help on line 
Matrix.xla provides help on line that can be recall in the same way of any other Excel function 
When you have selected the function that you need in the function wizard, press F1 key 
 

 
 

 
 
Of course you can call the help on-line also by double clicking on the Matrix.hlp file or from 
the starting pop-up window or from the “Matrix Tool” menu bar 
 
 

F1 

Note that all the 
functions of this addin 
appear under the 
same category 
“Matrix” in the Excel 
function wizard 
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 MATRIX installation 
MATRIX addin for Excel 2000/XP  is a zip file composed by two files: 

• MATRIX.XLA Excel addin file 
• MATRIX.HLP Help file 
• MATRIX.CSV Functions information(only for XNUMBERS addin) 
• FUNCUSTOMIZE.DLL1 Dynamic Library for addin setting 

 

 

How to install 
Unzip and place all the above files in a folder of your choice. The addin is contained entirely in 
this directory. Your system is not modified in any other way. If you want to uninstall this package, 
simply delete its folder - it's as simple as that! 

To install, follow the usual procedure for installing an Excel addin: 

1) Open Excel 

2) From the Excel menu toolbar select "Tools" and then select "Add-ins".. 

3) Once in the Addins Manager, browse for “Matrix.xla” and select it 

4) Click OK  

 

 
 

Nella versione italiana di Excel, "Addin Manager" si chiama "Componenti aggiuntivi" e si trova nel menu <Strumenti> < 
Modelli e aggiunte...> 

 

 

                                                      

1 FUNCUSTOMIZE.DLL appears by courtesy of Laurent Longre  (http://longre.free.fr) 
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After the first installation, matrix.xla will be add to the Addin' list manager 

 

When Excel starts, all addin checked in the 
Addin Manager will be automatically loaded  

If you want to stop the automatic loading of 
matrix.xla simply deselect the check box 
before closing Excel 

 

 

 

 

If all goes OK you should see the welcome popup of 
matrix.xla. This appears only when you select "on" the 
check box of the Addin Manager. When Excel 
automatically loads Matrix.xla, this popup remains hidden. 

 

The Matrix Icon   is added to the main menu bar. 
Clicking on it the Matrix Toolbar appears 

 

 
 

 

The Matrix category. All the functions contained in this addin will be visible by the Excel 
function wizard  under the Matrix category. 
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Update a new version 
When you update a new version you must replace the older files with the new version. 

Do not keep two different versions on your PC, and, overall, never load two different version 
because Excel would make mesh. 

 

How to uninstall 
This package never alter your system files 

If you want to uninstall this package, simply delete its folder. Once you have cancelled the 
Matrix.xla file, to remove the corresponding entry in the Addin Manager list, follow these steps: 

1) Open Excel 

2) Select <Addin...> from the <Tools> menu. 

3) Once in the Addin Manager, click on the Matrix.xla 

4) Excel will inform you that the addin is missing and ask you if you want to remove it from 
the list. Give "yes".  
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About complex matrix format 
 
Matrix.xla supports 3 different complex matrix formats: 1) split, 2) interlaced, 3) string 
 
  Split format   Interlaced format String format 

   
 
As we can see in the first format the complex matrix [Z] is split into two separate matrices: 
the first contains the real values and the second one the imaginary values. It is the default 
format 
 
In the second format, the complex values are written as two adjacent cells, so a single 
matrix element is fitted in two cells. The columns numbers are the same of the first format 
but the values are interlaced one real column is followed by an imaginary column and so 
on. 
This format is useful when the elements are returned by complex functions 
 
The last format is the well known “complex rectangular format”. Each element is written as 
a string a+ib; therefore the matrix is still squared. Apparently is the most compact and 
intuitive format but this is true only for integer values. For decimal values the matrix may 
become illegible. We have also to point out that these elements, being strings, cannot be 
formatted with the standard tool of Excel. 
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Functions Reference 

Functions Reference 
This chapter lists all functions of MATRIX.XLA addin. It is the printable 
version of the on-line help file MATRIX.HLP 

 
 
Gauss_Jordan_step 
Gram_Schmidt 
Interpolate 
JoinCol 
JoinRow 
M_ABS 
M_ABS_C 
M_ADD 
M_ADD_C 
M_BAB 
M_DET 
M_DET_C 
M_DET3 
M_DIAG 
M_DIAG_ERR 
M_EXP 
M_EXP_ERR 
M_ID 
M_INV 
M_INV_C 
M_MULT_C 
M_MULT_TPZ 
M_MULT3 
M_POW 
M_PROD 
M_PRODS 
M_PRODS_C 
M_RANK 
M_SUB 

M_SUB_C 
M_TPZ_ERR 
M_TRAC 
M_TRIA_ERR 
Mat_Adm 
Mat_Blok 
Mat_BlokPerm 
Mat_Cholesky 
Mat_Hessemberg 
Mat_Hilbert 
Mat_Hilbert_inv 
Mat_Householder 
Mat_Leontief 
Mat_LU 
Mat_Pseudoinv 
Mat_QR 
Mat_QR_iter 
Mat_Tartaglia 
Mat_Vandermonde 
MatChar 
MatChar_C 
MatCharPoly 
MatCharPoly_C 
MatCmp 
MatCorr 
MatCovar 
MatCplx 
MatDiagExtr 
MatEigenvalue_Jacobi 

MatEigenvalue_max 
MatEigenvalue_pow 
MatEigenvalue_QL 
MatEigenvalue_QR 
MatEigenvalue_QRC 
MatEigenvalue3U 
MatEigenvector 
MatEigenvector_C 
MatEigenvector_Jacobi 
MatEigenvector_max 
MatEigenvector_pow 
MatEigenvector3 
MatEigenvectorInv 
MatEigenvectorInv_C 
MatExtract 
MatMopUp 
MatNorm 
MatNormalize 
MatOrtNorm 
MatPerm 
MatRnd 
MatRndEig 
MatRndEigSym 
MatRndRank 
MatRndSim 
MatRot 
MatRotation_Jacobi 
MT 
MTC 

MTH 
Path_Floyd 
Path_Min 
Poly_Roots 
Poly_Roots_QR 
Poly_Roots_QRC 
ProdScal 
ProdScal_C 
ProdVect 
REGRL 
REGRP 
RRMS 
Simplex 
SVD_D 
SVD_U 
SVD_V 
SYSLIN 
SYSLIN_C 
SYSLIN_ITER_G 
SYSLIN_ITER_J 
SYSLIN_T 
SYSLIN_TPZ 
SYSLIN3 
SYSLINSING 
TRASFLIN 
VarimaxIndex 
VarimaxRot 
VectAngle 

 
 

Chapter 

2 
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Function M_ABS(V) 
Returns the absolute value ||V|| (Euclidean Norm) of a vector V 
 

∑= 2
ivV

 
 
The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix 
 

∑= 2
ijF

aA
 

 
 

Function M_ABS_C(V, [Cformat]) 
Returns the absolute value ||V|| (Euclidean Norm) of a complex vector V 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix 
The optional parameter Cformat sets the complex input format(default = 1) 
 

 
 
See About complex matrix format 
 
 

Function M_ADD(A, B) 
Returns the sum of two matrices 
 

 
For definition: 

  
 
Example of sum of (2 x 2) matrices 
 

 
 
Note: EXCEL has a simply way to performs the addiction of two arrays. For details see How to insert an 
array function...  
 
 

Function M_ADD_C(A, B, [Cformat]) 
Returns the sum of two complex matrices 
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This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
 

 
 
 

Function M_BAB(A, B) 
Returns the product: 
 

BABC   1−=  
 
This operation is also called "similarity transform" of matrix A by matrix B 
Similarity transform plays a crucial role in the computation of eigenvalues, because they leave the 
eigenvalues of matrix A unchanged. 
 
For real symmetric matrices, B is orthogonal. The similarity transformation is the also called "orthogonal 
transform"  
 
 

 
 
 

Function M_DET(Mat, Mat, [IMode], [Tiny]) 
Returns the determinant of a square (n x n) matrix.  
IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false. 
Integer computation is intrinsically more accurate but also more limited because it may easily reaches the 
overflow error. Use IMODE  only with integer matrices of moderate size. 
Tiny (default is 0) sets the minimum round-off error; any value in absolute less than Tiny will be set to 
zero. 
 

For a n = 1  

    [ ] 1111det aa =  

For a n= 2  

   
12212211

2221

1211det aaaa
aa
aa

−=








 
For a n= 3 

              

122133233211132231322113122331332211

333231

232221

131211

det aaaaaaaaaaaaaaaaaa
aaa
aaa
aaa

−−−++=
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Well, clearly the computation of the determinant is one of the most tedious of all Math. Fortunately that we 
have the Numeric Calculus...! 
 
Example - The following matrix is singular but only the integer computation can give the exact answer 
 

 
 
 
 

Function M_DET_C (Mat, [Cformat]) 
This function computes the determinant of a complex matrix. 
The argument Mat is an array (n x n ) or (n x 2n) , depending of the format parameter  
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex format of input/output (default = 1) 
A complex (split or interlaced) matrix must have always an even number of columns 
 
The example shows how to compute a determinant for a complex matrix written in three different formats. 
 

 
 

The first complex matrix is in the split 
format (default): real and imaginary 
values are in two separated matrices.
 
The second example shows the 
same matrix in interlaced format: 
imaginary values are adjacent to real 
parts. 
 
The last example shows the 
rectangular string format 
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Function M_DET3(Mat3) 
This function computes the determinant of a tridiagonal matrix. 
The argument Mat3 is an (n x 3 )  array representing the (n x n ) matrix  
 
A triangular matrix is: 
 























55

444

333

222

11

000
00

00
00
000

ba
cba

cba
cba

cb

 
 
In order to save space we can handle 
only the 3 diagonal vectors 
 
Example: to find the determinant of a 
20x20 tridiagonal matrix we pass to 
the function only 52 values (the first 
cell of a and the last of c are always 
0) instead of 400 values. 

 
 
 

Function M_INV(Mat, [IMode], [Tiny]) 
Returns the matrix inverse of a given square matrix 

       
1−= AB  

IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false. 
Integer computation is intrinsically more accurate but also more limited because it may easily reaches the 
overflow error. Use IMODE  only with integer matrices of moderate size. 
Tiny (default is 0) sets the minimum round-off error; any value in absolute less than Tiny will be set to 
zero. 
If the matrix is singular the function returns "singular". 
If the matrix is not squared the function returns "?" 
 
Example: the following matrix is singular but only the M_INV function with integer computation can give 
the right answer 
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Function Mat_Pseudoinv (A) 
Computes the Moore-Penrose pseudoinverse of a (n x m) matrix  
Def: the minimum-norm least squares solution x to a linear system  

      
bAxbAx

x
−⇒= min         

 
 
is the vector   
 

    ( ) bAAAAx TT +−
==

1

 
 
The matrix  +A   is called the pseudoinverse of A 
If the matrix A has dimension (n x m), its pseudoinverse has dimension (m x n)  
One of the most important application of the SVD decomposition is  
 

    
TVDUA ⋅⋅=  

 

    
TUDVA 1−+ ⋅=  

 
 

 
 
Note the psudoinverse coincides with the inverse for non-singular square matrices.  
 
 
 

Function M_POW(Mat, n) 
Returns the integer power of a given square matrix 
 

48476  time

...
n

n AAAAAB ⋅⋅==  
 
 
 

Function M_EXP(A, [Algo], [n]) 
This function approximates the exponential series expansion of a given square matrix [A] 

[ ] ∑
∞

=
+=

1
!

1

n

n
n

A AIe
 

 
This function uses two alternative algorithm to approximates the infinite summation: the first one uses the 
popular power's series 
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errAAAAInAEXP n
n +++++= !
13

6
12

2
1 ...),(  

 
For n sufficiently larger, the error becomes negligible and the sum approximates the matrix exponential 
function. The parameter n fixes the max term of the series. If omitted the expansion continue until the 
convergence is reached; this means that the norm of the nth matrix term becomes less than Err = 1e−15.  

ErrAn
n <!
1

 
 
Take care using this function without n; especially for larger matrix, the evaluation time can be very long. 
 
The second method, more efficient, uses the Padè approximation2. It is recommendable especially for 
larger matrices.  
You can switch the algorithm by the optional parameter Algo. If "P" (default) the function uses the Padè 
approximation; else it uses the power's series 
 
 
 

Function M_EXP_ERR(A, n) 
This function returns the truncation n-th matrix term of the series expansion of a square matrix [A].  It is 
useful to estimate the truncation error of the series approximation 
 

n
n AnAEXP !
1),( =

 
 
See also Function M_EXP(A, [n]) for matrix exponential series 
 
 
 

Function M_PROD(A, B, ...) 
Returns the product of two or more matrices 
 

BAC ⋅=  
 
As know the product is defined: 

 
 
Where j   is summed over for all possible value for  i  and  k  
 
Dimension rule: If A is (n x m) and B is (m x p) , then the product is a matrix (n x p) 

 
 
Note: If A and B are square (n x n) matrices, also the product is a square (n x n) matrix. 
 
Writing out the product explicitly 
 

 
 

                                                      
2 This routine was developed by Gregory Klein, who kindly consented to add it to this package 
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Where: 

 
 
Matrix multiplication is associative. Thus: 

 
But, generally, is not commutative: 

 
M_PROD() can perform the product of several matrices also with different dimensions. 
 

...21 ⋅⋅== ∏ AAAY j j  
 

 
 
 
NB: If you multiply matrices with different dimension pay attention to the dimension rules above. This 
function does not check it. The function will return #VALUE if this rule is violate.  
 
 
 

Function M_PRODS(Mat, k) 
Returns a matrix multiplied for a scalar 
For example: 









⋅⋅
⋅⋅

=








2221

1211

2221

1211

akak
akak

aa
aa

k
 

 
It can be nested in other function. For example, if the range A1:B2 contains the matrix 2x2  [1 , 2, / -3 , 8 ] 

M_DET(M_PRODS(A1:B2; 3)) returns the determinant 126 of the matrix [3 , 6, / -9 , 24 ] 

( ) ( ) CBACBA ⋅⋅=⋅⋅

ABBA ⋅≠⋅
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Note: EXCEL has a simply way to performs the multiplication of an array by a scalar. For details see How 
to insert an array function...  
 
 

Function M_PRODS_C(Mat, scalar, [Cformat]) 
Performs the complex matrix multiplication for a scalar. 









⋅⋅
⋅⋅
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2221

1211

2221

1211

akak
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aa
aa

k
 

The parameter Mat is a (n x m) complex matrix or vector  
The parameter scalar can be complex or real number, in split or string format. 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex format of input/output (default = 1) 
 
See About complex matrix format 
 
Example. Performs the following complex multiplication 
 

( )
















−−
+−+−

−+
−=

jjj
jj

jj
jC

1049
1455417
30554

2

 
 
We can use either the split or string format 
 

  
 
This function multiplies also a complex vector for a complex number 
 

 
 
and a real vector for a complex number 
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Function M_MULT3(Mat3, Mat) 
This function performs the multiplication of a 3-diagonal matrix and a vector or a rectangular matrix 
Mat3 is a (n x 3) array  
Mat can be a vector (n x 1) or even a rectangular matrix (n x m) 
Result is a vector (n x 1) or a matrix (n x m) 
This function is useful when you have to multiply a tridiagonal matrix larger than 256 x 256 for a vector 
because Excel cannot manage matrices larger than 256 columns.  
 
Example 
The diagonal and sub-diagonals are passed to the function as vertical vectors 
 

 

 
 

=⋅ xA  
 



























⋅
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32

221

11

...
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..................
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x
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ba
cb

ba
cba

cb

 

 
Note how compact and efficient this input is. This is true overall for larger matrices  
 
 

Function M_SUB(A1, A2) 
Returns the different of two matrices 
 

21 AAC −=  
 
Excel can also perform matrix subtraction in a very efficient way by the array-arithmetic.  
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Function M_SUB_C(A1, A2, [Cformat]) 
Returns the different of two complex matrices 
 

21 AAC −=  
 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex format of input/output (default = 1) 
 

 
 
 
 

Function M_TRAC(Mat) 
Returns the trace of a square matrix, thus the sum of all elements of the first diagonal 

∑= iiaAtrace )(  
 

 
 
 
 

Function M_DIAG(Diag) 
Returns the diagonal matrix having the vector "Diag" as the diagonal 
 
Example:  
 

 
 
 
 

Function MatDiagExtr(Mat, [Diag]) 
This function extracts the diagonals of a matrix3 
The optional parameter Diag sets the diagonal to extract.  
                                                      
3 (Thanks to an idea of  Giacomo Bruzzo) 
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Diag = 1 (default) extracts the first diagonal; Diag = 2 extracts the secondary one.  
 

 
 
 
 

Function MT(Mat) 
Returns the transpose of a give matrix, thus the matrix with rows and columns exchanged  
 

 
 
This function is identical to TRANSPOSE() Excel built-in function 
 
 
 

Function MTC(Mat, [Cformat]) 
Returns the transpose of a complex matrix, thus the matrix with rows and columns exchanged  
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This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
Use CTRL+SHIFT+ENTER to insert this function 
 
Example. Transpose the following (3 x 2) complex matrix 
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Function MTH(Mat, [Cformat]) 
Returns the transpose-conjugate of a complex matrix 
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This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
 

 
 
 
 

Function M_RANK(A) 
Returns the rank of a given matrix4 
It computes the sub-space of  Ax = 0, using the SYSLINSING function: then counts null column-vectors of 
sub-space. 
 
Examples: 
 
 
 
 
 
 
 
 
 
 
 
When Det = 0 the Rank is always less then the max dimension n 
Differently from the determinant, rank can be computed also for rectangular matrices. 
In that case, the rank can’t exceed the minimum dimension; that is, for a 3x4 matrix the maximum rank is 
3. 
 
 

Function M_DIAG_ERR(A) 
Returns the "diagonalization" error of a given square matrix 
This function computes and returns the mean of the absolute values out of the first diagonal 
It is useful to measure the "distance" from the diagonal form of a square matrix 
 

                                                      
4 (Thanks to the original routine developed by Bernard Wagner.) 
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Function M_TRIA_ERR(A) 
Returns the "triangularization" error of a given square triangular matrix 
This function computes and returns the minimum of the mean of the absolute values of the upper and 
lower element out of the first diagonal 
It is useful to measure the "distance" from the triangular form of a square matrix 
 









−

= ∑∑
<> ji

ij
ji

ijtria aa
nn

err  ||  ,  ||min2
2

 
 
Example: A triangularization algorithm has computed the following matrices. What is the average error? 
 

 
 
 
 

Function M_ID(n) 
Returns the identity square matrix. 
This function is useful in nested expression  
 
Example: Compute the matrix  A − λ I  for the parameter λ = 1 
 

 

Note that we have used the power array 
arithmetic of Excel 
 
But we could use the following nested 
expression: 
{=M_ADD(A10:C12,D10*M_ID(3))} 

 
 
 

∑
≠−

=
ji
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n)(n

||1error diag 2
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Function ProdScal(v1, v2) 
Returns the scalar product of two vectors 
 

ii vvVV ,2,121 ⋅=• ∑  
 
Note that if V1 and V2 are the same vectors, this function returns the square of its module. 
 

22 vvvvVV iii ==⋅=• ∑∑  
 
Note that if V1 and V2 are perpendicular, the scalar product is zero. In fact another definition of scalar 
product is: 
 

)cos( 122121 α⋅⋅=• VVVV
 

 

 

Vectors can be in vertical or 
horizontal format as well. 
 

 
 

Function ProdVect(v1, v2) 
Returns the vector product of two vectors 
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Note that if V1 and V2 are parallels, the vector product is the null vector. 
 

 
 
 

Function VectAngle(v1, v2) 
Computes the angle between the two vectors V1, V2 . 
The angle is defined as: 
 

Vectors can be in 
vertical or horizontal 
form as well. 
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Function MatEigenvalue_Jacobi(Mat, Optional MaxLoops) 
This function performs the Jacobi's sequence of orthogonal similarity transformation and returns the last 
matrix of the sequence. It works only for symmetric matrices. 
The optional parameter MaxLoops (default=100) sets the max steps of the sequence. 
The Jacobi's algorithm can be used to find both eigenvalues and eigenvectors of symmetric matrices 
 

n
TTT

nnn
T

nn

TTT

T

PPPAPPPPAPA

PPAPPPAPA

PAPA

... ...

 

21121

21122122

111

=⋅⋅=

=⋅⋅=

⋅⋅=

−  
 
For n sufficiently large, the sequence {Ai} converge to a diagonal matrix, thus  
 

[ ]λ=
∞→ nn

Alim
 

 
While the matrix 
 

PPPPPU nnn 231....−=  
 
Converges to the eigenvectors of A. 
 
All these matrices A, U, P can be obtained by the functions: 
MatEigenvalue_Jacobi 
MatEigenvector_Jacobi  
MatRotation_Jacobi  
 
 
Example: Solve the eigenvalues problem of the following symmetric matrix 
















=
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T U T O R I A L  F O R  M A T R I X . X L A  

 33

 
 
As we can see, the Jacobi's method has found all Eigenvalues and Eigenvectors with few iterations (10 
loops) 
The function MatEigenvalue_Jacobi() returns in range A7:C9 the diagonal matrix of the eigenvalues. 
Note that elements out of the first diagonal have an error less than 10^-16. 
At the right side - in the range D7:F9 - the function MatEigenvector_Jacobi() returns the orthogonal matrix 
of the eigenvectors. 
Compare with the exact solution 
















−−
−
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=
















=

3/23/23/1
3/13/23/2
3/23/13/2

   ,   
900
060
003

  ,   
720
262
025

UA λ

 
 
Note that you can test the approximate results by the similarity transformation 

UAU ⋅= −1λ  
 
You can use the standard matrix inversion and multiplication functions or the M_BAB() function also in 
this package, as you like. Note that - only in this case - the inversion of matrix is very simple, because: 

TUU =−1
 

 
 
Eigenvalues problem with Jacobi step by step 
Suppose you want to study about each step of the Jacobi's method. The functions 
MatEigenvalue_Jacobi(), MatEigenvector_Jacobi() and MatRotation_Jacobi() are useful if you set 
the parameter MaxLoop=1. In this case, they return the first step of Jacobi's iteration. Here how they 
work.  
 
A1 = MatEigenvector_Jacobi(A) 
A2 = MatEigenvector_Jacobi(A1) 
A3 = MatEigenvector_Jacobi(A2) 
...... 
A10 = MatEigenvector_Jacobi(A9) 
 
Each matrix is one step of Jacobi's Iterative method 
 
















=

720
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025

A
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To obtain quickly the above iterations follow these simple rules: 
At the first time, insert in range A7:C9 the function MatEigenvalue_Jacobi(A3:A7). 
Give the "magic" key sequence CTRL+SHIFT+ENTER to paste an array function 
Leave the range A7:C9 selected and copy it (CTRL+C) 
Select the following range A11 and paste it (CTRL+V) 
Copy it (CTRL+C) 
Select the following range A15 and paste it (CTRL+V) 
And so on. 
By the sequence -copying and pasting- you can perform all Jacobi's iterations, as you like. 
In the middle, we see the Jacobi's rotation matrices sequence. We can easily obtain it by the function 
MatRotation_Jacobi() in the same way as eigenvalues matrix 
 
P1 = MatRotation_Jacobi(A) 
P2 = MatRotation_Jacobi(A1) 
P3 = MatRotation_Jacobi(A2) 
Etc. 
 
This function search for the max absolute values out of the first diagonal and generates an orthogonal 
matrix in order to reduce it to zero by similarity transformation 

111 PAPA T ⋅= . 
 
Finally, at the right, we see the iterations of eigenvectors matrix. It can be derived from the rotation matrix 
by the following iterative formula: 

   1

11

−⋅=
=

nnn UPU
PU

 
 



T U T O R I A L  F O R  M A T R I X . X L A  

 35

 

Function MatRotation_Jacobi(Mat) 
This function returns the Jacobi's orthogonal rotation matrix of a given symmetric matrix.  
This function searches for the max absolute values out of the first diagonal and generates an orthogonal 
matrix in order to reduce it to zero by similarity transformation 

111 PAPA T ⋅= . Where: P1 = MatRotation_Jacobi(A) 
 
For further details see Function MatEigenvalue_Jacobi(Mat, Optional MaxLoops)  
 
Example - find the rotation matrix that makes zero the highest non-diagonal element of the following 
symmetric matrix. 
 

-5 -4 -1 -3 4 

-4 -6 0 -2 5 

-1 0 5 4 8 

-3 -2 4 -5 1 

4 5 8 1 -10 
 
 
The rotation matrix, in that case is  
 

1 0 0 0 0 

0 1 0 0 0 

0 0 cos(α) 0 sin(α) 

0 0 0 1 0 

0 0 -sin(α) 0 cos(α)  

Where the angle α is given by the formula: 
 









−

=
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2
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The highest absolute values are  a53 = a35 = 8  (in red) 
The similarity transformation with the rotation matrix will make 
zero just these elements. 
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Function Mat_Block(Mat,) 
Transforms a sparse square matrix (n x n) into a block-partitioned matrix  
From theory we know that, under certain conditions, a square matrix can be transformed into a block-
partitioned form (also called block-triangular form) by similarity transformation. 
 

PAPB T  =  
 
where P is a (n x n) permutation matrix. 
 
For returning the permutation matrix see the function Mat_BlockPerm 
 
Note that not all matrices can be transformed in block-triangular form. From theory we know that it can be 
done if, and only if, the graph associated to the matrix is not strong connected. On the contrary, if the 
graph is strong connected, we say that the matrix is irreducible. A dense matrix without zero elements, for 
example, is always irreducible. 
 
Example: 
 

 
 
 
 

Function Mat_BlockPerm(Mat,) 
Returns the permutation matrix that trasforms a sparse square matrix (n x n) into a block-partitioned 
matrix. Under certain conditions, a square matrix can be transformed into a block-partitioned form (also 
called block-triangular form) by similarity transformation. 

PAPB T  =  
 
where P is a permutation matrix (n x n). 
 
This function returns the permutation vector (n); for transforming it into a permutation matrix use the  
Function MatPerm 
 
Example. Find the permutation matrix that transforms the given matrix into block triangular form 
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Note that not all matrices can be transformed in block-triangular form. If the transformation fails the 
function returns “?”.  This usually happens if the matrix is irreducible.  
 

      
 
 
 

Function MatEigenvalue_QR(Mat) 
This function performs the diagonal reduction of a given matrix by the generalized QR method5, and 
returns the approximate eigenvalues, real or complex. 
It returns an (n x 2) array 
 
The example below shows that the given matrix has two complex conjugate eigenvalues and only one 
real eigenvalue  
 

 
 

                                                      
5 This function uses a reduction of the EISPACK FORTRAN HQR and ELMHES subroutines (April 1983) 
HQR nad ELMHES are the translation of the ALGOL procedure. 
 NUM. MATH. 14, 219-231(1970) by Martin, Peters, and Wilkinson. 
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Example.  Find the eigenvalues of the following symmetric matrix. Being symmetric, there are only n real 
distinct eigenvalues. So the function returns only an (n x 1) array  
 

 
 
 
 

Function MatEigenvalue_QRC(Mat, [Cformat]) 
This function performs the diagonal reduction of a given complex matrix with complex QR method6, and 
returns the approximate eigenvalues real or complex as an (n x 2) array.  
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
See About complex matrix format  
 
Example. Find the eigenvalues of the following complex matrix.  
 

 
 
The matrix could be also passed in compact string format 
 

 
 
Note that the result is always in split format 
 

                                                      
6 This function uses a reduction of the EISPACK FORTRAN COMQR and CORTH subroutines (April 1983) 
COMQR is a translation of the ALGOL procedue  
MATH. 12, 369-376(1968) by Martin  and Wilkinson. 
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Function MatEigenvector(A, Eigenvalues, [MaxErr]) 
This function returns the eigenvector of a matrix A (n x n) associated to the given eigenvalue  
 

vAv λ=  
 
If "Eigenvalues" is a single value, the function returns a (n x 1) vector. Otherwise if "Eigenvalues" is a 
vector of eigenvalues, the function returns the (n x n) matrix of eigenvectors. 
The optional parameter MaxErr  is useful when the eigenvalues are affected by round-off error. In that 
case the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix.  If 
omitted, the function tries to detect by itself the suitable MaxErr for the approximate eigenvalues 
 

 
 
 
 
 

Function MatEigenvector_C(A, Eigenvalue, [MaxErr]) 
This function returns the complex eigenvector associates to a complex eigenvalue of a real or complex 
matrix A (n x n) 
 
The function returns an array of two columns (n x 2): the first column contains the real part, the second 
column the imaginary part. 
It returns an array of four columns (n x 4) if the eigenvalue is double. The first two columns contain the 
first complex eigenvector; the last two columns contain the second complex eigenvector. And so on. 
The optional parameter MaxErr  (default 1E-10) is useful only if your eigenvalue has an error. In that case 
the MaxErr should be proportionally increased (1E-8, 1E-6, etc.). Otherwise the result may be a NULL 
matrix.  
 
Look at this example:  
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The given matrix has 3 eigenvalues: 
 
  2 , 5+j , 5−j 
 
For each eigenvalue, the function 
MatEigenvector_C returns the associate 
eigenvector that, in general, will be complex. 
 
Note that for the real eigenvalue 2, the 
function returns a real eigenvector 
 
Note also that for conjugate eigenvalues will 
get also conjugate eigenvectors 
 
 

 
The function works also for complex matrices. Example assume to have to find the eigenvector of the 
following matrix for the given eigenvalue 
 

j
jj
jj

A −=







−+−
++−

= 5  ,     
3851

531
λ

 
 

 

Thus, the eigenvector for j−= 5λ   
is 
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Function MatEigenvector_Jacobi(Mat, Optional MaxLoops) 
This function performs the Jacobi's orthogonal similarity transformation sequence and returns the last 
orthogonal matrix. It works only for symmetric matrices. 
The optional parameter MaxLoops (default=100) sets the max steps of the sequence. 
 
This function returns the orthogonal matrix Un  that transforms to a diagonal form the symmetric matrix A, 
for n sufficiently high 

[ ] n
T
n UAU ⋅≅λ  

The matrix Un is composed by eigenvectors of A 
 

 
 
For further details see Function MatEigenvalue_Jacobi 
 
 
 

Function MatEigenSort_Jacobi(EigvalM, EigvectM, [num]) 
This function7 sorts of the eigenvalues and returns the first eigenvector associated to the absolute highest 
eigenvalue. 
EigvalM is the diagonal eigenvalues (n x n ) matrix and EigvectM is the (n x n ) eigenvector unitary matrix 
as returned by MatEigenValue_Jacobi and MatEigenVector_Jacobi. 
The optional parameter num (default num = n) sets the number of the vectors returned 
 
Example 
 

 
 
 

                                                      
7 This function appears thanks to the courtesy of Carlos Aya 
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 Function MatEigenvalue_QL(Mat3, [IterMax]) 
This function returns the real eigenvalues of a tridiagonal symmetric matrix. It works also for 
unsymmetrical tridiagonal matrix having its eigenvalues all real. 
The optional parameter Itermax sets the max iteration allowed (default Itermax =200). 
This function use the efficient QL algorithm 
If the matrix has not all real eigenvalues this function returns "?" 
This function accepts both tridiagonal square (n x n) matrices and (n x 3 ) rectangular matrices. 
 

 

 

 
 
Example. Find all eigenvalues of the following 19 x 19 matrix 
 

 
 
Note that all 19 eigenvalues are close 
each other, in the short interval 
 

2.18.0 << kλ  
 
Other algorithms have difficult in this 
pathological case. 
On the contrary the QL algorithm works 
fine giving an high general accuracy. 
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Function MatEigenvalue3U(n, a, b, c) 
Returns the eigenvalues of a tridiagonal uniform (n x n) matrix.  
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cba
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cb

 
 
For the uniform tridiagonal matrices, there is a nice close formula giving all eigenvalues for any size of the 
matrix dimension. See chapter “Tridiagonal uniform matrix”. 
 
Example :  
find the eigenvalues of the 40 x 40 tridiagonal uniform matrix having a = 1, b = 3, c = 2.  
Because a*c = 2 > 0 , all eigenvalues are real. 
 

 
 
find the eigenvalues of the 40 x 40 tridiagonal uniform matrix having a = 1, b = 3, c = −2.  
Because a*c = −2 < 0 , all eigenvalues are complex. 
 

 
 
 

Function  MatEigenvector3(Mat3, Eigenvalues, [MaxErr]) 
This function returns the eigenvector of associate eigenvalue of a tridiagonal matrix A  
 

vAv λ=  
 
If Eigenvalues is a single value, the function returns a (n x 1) vector. Otherwise if the parameter 
Eigenvalues is a vector of all eigenvalues of matrix A, the function returns a matrix (n x n) of eigenvectors. 
Note: the eigenvectors returned by this function are not normalized. 
 
The optional parameter MaxErr  is useful only if your eigenvalues are affected by an error. In that case 
the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix.  If omitted, the 
function tries to detect by itself the best error parameter  
 
This function accepts both tridiagonal square (n x n) matrices and (n x 3 ) rectangular matrices. 
The second form is useful for large matrices. 
 
Example.  
Given the 19 x 19 tridiagonal matrix having eigenvalue L = 1, find its associate eigenvector  

It was been demonstrated that for these matrices: 

• for n even - all eigenvalues are real if a*c>0; all eigenvalues are 
complex otherwise. 

• for n odd - all n-1 eigenvalues are real if a*c>0; all n-1 eigenvalues 
are complex otherwise. The last n eigenvalue is always b. 
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Function MatChar(A, x) 
This function returns the characteristic matrix at the value x. 
 

xIAC −=  
 
where A is a real square matrix; x is a real number. 
The determinant of C is the characteristic polynomial of the matrix A 
 
 

 
 
 

Function MatChar_C( A, z, [Cformat]) 
This function returns the complex characteristic matrix at the value z. 
 

IAC z−=  
 
where A can be real or complex square matrix; z can be real or complex number. 
The determinant of C is the characteristic polynomial of the matrix A 
 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex format of input/output (default = 1) 
 
Complex (split or interlaced) matrix must have always an even number of columns 
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Example. Compute the matrix I A λ−   for  j51−=λ  
where A is the complex matrix 
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Example. Compute the matrix I A λ−   for  j21+=λ    
where A is the real matrix 
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Function MatCharPoly(Mat) 
This function returns the coefficients of the characteristic polynomial of a given matrix. If the matrix has 
dimension (n x n), then the polynomial has nth degree and n+1 coefficients.  
As know, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa. This 
function uses the fast Newton-Girard formulas to find all the coefficients. 
 

 
 
 
Solving this polynomial (by any method) can be another way to find eigenvalues 

In the example the characteristic polynomial 
of matrix A is 

1629918)det( 23 +−+−=− λλλλIA
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Note. Computing eigenvalues trough the characteristic polynomial is in general less efficient than other 
decomposition methods (QR, Jacoby), but became a good choose for low dimension matrices (typically < 
6°) and for complex eigenvalues 
 
See also Function Poly_Roots(Coefficients, [ErrMax])  
 
 
 

Function MatCharPoly_C( Mat, [CFormat]) 
This function returns the complex coefficients of the characteristic polynomial of a given complex matrix. If 
the matrix has dimension (n x n), then the polynomial has nth degree and n+1 coefficients.  
As know, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa.  
This function uses the Newton-Girard formulas to find all the coefficients. 
 
It supports 3 different matrix formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex format of input/output (default = 1) 
 
The function always returns an array of 2 columns 
 

 
 
As we can see the characteristic polynomial of the above complex matrix is 
 

jzjzjzjzzP 248)222()79()25()( 234 +++−+++−=  
 
 
 

Function Poly_Roots(Coefficients, [ErrMax]) 
This function returns the roots of a given polynomial 
Coefficients parameter is the array of n+1 coefficients 
ErrMax optional parameter sets the max error for roots approximation (default = 1E-13) 
 
This function uses the Lin-Bairstow algorithm for the factorization of a nth degree polynomial  into a 
square polynomial and a (n-2)th degree polynomial. The process is applied recursively to the (n-2)th 
polynomial, and so on, until the degree of the reduced polynomial becomes 2 or 1. 
 
Note. This process is very fast, and robust but may not converge under certain conditions: for example if 
the polynomial has multiple roots. In that case we can try to reduce the accuracy by the ErrMax 
parameter, setting 1E-9, or 1E-6. For high degree polynomial you can use also the Poly_Root_QR 
function in MATRIX. For high accuracy or for stiff polynomials you can find more suitable rootfinder 
routines in XNumbers.xla addin 
 
Eigenvalues. If the given polynomial is the characteristic polynomial of a matrix (returned, for example, 
by the MatCharPoly() ) this function returns the eigenvalues of the matrix itself. 
Computing eigenvalues trough the characteristic polynomial is in general less efficient than other 
decomposition methods (QR, Jacoby), but became a good choose for low dimension matrices (typically < 
6°) and for complex eigenvalues. 
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Example: find the eigenvalues of the following matrix 
 

 
 
 
 

Function MatEigenvalue_max(Mat, [IterMax]) 
Returns the dominant eigenvalue of a matrix. 
Dominant eigenvalue, if exists, is the one with the maximum absolute value. 
Optional parameter: IterMax sets the maximum number of iterations allowed (default 1000). 
This function uses the power’s iterative method 
 
Power's method - Given a matrix A with n eigenvalues, real and distinct, we have 

||...|||| 21 nλλλ >>  
Starting with a generic vector x0, we have: 
 
 
 
 
 
Note. This algorithm is started with a random generic vector. Many times it converges, but some times not. So if one 
of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-try it. 
 
 
A global localization method for real eigenvalues 
This method is useful for finding the radius of the circle containing all real eigenvalues of a given matrix 
Example. Find the circle containing all eigenvalues of the following matrix 
 

10 8 -5 2 
8 4 3 -2 
-5 3 6 0 
2 -2 0 -2 

 
The matrix is symmetric so all its 
eigenvalues are real. 
 
 

 
 
The matrix trace gives us the sum of eigenvalues, so we can get the center of the circle by: 

n
Atracec )(

=
 

We find the dominant eigenvalues   λ1  by the function MatEigenvalue_max 

1
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Note: we can also use the nested 
function: 
  {=Poly_Roots(MatCharPoly(A))} 
 

0xAy k
k =
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The radius can be found by the formula 
cr −= 1λ

 
 
We have found the center C = (4.5 ; 0) with  R = 11.7. If we plot the circle and the roots, we observe a 
general good result 
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Eigenvalues
λ1  = 16.2
λ2  = 8.3
λ3  = -0.55
λ4 = -6.0

 
 
This method works also for non symmetric matrices, having real eigenvalues. 
Example - find the circle containing all eigenvalues of the following matrix 
  

90 -7 0 4 

-5 98 0 12 

-2 0 95 14 

9 3 14 102 
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Eigenvalues
l1  = 114.1
l2  = 101.1
l3  = 91.3
l4 = 78.49

 
 
 

Function MatEigenvector_max(Mat, [Norm], [IterMax]) 
Returns the dominant eigenvector of matrix Mat 
The dominant eigenvector is related to the dominant eigenvalue. 
Optional parameters are:  
IterMax: sets the maximum number of iterations allowed (default 1000). 
Norm: if TRUE, the function returns a normalized vector |v|=1  (default FALSE) 
 
Remark: This function uses the power’s iterative method 
For further details see function MatEigenvalue_Max  
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Note. This algorithm is started with a random generic vector. Many times it converges, but some times not. So if one 
of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-try it. 
 
 
 

Function MatEigenvalue_pow(Mat, [IterMax]) 
This function returns all eigenvalues of a given matrix. 
Optional parameters are:  
IterMax: sets the maximum number of iterations allowed (default 1000). 
Norm: if TRUE, the function returns a normalized vector |v|=1  (default FALSE) 
 
This function uses the power’s iterative method. This algorithm works also for non-symmetric matrices 
with low-moderate dimension 
 
Note. This algorithm is started with a random generic vector. Many times it converges, but some times not. So if one 
of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-try it. 
 
Example: find all eigenvalues and eigenvectors of the given matrix 
 

 
 
We have used the functions MatEigenvalue_pow and MatEigenvector_pow. We can see the small values 
instead of 0. This is due to the round-off errors. If you want to clean the matrix from these round-off 
errors, use the function MatMopUp  
 
 
 

Function MatEigenvector_pow(Mat, [Norm], [IterMax]) 
This function returns all eigenvectors of a given matrix. 
Optional parameters are:  
IterMax: sets the maximum number of iterations allowed (default 1000). 
Norm: if TRUE, the function returns normalized vectors |v|=1  (default FALSE) 
 
This function uses the power’s iterative method. This algorithm works also for non-symmetric matrices 
with low-moderate dimension 
 
See also function MatEigenvalue_pow  
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Function MatEigenvectorInv(Mat, Eigenvalue) 
This function returns the eigenvector of associate eigenvalue of an (n x n)  matrix A using the inverse 
iterative algorithm 

                   vAv λ=  
 
If Eigenvalues is a single value, the function returns a (n x 1) vector. Otherwise if Eigenvalues is a vector 
of all eigenvalues of matrix A, the function returns a matrix (n x n) of eigenvector. 
The eigenvector is normalized with norm = 2 . 
This method is adapted for eigenvalues affected by large error, because it is more stable than the 
singular system resolution. 
 
Example. Given a matrix A and its eigenvalues λi , find the eigenvectors associated 
 

 
 
 
 

Function MatEigenvectorInv_C(Mat, Eigenvalue, [CFormat]) 
This function returns the eigenvector of associate eigenvalue of a complex matrix A (n x n) by the inverse 
iteration algorithm 

vAv λ=  
 
If "Eigenvalue" is a single value, the function returns a complex vector. Otherwise if "Eigenvalues" is a 
complex vector, the function returns the complex matrix of the associated eigenvectors. 
 
The inverse iteration method is adapted for eigenvalues affected by large error, because is more stable 
than the singular system resolution of the other function MatEigenvector_C . 
 
Example. Find all eigenvectors of the following complex matrix, having the following eigenvalues 
 

4+3j 2-4j 4+5j 5-4j 
1+2j 2 1+2j 2-j 
-2+4j 4+2j -2+2j 2+6j 
3-3j -3-3j 3-3j 1-3j  

] 2j  , i  , 3j1  , 4 [ −+=λ  
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About perturbed eigenvalues 
Many times we know only an approximation of the true eigenvalue. When the error is large the stability of 
the algorithm for finding the associate eigenvector plays a crucial role. The above example shows a 
critical situation because all eigenvalues are very closed each others, having only 4% of difference. In this 
case a little error of the eigenvalues could get large error in eigenvectors. In this situation came handy the 
inverse iterative algorithm. It shows a large stability. Let’s see this example 
First of all we define a sensitivity coefficient for measuring the instability. 
 
Instability Sensitivity 
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Where: 

λ = eigenvalue 
λ* = perturbed eigenvalue 
u = eigenvector 
u* = perturbed eigenvector 
 

 
Now we compare the response of two different algorithms at the perturbed eigenvalue: the singular linear 
system solving (traditional method) and the iterative inverse algorithm. The first one is used by 
MatEigenvector() function while the last one is used by the MatEigenvector_inv() function. 
 

  Singular linear system method Iterative inverse method 
λ  λ ∆ λ  λ ∆ λ 

100  100.0001 0.0001  100.3 0.3 
       

u  u |∆ u|  u |∆ u| 
1  0.99981665 1.83E-04  1.00000000 0 

12  12.00028336 2.36E-05  12.00000085 7.12E-08 
7  7.00005834 8.33E-06  7.00000046 6.58E-08 

-3  -3.00003333 1.11E-05  -3.00000020 6.58E-08 
-1  -1.00000000 0  -1.00000007 6.58E-08 

 
The iterative inverse algorithm returns an eigenvector affected by a very small error even if the error of 
the eigenvalues is heavier (0.3%). On the other hand the first method computes a sufficently accurate 
eigenvector only if the eigenvalue error is very little (0.0001%). Note that for higher errors the first method 
fails, returning the null vector. 
On the contrary the iterative inverse algorithm tolerates large amount of error in eigenvalue. This can be 
showed by the instability factor 
 

Singular linear system method   Iterative inverse method  
λ ∆ λ | u | Σ|∆ u|  λ ∆ λ | u | Σ|∆ u| 

100.0001 0.0001 14.28 0.000226  100.3 0.3 14.28 2.69E-07 
         

S1 = 15.85    S2 = 6.3E-06   
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As we can see the difference is quite evident. In the last case the hill-conditioned matrix (eigenvalues 
very close each others), exhibits an instability factor of the iterative inverse algorithm less then 105 times 
the other one. Clearly this is a good reason for using it. 
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Matrices Generator 
This is a set of useful tools for generating several types of matrices 
 
Function MatRnd(n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse]) 
Function MatRndEig(Eigenvalues, [MatInteger]) 
Function MatRndEigSym(Eigenvalues) 
Function MatRndRank(n, [Rank], [Det], [MatInteger]) 
Function MatRndSim(n, [Rank], [Det], [MatInteger]) 
Function Mat_Hilbert (n) 
Function Mat_Hilbert_inv(n) 
Function Mat_Householder(x) 
Function Mat_Tartaglia(n) 
Function Mat_Vandermonde(x) 
 
 
Function MatRnd(n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse]) 
Generates a random matrix 
Parameters are: 

n = rows 
m = columns (default m = n) 

Typ =   ALL (default) - fills all cells 
        SYM - symmetrical 
        TRD -  tridiagonal 
        DIA -  Diagonal 
        TLW -  Triangular lower 
        TUP -  Triangular upper 
 SYMTRD  Symmetrical tridiagonal 
 
MatInteger = True (default) for integer matrix, False for decimal 
Amax   = max number allowed 
Amin   = min number allowed 
Sparse = decimal, from 0 to 1; 0 means no sparse (default), 1 means very sparse 
 

 
 
Note: The generation is random; it’s means that each time that you recalculate this function, you get 
different values 
 
Function MatRndEig(Eigenvalues, [MatInteger]) 
Returns a general real matrix with a given set of eigenvalues 
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Function MatRndEigSym(Eigenvalues) 
Returns a symmetric real matrix with a given set of eigenvalues 
 

 
 
 
Function MatRndRank(n, [Rank], [Det], [MatInteger]) 
Returns a real matrix with a given Rank or Determinant 
Note: if Rank < max dimension then always Det = 0 
 
Function MatRndSim(n, [Rank], [Det], [MatInteger]) 
Returns a real symmetric matrix with a given Rank or Determinant 
Note: if Rank < max dimension then always Det = 0 
 
Function MatRndUni(n, [MatInteger]) 
Returns an unitary matrix (Det=1) 
 
Function Mat_Hilbert(n) 
Returns the (n x n) Hilbert's matrix 
Note: this matrix is always decimal 
 
Function Mat_Hilbert_inv(n) 
Returns the inverse of the (n x n) Hilbert's matrix. 
Note: this matrix is always integer 
 
Hilbert's  matrices are a strongly hill-conditioned and are useful for testing algorithms 
In the example below we see a (4 x 4) Hilbert matrix and its inverse.  
 

 
 
 
Function Mat_Householder(x) 
Returns the Householder matrix of a given vector  x = (x1, x2, ...xn) by the formula: 

22
X

XXIH
T

−=
 

 
This kind of matrices are used in several important algorithms as, for example, the QR decomposition 
 
 
Function Mat_Tartaglia() 
Returns the Tartaglia's matrix 
This kind of matrix is a hill-conditioned and is useful to test same algorithms 
In the example below we see a (5 x 5) matrix 
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Definition: Tartaglia's matrix is defined as 
 

11 =ja
 

∑
=

−=
j

k
kiij aa

1
 )1( 

 

 
 
Function Mat_Vandermonde(x) 
Returns the Vandermonde's matrix of a given vector  x = (x1, x2, ...xn) 

 
 
This matrix is very common in many field of numeric calculus like the polynomial interpolation 
Example: Find the 4th degree polynomial that fits the following table 
  

x y 
-2 600 
-1 521 
1 423 
4 516 
6 808 

 
 

 
 
 
 

The generic 4th degree polynomial is 
4

4
3

3
2

210)( xaxaxaxaaxp ++++=

We can find the coefficients a = (a0, a1, a2, a3, a4) solving the 
linear system  

W a = y  Where W is the Wandermonde's matrix  
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Function Gauss_Jordan_step(Mat, [Typ], [IntValue]) 
This function, also available in macro version, has been developed for didactic scope. It can trace, step 
by step, the diagonal reduction or triangular reduction of a matrix by the Gauss-Jordan algorithm. 
Optional parameter Typ can be "D" (default) for Diagonal or "T" for Triangular 
Optional parameter IntValue = TRUE forces the function to conserve integer values through all steps. 
Default is FALSE. 
The argument Mat is the complete matrix (n x m) of the linear system 
Remember that for a linear system: 

bAx =  
A is the system square matrix (n x n) 
x is the unknown vector (n x 1) 
b  is the vector of constant terms (n x 1) 

[ ]bAC   ,=  
C  is the complete matrix of the system 
 
Example - Study the Gauss-Jordan algorithm for the following system  
 
  
    A = 
 
 
First of all, put all columns in an adjacent 3x4 matrix, example the range A1:D3. Select the cells where 
you want the matrix of the next step; example the range A5:D7. Insert the array-function  
 

 
 

 
As we can see, the algorithm has exchanged rows 1 and 3, because the pivot a11 was 0 
Now, with the range A5:D7 still selected, copy the active selection by CTRL+C 
Move to the cell A9 give the command CTRL+V. The new step will be performed. Continuing in this way 
we can visualize each step of the elimination algorithm 
 

 
 

 

0 -10 3 
2 1 1 
4 0 5 

105 
17 
91 

b = 
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The process ends when the 3x3 matrix is became an identity matrix. The system solution appears in the 
last column (4, -6, 15) 
 
For further details see:  Several ways for using the Gauss-Jordan algorithm  
 
 
 

Function SYSLIN(A, b, [IMode], [Tiny]) 
This function solves a linear system by the Gauss-Jordan algorithm. 
The argument A is the matrix (n x n ) of the linear system 
The argument b is a (n x 1 ) vector or a (n x m) matrix  
The optional parameters:IMODE switch (default False) sets the floating point (False) or integer 
computation (True). Integer computation is intrinsically more accurate but also more limited because it 
may easily reaches the overflow error. Use IMODE  only with integer matrices of moderate size. 
The optional parameter Tiny (default is 0) sets the minimum round-off error; any value in absolute less 
than Tiny will be set to 0. 
If the matrix is singular the function returns "singular" 
If the matrix is not squared the function returns "?" 
If non-singular, returns the vector solution or the matrix solution of the given system. 
Remember that for a linear system: 

bAx =  
A  is the system square matrix (n x n) 
x  is the unknown vector (n x 1) or the unknown matrix (n x m) 
b  is the vector of constant terms (n x 1) or a (n x m) matrix of constant terms 

As known, the above linear equation has only one solution if - and only if -, Det(A) ≠ 0 
Otherwise the solutions can be infinite or even nothing. In that case the system is called "singular". See 
Function SYSLINSING(Mat, Optional V)  
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Parameter b can also be a matrix of m columns. In that case SYSLIN solves simultaneosly a set of m 
systems. 
 
 
 

Function SYSLIN3(Mat3, v) 
This function solves a tridiagonal linear system. 
The argument Mat3 is the array (n x 3) representing the (n x n) matrix of the linear system 
Remember that for a linear system: 

A x  = v 
A  is the system square matrix (n x n) 
x  is the unknown vector (n x 1) 
v  is the constant terms vector (n x 1) 

As known, the above linear equation has only one solution if - and only if -, det(A) ≠ 0 
Otherwise the solutions can be infinite or even nothing. In that case the system is called "singular". 
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Example - let' se how to solve a 16 x 16 
tridiagonal linear system  A x = y 
We pass to the function only 46 values (the 
first cell of a and the last of c are always 0) 
instead of 256 values. 
 
Tip: note that this trick allows to solve systems 
larger that 256 x 256 (the max square matrix in 
Excel worksheet) 
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Function SYSLIN_ITER_G(A, b, X0, Optional Nmax) 
This function performs the iterative Gauss-Seidel algorithm for solving a linear system and has been 
developed for didactic scope in order to study the convergence of the iterative process. 

bxA =⋅][  

Parameter  A  is the system matrix (range n x n) 
Parameter  b   is the system vector (range n x 1) 
Parameter  x0  is the starting approximate solution vector (range n x 1) 
Parameter  Nmax  is the max step allowed (default = 1) 
 
The function returns the vector at Nmax step; if the matrix is convergent, this vector approaches to the 
exact solution. 
 
In the example below it is shown the 20th iteration step of this iterative method.  
As we can see, the values approximate the exact solution [4, -3, 5]. Precision increase with steps (of 
course, for convergent matrix) 
 

 
 
For Nmax=1, we can study the iterative method step by step 
 
x1   = SYSLIN_ITER_G(A, b, x0) 
x2   = SYSLIN_ITER_G(A, b, x1) 
x3   = SYSLIN_ITER_G(A, b, x2) 
...................................... 
x20 = SYSLIN_ITER_G(A, b, x19) 
 
In the example below we see the trace of iteration values 
 

 
 
 



T U T O R I A L  F O R  M A T R I X . X L A  

 60

Usually, the convergence speed is quite low, but it can be greatly accelerate by the Aitken's extrapolation 
formula, also called as "square delta extrapolation" 
 
 
 

Function SYSLIN_T(Mat, b, [typ], [tiny]) 
This function solves a triangular linear system by the forward and backward substitutions algorithms. It 
returns a vector or a matrix solution of a given system. 
The argument Mat is the matrix (n x n) of the linear system 
Remember that for a linear system: 

bAx =  
A  is the triangular - upper or lower - system square matrix (n x n) 
x  is the unknown (n x 1) vector or the (n x m) unknown matrix 
b  is a constant (n x 1) vector or a constant (n x m ) matrix  

As known, the above linear system has only one solution if - and only if -, det(A) <> 0 
Otherwise the solutions can be infinite or even nothing. In that case the system is called "singular".  
 
The parameter b can be also a (n x m) matrix B. In that case the function returns a matrix solution X of 
the multiple linear system 
Parameter typ = "U" or "L" switches the function to solve for upper-triangular (back substitutions) or lower-
triangular system (forward substitutions); if omitted the function automatically detects the type of the 
system. 
Optional parameter Tiny (default is 0) sets the minimum round-off error; any value in absolute less than 
Tiny will be set to 0. 

Example of (7 x 7) system 
 

 
 
 
 

Function SYSLIN_ITER_J(Mat, U, X0, Optional Nmax) 
This function performs the iterative Jacobi's algorithm for solving a linear system and was developed for 
didactic scope in order to study the convergence of the iterative process. 

bxA =⋅][  

Parameter  A  is the system matrix (range n x n) 
Parameter  b   is the system vector (range n x 1) 
Parameter  x0  is the starting approximate solution vector (range n x 1) 
Parameter  Nmax  is the max step allowed (default = 1) 
 
The function returns the vector at Nmax step; if the matrix is convergent, this vector is closer to the exact 
solution. 



T U T O R I A L  F O R  M A T R I X . X L A  

 61

 
This function is similar to the SYSLIN_ITER_G function.  
For further details see Function SYSLIN_ITER_G(Mat, U, X0, Optional Nmax)  
 
 
 

Function SYSLINSING(A, [b], [MaxErr]) 
Singular linear system can have infinite solutions or even nothing. This happens when DET(A) = 0. 
In that case the following equations: 

0=
=

Ax
bAx

 
The above equation define an implicit Linear Function - also called Linear Transformation - between the 
vector spaces, that can be put in the following explicit form 

dCxy +=  
Where C is the transformation matrix and d is the known vector; C has the same dimension of A, and d 
the same of b 
 
This function returns the matrix C in the first n columns; eventually, a last column contains the vector d 
(only if b is not missing). If the system has no solution, this function returns "?" 
 
Optional parameter MaxErr set the relative precision level; elements lower than this level are force to 
zero. Default is 1E-15. 
 
This version solves also systems where the equations number is less than the variables number; In other 
words, A is a rectangular matrix (n x m) where n < m 
 
Example: Solve the following system 
 

 
 
The determinant of the matrix A is 0. The system has infinite solution given by matrix C and vector d 
 
Example 1: Find the solution of the following homogeneous 
system 
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Because the determinant is 0, the homogeneous system has 
always solutions; they can be put in the following form 

            Cxy =  
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Looking at the first diagonal of the matrix C  we discover 1 at the column 3 and row 3. This means that x3 
is the independent variable; all the others are dependent variables. This means also that the rank of 
matrix is 2. 
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Changing values to the independent variable x3 we get all the solution of the given system  
 
 
Example 2: Find the solution of the following homogeneous system 
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By inspection of the first diagonal, we see that there are 2 elements different from 0. So the independent 
variables are x2, and x3. This means that the rank of matrix is 1 
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It is easy to prove that this linear function is a plane in R3. In fact, eliminating the variable x2 and x3 we 
get: 

321 43 yyy +−=  
And substituting the variables y1, y2, y3   with the usually variables x, y, z,  we get: 

043 =−+ zyx  
 
Example 3: Find the solution of the following non-homogeneous system 

 

bAx =  
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As we can see, the rank of the given system is 2; so there is one 
independent variable x3.  The solutions can be writing as: 

dCxy +=  
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Function TRASFLIN(A, x, Optional B) 
This function performs the Linear Transformation  

bAxy +=  
Where: 
A is the (n x m) matrix of transformation 
b is the (n x 1) known vector default is the null vector 
x is the (m x 1) vector of independent variables  
y is the (n x 1) vector of dependent variables  
 

 
 
 
This function accepts also matrices for x and  b; in that case the matrix transformation is 

BAXY +=  
Where: 
A is the matrix (n x m) of transformation 
B is the known matrix (n x p); default is the null vector 
X is the matrix of independent variables (m x p) 
Y is the matrix of dependent variables (n x p) 
 
Matrix Geometric action 
Linear transformation have a useful geometric interpretation8. 
Take a point x (x1, x2)  of the plane and compute the linear transform y = [A] x, where A (2 x 2) matrix; the 
point y (y1, y2) . We wonder if there is a geometrical relation between the point x and y. 
The relation exist and became evident if we perform the transformation of the points belong to the unitary 
circle. 
In Excel we can easily generate the unitary circle pattern with the formula 

x = (cos(k⋅∆α) , sin(k⋅∆α))       for k = 1, 2 …N                    where ∆α = 2π/N 
 
Because x is a row-vector (more adapted to form Excel list) is useful to have the dual Linear Transform 
for row-vectors 

TTTT bAxy +=  
Here a possible arrangement. 
 

                                                      

8 A smart, cool, geometric description was developed by Todd Will at University of Wisconsin-La Crosse. I suggest to 
have a look at his web pages  http://www.uwlax.edu/faculty/will/svd/ . . For those that think that Linear Algebra cannot 
be amusing. Don’t miss them. 



T U T O R I A L  F O R  M A T R I X . X L A  

 64

 
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

 
The blue line corresponds to the unitary circle points; the pink line belongs to the transformed y points. 
Thus, the circle has been transformed into a centred ellipse; if we add also b ≠ 0, we get a translated 
ellipse. Each point of unitary circle has been projected on the ellipse.  
 
We have to point out that the projection is not 
radial but it happens in a very strange way. Look 
at the imagine  to the right. It shows how a point 
on the circle moves on the ellipse, before and 
after the linear transformation. 
It seems as if the circle would be enlarged 
(stretched), and then rotated (like a “whirlpool”). 
 
Other dimensions 
The effect is the same – changing the 
denomination – in higher dimension 
      
Space Original pattern    Transf. pattern 
R2 circle ⇒  ellipse 
R3 sphere ⇒  ellipsoid 
Rn hyper-sphere ⇒  hyper-ellipse 
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Function Gram_Schmidt(A) 
This function performs the orthonormalization of a base vectors by the Gram-Schmidt's method  
Argument A is a (n x n) matrix containing n independent vectors. 
This function returns the orthogonal matrix U; each vector has   |νi| = 1  and   νi  ⊥ νj 
 
 
 Where  
 
 
This function is very sensible to the round-off errors.  
For larger matrices see Function MatOrtNorm(Mat)  
 

 
 
 
 
Gram-Schmidt's Orthonormalization 
This popular method is used to build an orthogonal-normalized base from a set of n independent vectors. 

( )nvvvv ,.... ,  , 321  
The orthogonal bases U is built with the following iterative algorithm 
 
For k = 1, 2, 3...n 
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Developing this algorithm, we see that the vector k is built with the previous k-1 vectors 
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At the end, all vectors of the bases U will be orthogonal and normalized. 
This process is performed by the function Gram_Schmidt(Mat)  
 
This method is very straightforward, but it's also very sensible to the round-off errors. This happens 
because the error propagates itself along the vectors from 1 to n 
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Double step Gram-Schimdt method 
One method to reduce the error propagation is the following 

1) First of all we apply the normal method in order to obtain a first approximate base U 
2) At the second step we repeat the orthonormalization with the transpose of the bases U 
3) At the end we transpose again the bases obtained from the 2° step. 
This method is performed by the function Function MatOrtNorm(Mat)  
 
The following flow-chart illustrated better how this method works 
 

Orthonormalization
Gram-Schimidt

Initial
matrix

[A]

matrix step 1
[V]

matrix step 2
[W]

Transpose
matrix
[V] T

Matrice
trasposta

[W] T

Orthonormalization
Gram-Schimidt

Matrix W has error lower than matrix V

 
 
 
In order to measure the round-off errors we take the scalar products between the first vectors and all the 
others 

nn uueuueuue •=•=•= 1131132112 ...  
 
This graph below show this errors for a typical matrix of 8° order, orthogonalized with single and double 
step Gram-Schmidt method 
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As we can see the improving is sensible even from a (3 x 3) matrix 
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Function Mat_Cholesky(A) 
This function returns the Cholesky decomposition of a symmetric matrix 

TLLA ⋅=  
Where A is a symmetric matrix, L is a lower triangular matrix 
This decomposition works only if A is positive definite. That is: 

vvAv ∀>⋅⋅      0  
or, in other words, that the eigenvalues of A are all-positive. This function returns always a matrix. 
Inspecting the diagonal elements of the matrix returned we can discover if the matrix is positive definite: if 
they are all positive then also the matrix A is positive definite.  
 
Example - Say if the given matrices are positive definite  
 

 A    B  
3 1 2  5 2 1 
1 6 4  2 2 3 
2 4 7  1 3 1 

 
On the left, we see the decomposition of matrix A; the 
triangular matrix L has all diagonal elements positive; 
then the matrix A is positive definite and all its 
eigenvalues are positive. 
On the contrary, the decomposition of the matrix B 
shows a negative number at the position 33; then we 
can say that B is not positive definite and same of its 
eigenvalues are negative. 
 
This decomposition is useful also to solve the so-called "generalized eigen-problem" 
 
 
 

Function Mat_LU(A, optional Pivot) 
This function returns the LU decomposition of a given square matrix A. It uses the Crout's algorithm 
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Where L is a lower triangular matrix, and U is upper triangular matrix 
If the square matrix has (n x n) dimension, this function returns a matrix (n x 2n) where the first n columns 
are the matrix L and the last n columns are the matrix U. 
The parameter Pivot (default=TRUE) activates the partial pivoting. 
Note: that if partial pivot is active (TRUE) the LU decomposition may refer to a permutation of A.  
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Note: LU decomposition without pivoting does not work if the first element of diagonal of A is zero 
 

 
 
The LU decomposition are often used to solve linear system 

 A x = b    ⇒   LU x = b   ⇒   L (Ux) = b 

The original system is now split into two simpler systems. 

 L y = b (1) 

 U x = y (2) 

First of all, we solve the vector y from the system (1), then, substituting y into (2), we solve for the vector  
x. Solving a triangular system is quite simple.  
 
 
 
 
 
 
 
 
 
 
 
For a good and accurate explanation of this method see [2]  
 
When pivoting is activate the right decomposition formula is   A = P L U  , where P is a permutation matrix 
 
This function can return also the permutation matrix in the last n columns 
 
Globally, the output of Mat_LU function will be: 
 

Columns 1, n Matrix L 
Columns n+1, 2n Matrix U 
Columns 2n+1, 3n Matrix P 

 
Example: find the factorization of the following 3x3 matrix A  
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Function Mat_QR(Mat) 
This function performs the QR decomposition of a square (n x n) matrix   

RQA ⋅=  
 
Where Q is orthogonal and R is upper triangular matrix 
 
In this version9 Mat_QR can factors also a rectangular (n x m) matrix. It returns a matrix (m x (n + n)), 
where the first (m x n) block is Q and the first n rows of the (m x n) second block is R. The last m − n rows 
of the second block are 0. 
 
The QR decomposition is the base for an efficient method for calculating the eigenvalues. See also the 
function MatEigenvalue_QR(Mat, Optional MaxLoops, Optional Acc)  
 
Example 1°: Perform the QR decomposition for the given square matrix 
 

 
 
Example 2° Perform the QR decomposition for the given rectangular matrix 
 

 
 
 

                                                      
9 Thanks to Ola Mårtensson 
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Function Mat_QR_iter(Mat, [MaxLoops]) 
This function performs the diagonalization of a symmetric matrix by the QR iterative process 
The heart of this method is the QR iterated decomposition  

nnnnnn QRARQA
QRARQA
QRARQA

RQAQRA

=⇒=
=⇒=
=⇒=
=⇒=

+1

223222

112111

1

     
      
       
          

 
 
If the matrix  A has: 

 
Then the sequence converges to the diagonal matrix of eigenvalues  
 

[ ]λ=+∞→ 1lim nn
A

 
 
If the matrix is not symmetric the process gives a triangular matrix where the diagonal elements are still 
the eigenvalues. 
Optional parameter MaxLoops (default 100) sets the max iteration allowed. 
 
Example. 
 

 
 
 
 

Function MatExtract(A, i_pivot, j_pivot) 
Returns the sub-matrix extract from A by eliminating one row and one column 
i_pivot =row to eliminate  
j_pivot = column to eliminate 
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Function MatOrtNorm(A) 
This function performs the orthogonalization with the double-step Gram-Schmidt algorithm  
Argument A is a (n x n) matrix containing n independent vectors. 
This function returns the orthogonal matrix U; each vector has norm = 1 
 
 
 
See also Function Gram_Schmidt(Mat)  
 
Example - Perform the orthogonalization of the given matrix with the Gram-Schmidt methods (single e 
double step) 
 

 
 
Under both the matrices we 
have computed the scalar 
product of the vectors in order to 
evaluate the round-off errors 
 
As we can see double step 
method has errors about 10 
times lower. 
 
 
 
 
 
 
 





≠⇔
=⇔

=•
ji
ji

vv ji      0
     1( )nvvvvU  ...,  ,  , 321= Where: 



T U T O R I A L  F O R  M A T R I X . X L A  

 72

Function Path_Floyd(G) 
This function, now available also in macro version, returns the matrix of all pairs shortest-path of a graph. 
This is an important problem in Graph-Theory and has applications in several different fields: 
transportation, electronics, space syntax analysis, etc. 
The all-pairs shortest-path problem involves finding the shortest path between all pairs of vertices in a 
graph that can be represented as an adjacency matrix [G]  in which each element aij - called node - 
represents the "distance" between element i and j. If there is not a link between two nodes, we leave the 
cell blank or we can set any not numeric symbol you like: for example "x" 
This function uses the Floyd's sequential algorithm  
 
 
Example. - A simple directed graph and its adjacency matrix G 
 
 

1 2

4 3

1

1
3

4

3

 
 
 
 
 
 
 
 

Function Path_Min(G) 
Returns a vector contains the shortest path of a graph; the row and column of the cell 
This function uses the Path_Floyd() function to find the all-pairs shortest path of the given graph G  
 
Path_Min(G) =>  [ path_min, i_min ; j_min ] 
 
 
 
Graphs theory recalls 
Find the shortest distance between 6 sites drown in the following road map 
 
 
 
 
 
 
 
 
 
 
 
 
 
The map can be reassumed into the following matrix 
 

1 2 3

4 5 6 

18 Km 

10 

15 Km 

10 Km 

8 Km 

5 Km 

8 Km 

9 Km 

24 Km 
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 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 x 10 x x 
city 2 18 0 15 10 8 x 
city 3 x 15 0 x 9 8 
city 4 10 10 x 0 x 24 
city 5 x 8 9 x 0 5 
city 6 x x 8 24 5 0 

 
In the cell 1,2 we fill the distance between city 1 and city 2 , that is 18 Km;  
In the cell 1,3 we fill "x" because there is not a direct way between city 1 and city 3. 
In he cell 1,4 we fill the distance between city 1 and city 4 , that is 10 Km. 
And so on... 
 
We observe that the matrix is symmetric because the distance dij is the same of dji; so we really have to 
compute only half matrix. 
The above matrix - "adjacent matrix" - reports only the direct distance between each couple of city.  
But we can join, for example, city 1 and city 3 in several different paths: 
city 1 - city 2- city 3   = 18 + 15 = 33 Km 
city 1 - city 4 - city 6 - city 3   = 10 + 24 + 8 = 42 Km    etc. 
 
The first one is the shortest distance path for city 1 and city 3 
We can repeat this research for any other couple and find the shortest path for all couple of city. But it will 
tedious. The Floyd algorithm automates just this task. Applying this algorithm to the above matrix we get 
the following matrix 
 

 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 33 10 26 31 
city 2 18 0 15 10 8 13 
city 3 33 15 0 25 9 8 
city 4 10 10 25 0 18 23 
city 5 26 8 9 18 0 5 
city 6 31 13 8 23 5 0 

 
This matrix reports the shortest distance between each couple of city 
For example the shortest distance between city 1 and city 5 is 26 Km 
 

 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 33 10 26 31 
city 2 18 0 15 10 8 13 
city 3 33 15 0 25 9 8 
city 4 10 10 25 0 18 23 
city 5 26 8 9 18 0 5 
city 6 31 13 8 23 5 0 
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For example the shortest distance between city 3 and city 4 is 25 Km 
 

 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 33 10 26 31 
city 2 18 0 15 10 8 13 
city 3 33 15 0 25 9 8 
city 4 10 10 25 0 18 23 
city 5 26 8 9 18 0 5 
city 6 31 13 8 23 5 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As we can see to find the shortest paths is simple for a low set of nodes, but becomes quite heavy for 
larger set of nodes. 
 
The thing are more difficult if the paths are "oriented"; for example if one or plus ways are only one 
direction 
 
Let see this example 
 
 
 
 
 
 
 
 
 
The adjacent matrix is built in the same way; the only different is that in this case is not symmetric. 
For example between the node 1 and node 2 there is a direct path of 1 km, but it is not true the contrary 
 

 node 1 node 2 node 3 node 4 
node 1 0 1 x x 
node 2 x 0 1 3 
node 3 x x 0 x 
node 4 3 x 4 0 
 
 

1 2 3

4 5 6 

18 Km 

10 Km 

15 Km 

10 Km 

8 Km 

5 Km 

8 Km 

9 Km 

24 Km 

1 2 

4 3 

1 km 

3 km 
1 km

3 km

4 km 



T U T O R I A L  F O R  M A T R I X . X L A  

 75

Applying the Floyd algorithm we get the following matrix 
 

 node 1 node 2 node 3 node 4 
node 1 0 1 2 4 
node 2 6 0 1 3 
node 3 x x 0 x 
node 4 3 4 4 0 
 
Reading this matrix is simple: 
 
To go from node 1 to the node 2 there's the shortest path of 1 km; on the contrary, from node 2 to node 1 
there's the shortest path of 6 km 
 

 node 1 node 2 node 3 node 4 
node 1 0 1 2 4 
node 2 6 0 1 3 
node 3 x x 0 x 
node 4 3 4 4 0 
 
 

 node 1 node 2 node 3 node 4 
node 1 0 1 2 4 
node 2 6 0 1 3 
node 3 x x 0 x 
node 4 3 4 4 0 
 
 
We note that from node 3 there is not any path to reach any other nodes. The row of node 3 has all "x" 
(means no path) except for itself. But it can be reached by all other nodes. 
 
Let's see how use this array function in Excel 
 
Shortest path 
First of all, write the adjacent matrix (we have drown also columns and rows header but they are not 
indispensable) 

 
 
Now choose the site of you want to insert the shortest-path matrix; that is the matrix returned by function 
Path_Floyd. It must insert as an array function. That returns a 6 x 6 matrix 
Example. Assume that you choose the area below the first matrix: select the area B10:G15 and now 
insert the function Path Floyd(). Now you must input the adjacent matrix; select the area B2:G7 of the first 
matrix 
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Now gives the keys sequence CTRL+SHIFT+ENTER  
That is: 

1. Press and keep down the CTRL and SHIFT keys 
2. Press the ENTER key 

 
All the solution's values fill all the cells that you have 
selected. 
Note that Excel shows the function around two braces { } 
These symbols mean that the function return an array. 
 
The matrix returned is the shortest-path matrix  
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Function SVD - Singular Value Decomposition 
 
Function SVD_U(A) 
Function SVD_D(A) 
Function SVD_V(A) 
 
Singular Value Decomposition of a (n x m) matrix A  provides 3 matrices, U, D, V  performing the 
following decomposition10: 
 

TVDUA ⋅⋅=  

Where:  p = min(n, m) 

U  is an orthogonal matrix (n x p) 
D  is a square diagonal matrix (p x p) 
V  is an orthogonal matrix (m x p) 
 

 
Each of the above functions returns one of the SVD matrices.  
 
For example 
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Example. Find the SVD decomposition for the given matrix 
 

 
 
From the D matrix of singular values we get the max and min values to compute the condition number m 
11 , used to measure the ill-conditioning of a matrix. In fact, we have: 

m = 9.361 / 0.1 = 93.61 

The SVD decomposition of a square matrix return always square matrices of the same size, but for a 
rectangular matrix we should take a bit more attention to the correct dimensions.  
Let’s see this example 

                                                      
10 Some authors give a different definition for SVD decomposition, but the main concept is the same. 
11 Respect to the norm 2 
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Sometime it happens that the matrix is singular or “near singular”. The SVD decomposition evidences this 
fact and allows computing the matrix rank in a very fast way. You have to count the singular values 
greater than zero (or a small value, usually 1E-13 ).  For this scope we need only the singular values 
matrix returned by the function SVD_D(). Let’s see. 
 

 
 
 
 
Denomination. The matrix returned by the SVD are usually called: 

U ( hanger ),   D  (stretcher),  V (aligner). 

So the decomposition for a matrix A can be written12 

(any matrix) = ( hanger ) x (stretcher) x (aligner) 
 
 
 
 
 

                                                      

12 For further details see the “Introduction to the Singular Value Decomposition” by Todd Will, UW-La Crosse, 
Wisconsin, 1999 and “Matrices Geometry & Mathematic” by Bill Davis and Jerry Uhl 

In this example the true 
rank of the given (5x5) 
matrix is only 3, 
because there are only 
3 singular value different 
from zero. 
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Function MatMopUp(M, [ErrMin]) 
This function eliminates all round-off errors from a matrix. Each element that is absolute less than ErrMin 
is substituted by zero. 
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Parameter ErrMin is optional (default ErrMin = 1E-15) 
 

 
 
 
 

Function MatCovar(A) 
Returns the covariance matrix (m x m) of a given matrix (n x m) 
The (column) covariance is definite by the following formulas: 
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Where 
 
 
See also the matrix correlation function MatCorr() 
This function is similar to COVAR built-in function for two variables. 
 
 
 

Function MatCorr(A) 
Returns the correlation matrix (m x m) of a given matrix (n x m) 
The correlation matrix is definite by the following formulas: 
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Note. Correlation matrix has always diagonal =1 
See also the matrix covariance function MatCovar 
 
Example - find the covariance and the correlation matrix for the following data table: 
 

x1 7 4 6 8 8 7 5 9 7 8 
x2 4 1 3 6 5 2 3 5 4 2 
x3 3 8 5 1 7 9 3 8 5 2 

 
There are three variables x1, x2, x3 and 10 data observations. The matrix will be 3 x 3. 
In the first columns A, B, C we have arranged the row data (orientation is not important). 
In the last row we have calculate the statistics: average ix   and standard deviation xiσ  for each column. 
 
In the column D, E, F we have calculated the normalized data; that is the data with average = 0 and 
standard dev. = 1.  
 
We have calculated each column ui with the following simple formulas: 
 
 

 
At the right we have calculated the covariance matrices for both row and normalized data: They are 
always symmetric. 
At the right-bottom side we have calculated the correlation matrix for the row data; we note that the 
correlation matrix of row data and the covariance matrix of normalized data are identical. That is: 

 Covariance(Normalized data) ≡   Correlation(Row data)    

The function MatCorr() is useful to get the correlation matrix without performing the normalization process 
of the given data. 
 
Correlation is a very powerful technique to detect hidden relations between numeric variables 
 
Example - In an experimental test it was measured the oxygen respired by 10 persons. Of each of them it 
was taken his age and his weight. We want to discover if the respired oxygen depends by age or by 
weight or by both. The test data are in the following table 
 
Age 44 38 40 44 44 42 47 43 38 45 
Weight 85.84 89.02 75.98 81.42 73.03 68.15 77.45 81.19 81.87 87.66 
Oxygen 120.94 129.47 116.55 122.92 118.57 114.73 125.37 119.20 127.10 127.52 
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Function REGRL(Y, X, [ZeroIntcpt] ) 
Computes the multivariate linear regression with the SVD method. 
Parameter Y is the (n x 1)  vector of the dependent variable.  
Parameter X is a list of independent variable. It may be a (n x 1)  vector for monovariable regression or a 
(n x m) matrix for multivariate regression. 
Parameter ZeroIntcpt, if present, forces the Y intercept to zero: Y(0)= 0 
The function returns the (m+1) coefficients of the linear regression. For monovariate regression, it returns 
two coefficients [a0, a1]; the first one is the intercept of Y-axis, the second one is the slope. 
 
Example - find the linear best fit for the following data table 
 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
y 5.12 6.61 8.55 10.07 11.35 12.47 13.48 14.41 15.27 16.07 16.82 17.54 18.22 18.86 

 
The linear model for one independent variable is:   y = a0 + a1 x 
 

 
 
The coefficient r2, between 0 and 1, measures how good is the fit (0 bad - 1 perfect) 
In Matrix.xla there is not a specific function for that, but it can be easily computed by the standard statistic 
functions and using the formula 

( )
( ) )var(

)ˆvar(ˆˆ
2

2
2

y
y

yy
yy

r =
−

−
=

∑
∑

 
 
 

In the correlation matrix we 
discover a relative high level of 
correlation for 
 a23 = a32 = 0.78 (the max is 1) 
 
This means that between 
variable 2 and 3 there is a tight 
relation.  
On the contrary, we note a 
weak dependence between 
variable 1 and 3 
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Function REGRP(Degree, Y, X, [ZeroIntcpt] ) 
Computes the polynomial regression f(x) of a dataset of points  [xi, yi]. 
Parameter Degree set the degree of the polynomial. 
Parameter Y is a (n x 1) vector of the dependent variable.  
Parameter X is a (n x1) vector of the independent variable. 
Parameter ZeroIntcpt, if present, forces the intercept to zero: f(0)= 0 
The function returns the coefficients of the polynomial regression [a0, a1, a2, ...am]. 
where m is the degree of the regression model 

m
mxaxaxaaxf ...)( 2

210 +++=  
 
Example: Given a table of (x, y) points, find the 6th degree polynomial approximating the given data 
 

 
 
 
 

Function Interpolate(x, Knots, [Degree], [Points]) 
It returns the polynomial interpolation of a set of data points  [xi, f(xi)]. 
Parameter x is the point to interpolate. It can be also a vector of interpolation points. 
Parameter knots is a matrix (n x 2) of data point  [xi, f(xi)]. 
Parameter degree, set the degree of interpolation polynomial (default degree = 2) 
Parameter points, set the number of points subset for the polynomial regression. If omitted, the function 
assumes:  points = degree +1  
 
This function uses the piecewise interpolation method. Interpolation is exact if the number of points is 
equal to degree +1. Interpolation is approximated with the Least Squares if the number of points is 
greater then degree +1 
 
The function returns interpolation value y at x point. If x is a vector, the function returns a vector. In this 
case you must insert the function with CTRL+SHIFT+ENTER sequence 
 
Example. Perform the sub tabulation with step = 0.1 of a given table with 7 knots, using the parabolic 
interpolation (polynomial degree = 2) 
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This function can be used also for “data smoothing”. This problem is common when the points are derived 
from experimental measurements. See chapter “Interpolate” of Vol. 1. 
 
 
 

Function MatCmp(Coeff) 
Returns the companion matrix of a monic polynomial, defined as: 
 

 
 

 
 
Parameter Coeff is the complete coefficients vector. If an ≠ 1, the coefficients are normalized before 
generating the companion matrix 
Example: 
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Function MatCplx([Ar], [Ai], [Cformat]) 
 
Converts 2 real matrices into a complex matrix 
Ar is the (n x m) real part and Ai is the (n x m) imaginary part 
The real or imaginary part can be omitted. The function assumes the zero-matrix for the missing part.  
Example 
 
A pure real matrix can be written into 

MatCplx(Ar) = [ ] [ ]0jAr +  
A pure imaginary matrix can be written as 

MatCplx(, Ai) = [ ] [ ]iAj+0       (remember the comma before the 2nd argument) 

 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
 
Use CTRL+SHIFT+ENTER to insert this function 
 
This function is useful for passing a real matrix to a complex matrix function, such as, for example the 
M_MULT_C. If we have to multiply a real matrix for a complex vector, we can use the M_MULT_C 
function; but, because this function accepts complex matrices, we have to convert the matrix A into a 
complex one (with a null imaginary part) by the MatCplx function and then pass the result to the 
M_MULT_C. In other words we have simply to nest the two functions like that 
 

 
 
 
 

Function Poly_Roots_QR(Coefficients) 
This function returns all roots of a given polynomial 
Parameter Coefficients is a (n+1 x 1) vector, where n is the degree of the polynomial 
This function uses the QR algorithm. The process consists of finding the eigenvalues of a companion 
matrix with the given polynomial coefficients.  
This process is very fast, robust and stable but may not be converging under certain conditions. If the 
function cannot find a root it returns “?”. Usually it suitable to solve polynomial up to 10th degree with a 
good accuracy (1E-9 – 1E-12) 
 
Example: Find all roots of the following polynomial of 8 degree 

P(x) = 240 − 68x −190x2 − 76x3 + 79x4 + 28x5 −10x6 − 4x7 + x8 
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As we can see the polynomial has four real and four complex conjugate roots 
 
 

Function Poly_Roots_QRC(Coefficients) 
This function returns all roots of a given complex polynomial 
Parameter Coefficients is a (n+1 x 2) array, where n is the degree of the polynomial 
If the function cannot find a root it returns “?”. Usually this function is suitable to solve polynomial up to 10 
degree 
This function uses the QR algorithm. The process consists of applying iteratively the QR decomposition to 
the complex companion matrix.  
 
Example. Find all the roots of the following polynomial 
 

jzjzjzjzzP 248)222()79()25()( 234 +++−+++−=  
 
 

 
 
 

Function MatRot(n, teta, p, q) 
Returns the orthogonal matrix (n x n) that performs the planar rotation over the plane defined by axis p 
and q 
Parameter teta sets the angle of rotation in radiant 
Parameter p and q are the columns of the rotation and must be: p <> q  and p ≤ n and p ≤ n 
 
Example: In the 3D space, the canonical rotation matrices are 
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Where: 

)(sin  ,  )cos( θθ == sc  
 
Note that all rotation matrices have determinant = 1 
 
Example. Given two vectors in R2 (v1, v2) ,  found the same vectors after a rotation of 30° deg 
 
The transformation formula is: 
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That can be arranged in the following way: 
 

  
 
 
 
 

Conditioned Number 
This number is conventionally used to indicate how a matrix is ill-conditioned 
Formally the conditioned number of a matrix is defined by the SVD decomposition as the ratio of the 
largest (in magnitude) element to the smallest element of diagonal matrix 
Given the SVD decomposition: 

                             
TUDVA =  where: ],...,,[ 332211 nndddddiagD =  

 
The conditioned number is 
 
 
A matrix is ill-conditioned if its conditioned number is very large. For a 32bit double precision arithmetic 
this number is about 1E12. In this package there is not a specific function that returns this number, but it 
can be easily calculate by the D matrix returned by the function SVD_D 
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Function VarimaxRot(FL, [Normal], [MaxErr], [MaxIter]) 
This function computes the orthogonal rotation for a Factors Loading matrix using the Kaiser's Varimax 
method for 2D and 3D factors 
Parameter FL is the Factor Loading matrix to rotate (n x m). The number of factor m, at this release, must 
be only 2 or 3. 
Optional parameter Normal = True/False chooses the "Varimax normalized criterion". That is, indicates if 
the matrix of loading is to be row normalized before rotation (default = False) 
Optional parameter MaxErr set sets the accuracy required (default = 10^-4). The algorithm stops when 
the absolute difference of two consecutive Varimax values is less of MaxErr 
Optional parameter  MaxIter  sets the maximum number of iterations allowed (default=500) 
 
Algorithm 
The Varimax rotation procedure was first proposed by Kaiser (1958). Given a numberOfPoints × 
numberOfDimensions configuration A, the procedure tries to find an orthonormal rotation matrix T such 
that the sum of variances of the columns of B*B is a maximum, where B = AT and * is the element wise 
(Hadamard) product of matrices. A direct solution for the optimal T is not available, except for the case 
when numberOfDimensions equals two. Kaiser suggested an iterative algorithm based on planar 
rotations, i.e., alternate rotations of all pairs of columns of A. 
For Varimax criterion definition see Varimax Index    
 
This function is diffused, by now, in the almost principal (and expensive) statistics tools, because, on the 
contrary, it is very rare in freeware software, we have added to our add-in. 
Let's see how it works with one popular example 
 
Example 2D- Initial Factors Matrix 
 
 Factor 1 Factor 2 

Services 0.879 -0.158 

HouseValue 0.742 -0.578 

Employment 0.714 0.679 

School 0.713 -0.555 

Population 0.625 0.766 
 
Rotate Factors Matrix: method Varimax 
 

 
 
As we can see the varimax index is incremented after the varimax rotation method. Each variable has 
maximized or minimized its factors values  
 
 
 

The goal of the method is to try to 
maximize one factor for each 
variable. This will make evident 
which factor is dominant (more 
important) for each variable. 
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Function VarimaxIndex(Mat, [Normal]) 
Returns the Varimax value of a given Factor matrix Mat 
Varimax is a popular criterion Kaiser (1958) to perform orthogonal rotation of Factors Loading matrices. 
Usually, the rotation stops when Varimax is maximized 
Optional parameter Normal = True/False indicates if the matrix is to be row normalized before computing 
 
Formula 
Varimax, for a matrix A with p row and k column (p x k) is defined as following (*): 
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Function MatNormalize(Mat, [NormType], [Tiny]) 
Returns the normalized vectors of a real (n x m) matrix. 
The optional parameter Normtype indicate what normalization is performed 
The optional parameter Tiny  set the minimum error level (default 2E-14) 
 

|| minv
vu i

i =
 

Normtype = 1.  All vector’s components are scaled to the min of the 
absolute values 
 

|| v
vu i

i =
 

Normtype = 2   (default). All vectors are length = 1 
 

|| maxv
vu i

i =
 

Normtype = 3. All vector’s components are scaled to the max of the 
absolute values 
 

 
 
Example - Normalize the following 3x3 matrix 
 

 
 
 
 

Function MatNormalize_C(Mat, [NormType], [Cformat], [Tiny]) 
Returns the normalized vectors of a complex (n x m) matrix. 
This function supports 3 different complex formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex format of input/output (default = 1) 
 
Example - Normalize the following complex vector 
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Function MatNorm(v, [NORM]) 
Return the norm of a matrix or vector 
Parameter v can be a vector or a matrix; optional parameter Norm sets the specific norm to compute 
(default 2 for vectors, and 0 for matrices) 
 
The norm returned can be: 
 
For vectors 
 

Norm = 1 Absolute sum ∑=
i

ivv ||
1

 

Norm = 2 Euclidean norm ∑=
i

ivv 2
2

 

Norm = 3  ( also infinite) Maximum absolute  ( )||max
3 ii vv =

 
 
For matrices 
 

Norm = 0 Frobenius norm ∑∑=
i j

ijaA 2
0

)( 
 

Norm = 1 Maximum absolute column sum 







= ∑

i
ijj aA ||max

1
 

Norm = 2 Euclidean norm ( )AAA Tρ=
2  

Norm = 3 ( also infinite) Maximum absolute row sum 







= ∑

j
iji aA ||max

3
 

 
Note: the norm 2 for vectors and norm 0 for matrices give the same values of M_ABS function 
 
Example: Find norm 0, 1, 2, 3 for the given 4x3 matrix 
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Function M_MULT_C(M1, M2, [Cformat]) 
Performs the complex matrix multiplication. 
If the dimension of the matrix M1 is (n x m) and M2 is (m x p) , then the product is a matrix (n x p) 
This function now supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
 
M1 = A + j B  M2 = C + j D  
 
where A, B, C, D are real matrices 
 
Example: 
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The calculus can be also performed in 
the handy string rectangular format. We 
have only to set the Cformat parameter 
to 3 
 

 

 

Of course, this function can be used for 
multiplying a matrix and a vector 

 
 
 

Note that the 
imaginary parts of 
matrices must be 
always inserted even 
if they are all 0 (real 
matrices).  
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Function M_INV_C(A, [Cformat]) 
Complex matrix inversion 
The complex matrix A must be square  
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
Complex (split or interlaced) matrix must have always an even number of columns 
 
 

 
 
 
 

Function ProdScal_C(v1, v2, ) 
Returns the scalar product of two complex vectors 

 

( ) ( )kimre
k

kimre ibbiaaba −⋅+=• ∑
rr

 
 

 
 
Note that the imaginary parts of vectors must be always inserted even if they are all 0 (real matrices). 
 
In string format we can write complex numbers as string  “a+ib”. 
Look at the same example. Note the third optional parameter cformat = 3 
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Function SYSLIN_C(A, b, [Cformat]) 
This function solves a complex linear system by the Gauss-Jordan algorithm. 
Returns the vector solution of the given system 
This function now supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
Remember that for a linear system: 

bAx =  
A  is the system complex square matrix (n x n)  
x  is the unknown complex vector (n x 1) 
b  is the constant complex vector (n x 1) 

As known, the above linear equation has only one solution if - and only if -, Det(A) <> 0 
 
Example - solve the following complex 3x3 linear system 
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We can also use directly the complex string format “a+bj”, Simply set the parameter cformat = 3 
 

 
 
 
 

Function Simplex(Funct, Constrain, [Opt]) 
This function perform the linear optimization with the Simplex method 
Funct is the array (1 x n) containing the coefficients of the linear function to optimize  
Constrain is the array (m x n+2) containing the coefficients of m  linear constrain and the type of 
constrain (“<” , “>”, “=”) 
Opt set the optimization type: 1 (default) for maximization, 0 for minimization. 
 
A typical linear programming problem – also called linear optimization – is the following. 

















−
−−

+
=⋅

















−−
−−+−

−

i
i
i

i
ii

ii

311
11

105

4210
1231
321

x



T U T O R I A L  F O R  M A T R I X . X L A  

 93

  
Maximize the function z 

nn xaxaxaz ...2211 ++=
 

 
With the following constrains: 

0≥ix
 

and for  j=1 to m 

12211 ... cxbxbxb njnjj ≤++
 

 
This function accepts the constrains symbols:  “<”  , and also  “>”, and “=”  
 
This function returns: 
If an optimal solution exists – that is: all constrains are satisfied and the function is maximized – then it 
returns the solution vector and, in the last cell, the corresponding function value  
If the constrains region is unbounded – that is, if the region is not closed - a finite solution cannot exist 
and the function return “inf”. Typically it happens when the constrains are insufficient 
If the constrains region is bounded, but the solution doesn’t exist, the function returns “?”. Typically it 
happens when you add too many constrains 
 
Note: The columns of Constrain must be n+2, where n is the columns of the function coefficients. If this 
condition is not true, the function returns “??”. Typically it happens when you select region with wrong 
dimensions. 
 
Now lets see how it works. 
 
Example: find the maximum of the function: 

F(x,y)= 1.2 x + 1.4 y 
 
With the following constrains: 

40 x +25 y =< 1000 
35 x + 25 y = < 980 
25 x + 35 y =< 875 
 

 
 
Note that it is indifferent to write “<” or “<=” for the constrain symbols 
The solution is about: 

x = 16.935 , y = 12.903  , f(x, y) = 38.387 
 
This function accept also mixed constrain symbols  
Let’s see this example  
 
Maximize z = x1 + x2 + 3 x3 – 0.5 x4 
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With all the x variables non-negative and also with: 

x1 + 2 x3  <=  10                 
2 x2 - 7 x4  <=  0                 
x2 – x3 + 2 x4  >=  10                 
x1 + x2 + x3 +x4  =  9                 
 

 
 
 
 

Function RRMS(v1, [v2]) 
This function computes the root mean squares of the regression residuals. 
The argument v1 and v2 are vectors (n x 1 ) or (1 x n) 
If the second vector is omitted the function returns simply the root mean squares of the vector 
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This function can be used to return the average difference between two matrices 
 
Example - Two different algorithms have given the following inverse matrices. Measure the average error. 
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Function MatPerm(Permutations) 
Returns the permutations matrix. It consists of sequence of n unitary vectors. 
The parameter is a vector indicating the sequence. 
 
For the 4x4 matrices space, we have  
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A permutations matrix is indicated by a sequence vector, like for example: 
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Function Mat_Hessemberg(Mat) 
Returns the Hessemberg form of a square matrix 
As known a matrix is in Hessemberg form if all values under the lower sub-diagonal are zero. 
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Function Mat_Adm(Branch) 
Returns the Admittance Matrix of a Linear Passive Network Graph. 
 
Branch is a list of 3 columns giving the basic information 
of  each branch: 
 node+, node-, admittance . 
The number of rows must be equal to the branches of 
the graph  
 

n-n+ y = a + bj

I  

A complex admittance has a real part (conductance) and an imaginary part (susceptance). In this case 
you have to provide a 4 columns list. 
 
Nodal Analysis gives the following equation to solve the 
linear passive network, where V is the vector of nodal 
voltage, I is the vector of nodal current and [Y] is the 
admittance matrix. 
If N+1 is the number of nodes, then the matrix 
dimension will be (N x N).  
(usually the references nodes is set at V = 0 ) 
V, I, [Y] are in general complexes 
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The function returns an (N x 2*N) array. The first N columns contain the real part and the last N columns 
contain the imaginary part. If all branch-admittances are real, also the matrix will be real and the function 
return a square (N x N) array. 
 
Linear Electric Network 
Nodal Analysis is widely used for Electric Network. A passive linear network is composed by four basic 
components: Resistor, Inductor, Capacitor and Current Source. In sinusoidal state, with constant 
frequency, the admittance branch can be derived by the following formulas 
 

Resistor  Value R (ohm) Admittance y = 1/R 

Capacitor  Value C (farad) Admittance y = j ω C 

Inductor  Value L (henry) Admittance y = −j 1/(ω L) 

Current source  
 Value I (ampere) I = Ire + j Iim 

 
Where : ω = 2 π f    (rad / s) 
 
Example. Compute the admittance matrix of the following linear passive electric network and find the 
nodal voltage 
 

0.1 j 0.2 j 0.1 j
 

−0.2 j0.1 0.25

 0.1

0.1

1.21

V1 V2 V3 V4
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The network has 8 branches, mixed real and complex, and 4 nodes (the ground is the references node 
and is set to 0). So the network list has 8 rows  and 4 columns. The independent currents generators are 
indicated in another list. The linear complex system can be solved by the SYSLIN_C.  
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Thermal Network 
There are also other networks than electrical ones, that can be solved with the same method. The same 
principles can be applied, for example to study one dimensional heat transfer.  
 
One-Dimensional Conduction Heat Transfer.  
 
The rate of conduction heat transfer through a material, 
having thermal conductivity “k”,  is proportional to the 
temperature gradient across the material 
 

             
( ) ( )LHLH TTgTT

d
kQ −−=−⋅−=

     
 
 

TH

TL

d

Q

 
 
Thus, the network equations are the same of the electric network after replacing: 
 

I  (ampere) electric current ⇔ Q (cal/s) rate of conduction heat 
V (volt)  Voltage ⇔ T (° Kelvin) temperature 
g  (siemens) electric conductance ⇔ g (cal/m s °K) thermal conductance 

 
Example: Find the temperature profile through a sandwich material of 3 layers  
 

TH TL

T1 T2

d1
d1 d2 d3

QH QL

 

Layer d (cm) K (cal /cm s °C) 
1 0.1 0.04 
2 0.4 0.12 
3 0.2 0.08 

 
Where: 

 TH = 400 ° C  

 TL = 20 ° C 

 QH = TH ⋅k1/d1 = 160 cal/s 

 QL = TL ⋅k3/d3  = 8 cal/s 

Internal temperature T1 and T2 are unknowns 

 
 
The thermal networks equivalent to the above sandwich are shown in the following figures: the right one 
is obtained after substituting the temperature sources with theirs equivalent heat sources 
 

T1 T2 TLTH

g1 g12 g3

 

 

 
Where thermal conductance are: 

g1 = k1/d1,     g12 = k2/d2,      g3 =k3/d3 
 
 
A spreadsheet calculus can be arranged as the following 
 

T1 T2

QH = TH·g1

g1

g12

g3
QL = TL·g3
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With the internal temperature T1 and T2 we can easily draw the thermal profile along the material 
 

Temperature along sandw ich material
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°C

cm

 
 
 
 
 
 
 
 

If [A] is the admittance 
matrix, the vector of 
temperature can be 
solved with the 
following formula 
 
T = [A]−1 Q 
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Function Mat_Leontief(ExTab, Tot) 
Returns the Leontief inverse matrix of the Input-Output Analysis Theory. 
Parameter ExTab is the interindustry exchange table (or IO-table). This table lists the value of the goods 
produced by each economy sector and how much of that output is used by each sector. 
Parameter Tot is the total production vector 
 
Input Output Analysis 
Recall theory definition. Input Output Analysis is an important branch of economics that uses linear 
algebra to model interdependence of industries. Assuming EX the Exchange table 

[ ]ijxEX =
 

 
The Technology matrix (or Consuption matrix) is 












=

j

ij

X
x

A
 

where Xj is the total production of the j-th sector 
 
The Leontief inverse matrix is . 

1)( −−= AIL  
 
If D is the Final Demand vector  the production X is given by the following formula. 
 

XLD ⋅=  
 
Example. Giving the following Exchange table of Goods and Services in the U.S. for 1947 (in billions of 
1947 dollars), find the Leontief matrix and calculate the production for a final demand of 
 
Supply   Purchasing 

sectors 
  total 

sectors Agriculture Manufact. Services output 
Agriculture 34.69 4.92 5.62 85.5 
Manufact. 5.28 61.82 22.99 163 
Services 10.45 25.95 42.03 219 

 
 

 
 
. 

Sectors demand 
Agriculture 45 
Manufact. 74 
Services 130 

As we can see, in order 
to satisfy the demand of 
agriculture = 45, 
manufacturing = 74, and 
Services = 130,  the total 
production should be 
increased of 8.7% for the 
agriculture, 0.3% for the 
manufacturing and 
decreased of  -5.4% for 
services 
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Function JoinRow(R1, R2, [R3]...) 
This function builds a matrix using separated rows 
R1, R2, .up to R8..are (1 x m) array having the same dimension m. They can be also rectangular (n x m) 
arrays having the same width. 
The rows can be located in any part of the sheet 
 

 
 
 
 

Function JoinCol(C1, C2, [C3]...) 
This function builds a matrix using separated columns 
C1, C2, .up to C8..are (n x 1) array having the same dimension n. They can be also rectangular (n x m) 
arrays having the same height. 
The columns can be located in any part of the sheet 
 

 
 
 
The functions JoinRow and JoinCol can be nested each other for building matrices. 
 
Here we have used the array formula  
 
{=JoinRow(JoinCol(A2:C4,E2:E4),A7:D7)} 
 
for building the (4 x 4) matrix 
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Matrix Tool 
 
The Matrix toolbar 
This floating toolbar is useful for several tasks: selecting and pasting scraps of matrices; generating 
different kind of matrices and several useful matrix operations. And, of course, it can be used also for 
recalling the Matrix help-on-line. You can show It by clicking on the Matrix icon  
 

    (Matrix.xla v.1.9) 
 

   Topics available are:   
• Selector tool select matrix pieces 
• Generator tool generate random and special matrices 
• Macros starter for macros stuff 
• Help call the on-line manual 

 
 
Selector tool.  
It can be used for selecting several different matrix formats: diagonal, triangular, tridiagonal, adjoin, etc. 
Simply select any cell into the matrix and choose the menu item that you want.  
 

  
 

 
 

 
  

 
 

   
 

Chapter 

3 
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Automatically the “Selector tool” works on the max area bordered by empty cell that usually correspond to 
the full matrix. If you want to restrict the area simply select the sub-matrix that you want before starting 
the Selector macro 
 
For example if you need to select the 
lower sub diagonal; simply select the 
sub-matrix containing the diagonal 
[10,9,5,4,1].  
Then choose the menu item: 
Selector\diagonal 1st 

  
 
If you start the macro without selecting any matrix 
cell, the following pop-up window appears asking 
you the top-left and the bottom-right corners of the 
range that you want to select. By the combo box 
you can choose the selection format that you like  
The Paste button call the Paster tool 
 

 
 
 
Scraps Paster tool.  
The selection of matrix’s parts is obtained by a multi range selection. Excel cannot copy it. If you try to 
give the usual sequence CTRL+C you will have an error. 
 
For this task comes in handy this smart little 
macro for pasting the range or multi-range that 
you have previous selected. 
After chosen the Paster item from the menu a 
window pop-up appears. Simply indicate the 
destination top-left corner and chose OK.  
That’s all  
The destination cells will be filled with the values 
of the selected cells. No format will be copied. 
Only plain values. 

 
 
Of course this tool has other interesting options. Let’s see. 
 
Fill unselecting cells with zero: check this if you fill all other cell of the matrix with zero. This is useful to 
build a new matrix with a part of the original one. 
Example: If you want to build a new lower triangular matrix with the element of another one, you can use 
this simply option and the result will be similar to the following: 
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Change the target range:  Normally the range is copied as 
is. But sometime we need to reformat the geometry of the 
given range. This happens, for example when we want to 
extract the diagonal elements from a given matrix and to 
convert it in a vertical vector. 
In this case, after you have selected the diagonal, check the 
option vertical 
The diagonal element will be... “verticalized”.  
 

 

Some time we need the inverse of this transformation: from a 
vertical vector, we have to build the diagonal matrix having 
the vector elements on its diagonal. 
For that select the vector that contains the elements. Start the 
Scraps Paster  tool and check the zero and diagonal option. 
Giving OK, you will generate the matrix to the left 
 

 
Or we can extract an adjoint sub-matrix. 
For example, select the a33 element and 
choose the menu Selector\adjoint. Than 
activate the Paster. Indicate the top-left 
corner and select the option “Adjoint”. 
The macro will copy the selected 
elements rebuilding a new 5x5 matrix 
 
Flip. We can also invert the order of 
rows or columns of the target matrix 
For example, select the full matrix 
(ctrl+shift+*) and run the “Paster tool”, 
choosing the flip vertical option. 
 

 
 
 
The matrix target can also be the same of the original one. In that case the changing will be done "on 
place" of the same matrix. Of course the transformation has sense only if the source and target range 
have the same dimensions: that is for square matrices. For example, assume you want transpose a 
square matrix on the same site 
 

 

Select the range B2:E5 and 
then run the “Paster tool”, 
choosing the B2 as target 
corner and Transpose as 
option. 
The result will be the transpose 
matrix in the same range  
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Matrix Generator 
This smart macro can generate different kind of matrices 
 

Random 
 

Generate random matrices with the following parameter: 
dimension, max e min values, format: full, triangular, tridiagonal, 
symmetric, decimals number. 
 

Rank / Determinant 
 

Generate random matrices with given rank or determinant 

Eigenvalues 
 

Generate random matrices having given eigenvalues 

Hilbert 
 

Generate Hilbert’s matrices  

Hilbert inverse 
 

Generate the inverse of Hilbert’s matrices  

Tartaglia 
 

Generate Tartaglia’s matrices  

Toeplitz Generate Toeplitz’s matrices 
 

 
Using this macro is quite simple: select the area that you want to fill with the matrix and then start the 
macro by the Matrix.xla toolbar.  
 
Random matrix with given format 
 

 

Parameters: 
Random numbers x are generated with the 
following constrains: 

Max value: upper limit of x 
Min value: lower limit of x 
Decimals: fix the decimals of x 
Int checkbox: numbers x are integers 
 
Sym checkbox: the matrix will be symmetric 
Sparse: percentage (between 0 and 1 ) of non-
zero elements to the total elements. The number 1 
(default) means full matrix 
 
Starting from: top-left matrix corner 
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Random matrix with given eigenvalues 
 

 

Eigenvalues: vertical range containing the real 
eigenvalues. 

 
 

  
 
 
Random matrix with given determinant or rank 
 

 

Generate a square matrix with given determinant 
or rank 

Dimension: matrix dimension 
Rank: rank of the matrix. For default is set equal to 
the dimension. If it is less than the dimension, the 
determinant is automatically set to 0. 
Starting from: top-left matrix corner 
Determinant: sets the determinant of the random 
matrix 
Sym: generate a symmetric random matrix 
Int: generate a random matrix with integer values 

 
 
Tartaglia’s matrix  
Generate the Tartaglia’s matrix with given dimension. See Function Mat_Tartaglia() 
 
Hilbert’s matrix  
Generate the Hilbert’s matrix with given dimension. See Function Mat_Hilbert() 
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Macros stuff.  
This menu contains several macros performing useful tasks.  
 
Macro versus Function 
In Matrix package there are worksheet functions that perform the same tasks of the macros. The reason 
is that macros are more suitable for large matrices and heavy long computation.   
On the other hand, functions are suitable for automatic recalculation, but we have to say that Excel 
becomes very slow for large worksheet full of active functions. 
You should see when it is convenient using macros or functions. 
 

   Macros available are:   
 

Matrix operations Real Matrix operation 

Complex matrix operations Complex Matrix operation 

Eigen-solving Eigenvalues / Eigenvector for real and complex matricies 

Gauss-step-by-step Matrix reduction step by step with Gauss-Jordan algorithm 

Shortest Path Shortest paths matrix of a distance matrix 

Draw Graph Flow-Graph drawing of a distance matrix 

Block reduction Matrix block reduction with permutation matrix 

Clean-up Eliminate the tiny values 

Round Round values 

  

 
 
 
Macro Gauss-step-by-step 
 
This macro performs all steps to reduce a given matrix into a triangular or diagonal form by the Gauss 
and Gauss-Jordan algorithm. 
This macro works like the function Gauss_Jordan_step  except that it traces all multiplication coefficients 
as well all the swap actions. 
 
Using this macro is very easy. Select the matrix that you want to reduce and start the macro from the 
menu:    >macros > Gauss step by step 
 
For example, if you want to invert the following 3x3 matrix, add the 3x3  identity matrix to its right 
 

 
 
then, select the 3x6 range and start the macro 
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The reduction type options make the 
reduction to diagonal form (Gauss-Jordan) or 
to triangular (Gauss) 
 
The pivoting options force the algorithm to 
search always the max pivot along the 
column (partial pivoting) or, on the contrary, 
only when the diagonal element is zero. 
 
The first strategy is adopted for reducing the 
round off error, while the second one, more 
simple, is common in didactic applications 
 

 
The process are traced below the original matrix.  
 

 

Usually the coefficients for the linear combination 
are shown to the right… 

Of course the determinant changes. 
In this example we see that the determinant of the 
new matrix A1 is -3 times the one of the original 
matrix A 

 

 

…as well the exchange action 
 
Of course also the determinant changes sign. 
 

 
For further examples see the chapter Gauss-Jordan algorithm. 
 
 
 
Macro Shortest-Path 
 
This macro generates the shortest-path matrix from a given distance-matrix . It works like the function 
Path_Floyd  except that it accepts larger matrices (up to 255 x 255) 
 
Using this macro is very easy. Select the matrix that you want to reduce and start the macro from the 
menu:    >macros > Shortest path 
 
In the example below we see a 20 x 20 distance matrix  
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For default, the output matrix begin from cell D5, just below the input matrix. 
 
 
 
Macro Draw Graph 
 
This useful stuff draws a simple graph from its adjacent matrix. (There is now equivalent function for this 
macro). Using this macro is very easy. Select the matrix and start the macro from the menu: 

   >macros > Graph > Draw 
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Macro Block reduction 
 
This macro transforms a square sparse matrix into a block-partitioned form using the score-algorithm. 
This macro works like the functions Mat_Blok  and Mat_BlokPerm  except it is more adapt for large 
matrices. 
Using this macro is very easy. Select the matrix and start the macro at the menu: 

   >macros > Block reduction 
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Analytical Index 
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error; 30 
Exchange table; 102 

F 

Factors Loading; 88 
Floyd; 72 
format; 20; 92; 93; 94 

G 
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MatOrtNorm; 71 
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MatRndRank; 53 
MatRndSim; 53 
MatRot; 85 
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Moore-Penrose; 22 

MT; 28 
MTC; 28 
MTH; 29 

N 

network; 99 
Network; 99; 100 
Newton-Girard; 45 
Nodal Analysis; 99 
Norm; 90 
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O 

optimization; 95 
orthogonal; 19; 34; 69; 85; 88 
orthogonalization; 71 

P 

partioned; 36 
partitioned; 36 
Path; 72 
Path_Floyd; 72; 75 
Path_Min; 72 
permutation; 36 
permutations; 97 
Poly_Roots; 46 
Poly_Roots_QR; 84 
Poly_Roots_QRC; 85 
polynomial; 46; 83 
polynomial regression; 81 
positive definite; 67 
power; 22 
power’s iterative method; 49 
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ProdScal_C; 93 
product; 23 
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rank; 29 
REGRL; 81 
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root mean squares; 97 
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round-off errors; 79 
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scalar product; 30 
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shortest-path; 72 
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Singular Value Decomposition; 77 
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SYSLIN; 7; 57 
SYSLIN_C; 94 
SYSLIN_ITER_G; 59 
SYSLIN_ITER_J; 60 
SYSLIN3; 58 
SYSLINSING; 61 
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Technology; 102 
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TRASFLIN; 63 
triangular; 36; 67; 69 

U 
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