Security Issues in Mobile Communication Systems

N. Asokan

Nokia Research Center

IAB workshop on wireless internetworking

February 29 - March 2, 2000

What is different about wireless networks?

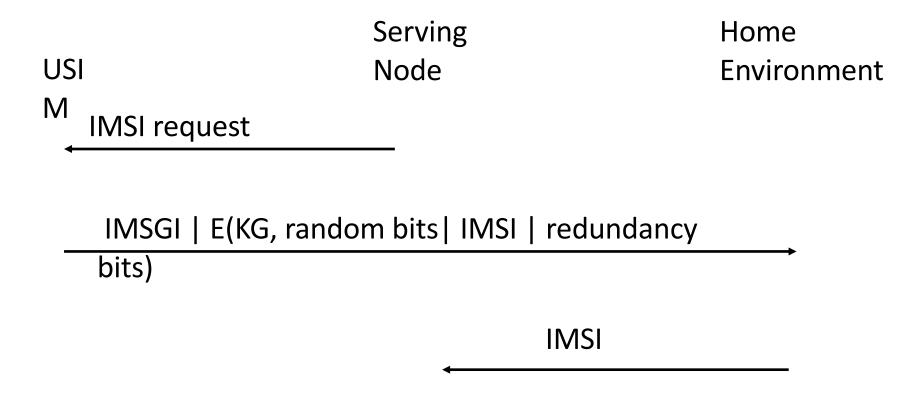
- Low bandwidth
 - minimize message sizes, number of messages
- Increased risk of eavesdropping
 - use link-level encryption ("wired equivalency")
- Also wireless networks typically imply user/device mobility
 - Security issues related to mobility
 - authentication
 - charging
 - privacy
 - Focus of this presentation

Overview

- Brief overview of how GSM and 3GPP/UMTS address these issues
- Potential additional security concerns in the "wireless Internet"
- Ways to address these concerns, and their implications

GSM/GPRS security

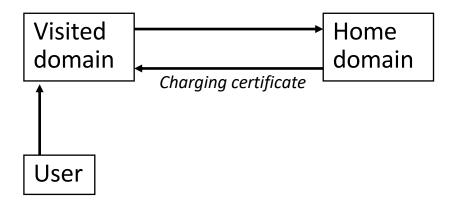
- Authentication
 - one-way authentication based on long-term shared key between user's SIM card and the home network
- Charging
 - network operator is trusted to charge correctly; based on user authentication
- Privacy
 - data
 - link-level encryption over the air; no protection in the core network
 - identity/location/movements, unlinkability
 - use of temporary identifiers (TMSI) reduce the ability of an eavedropper to track movements within a PLMN
 - but network can ask the mobile to send its real identity (IMSI): on synchronization failure, on database failure, or on entering a new PLMN
 - network can also page for mobiles using IMSI


3GPP/UMTS enhancements (current status)

- Authentication
 - support for mutual authentication
- Charging
 - same as in GSM
- Privacy
 - data
 - some support for securing core network signaling data
 - increased key sizes
 - identity/location/movements, unlinkability
 - enhanced user identity confidentiality using "group keys"
 - a group key is shared by a group of users
- Other improvements
 - integrity of signaling, cryptographic algorithms made public

Enhanced user identity confidentiality

IMSI is not sent in clear. Instead, it is encrypted by a static group key
 KG and the group identity IMSGI is sent in clear.


What is different in the wireless Internet?

- Potentially low cost of entry for ISPs supporting mobile access
- Consequently, old trust assumptions as in cellular networks may not hold here
 - between user and home ISP
 - between user and visited ISP
 - between ISPs
- Implications: potential need for
 - incontestable charging
 - increased level of privacy
- Relevant even in cellular networks?

Incontestable charging

- Required security service: unforgeability
- Cannot be provided if symmetric key cryptography is used exclusively
 - hybrid methods may be used (e.g., based on hash chains)
- Authorization protocol must support some notion of a "charging certificate"
 - used for local verification of subsequent authorization messages

Enhanced privacy

- Stronger levels or privacy
 - temporary id = home-domain, E(K, random bits | real-id)
 - using public key encryption
 - K is the public encryption key of the home-domain
 - using opaque tokens
 - K is a symmetric encryption key known only to the home-domain
 - tokens are opaque to the mobile user
 - user requires means of obtaining new tokens
 - no danger of loss of synchronization
- Identity privacy without unlinkability is often not useful
 - static identities allow profiles to be built up over time
 - encryption of identity using a shared key is unsatisfactory: trades off performance vs. level of unlinkability

Enhanced privacy (contd.)

- Release information on a need-to-know basis: e.g., does the visited domain need to know the real identity?
 - typically, the visited domain cares about being paid
 - ground rule: stress authorization not authentication
 - require authentication only where necessary (e.g., home agent forwarding service in Mobile IP)

An example protocol template

Visited Home User Domai Domain n Home, $E(PK_H, U, V, PK_{U_i}...)$ Sig_U(...) $E(PK_{H}, U, V, PK_{U},...), ...$ $Sig_H(PK_U...)$

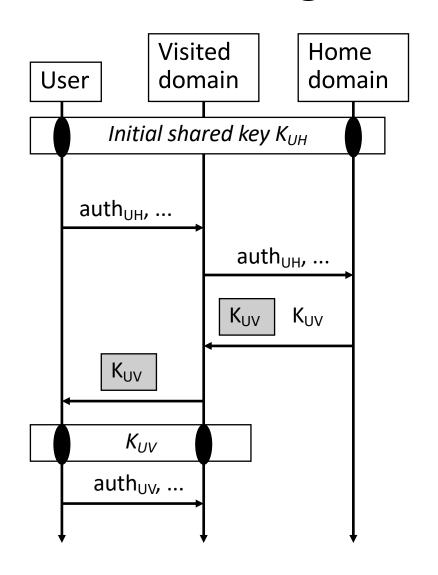
- unforgeable registration request
- real identity not revealed to the visited domain

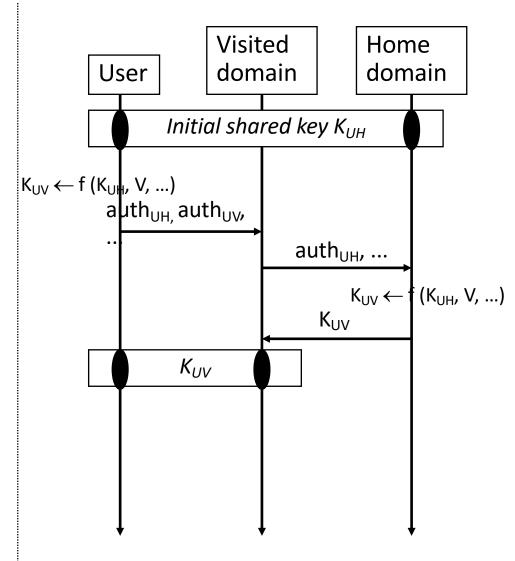
Implications

- Public-key cryptography can provide effective solutions
 - increased message sizes: use of elliptic curve cryptography can help
 - lack of PKI: enhanced privacy solution does not require a fullfledged PKI, some sort of infrastructure is required for charging anyway
- Are these problems serious enough?
 - trust assumption may not change so drastically
 - providing true privacy is hard: hiding identity information is irrelevant as long as some other linkable information is associated with the messages
 - try not to preclude future solution
 - e.g., don't insist on authentication when it is not essential
 - provide hooks for future use
 - e.g., 16-bit length fields to ensure sufficient room in message formats

Summary

- Trust assumptions are different in the Internet
- Enhanced levels of security services may be necessary
- Public-key cryptography can provide effective solutions
- Try not to preclude future provision of improved security services




End of presentation

Additional slides follow

Reducing number of messages

© NOKIA

Elliptic curve cryptosystems

- Comparison between discrete log based systems of equivalent strength in different groups
 - DSA: system parameters = 2208 bits, public key = 1024 bits, private key = 160 bits, signature size = 320 bits
 - ECDSA: system parameters = 481 bits, public key = 161 bits, private key = 160 bits, signature size = 160 bits
- Comparison between EC and RSA of "equivalent strength"
 - RSA: public key = 1088 bits, private key = 2048 bits, signature size
 = 1024 bits
- (taken from Certicom's white papers)

