
On Inter-layer Assumptions
(A View from the Transport Area)

Mark Handley
ACIRI/ICSI
mjh@aciri.org

 The Internet Hourglass

IP
TC

P
U

D
P

IC
M

P

H
TT

P

FT
P

D
N

S

S
M

TP

N
N

TP
P

P
P

S
LI

P

R
S

23
2

E
th

er
ne

t
W

av
el

an
S

on
et

F
D

D
I

N
FS

P
in

g

80
2.

x

Applications

 IP is the unifier

 Transport protocols only have to deal with IP
 Don’t care about different link layers

 Link layers only have to support IP
 Don’t care about applications

 IP is the unifier

 Transport protocols only have to deal with IP
 Don’t care about different link layers

 Link layers only have to support IP
 Don’t care about applications

 At least that’s the theory.

 In practice:

 There are implicit assumptions that transport protocols
make about IP that are affected by the link layer.

 To effectively support IP, a link layer must also support
common transport protocols.

 Assumptions and Standards

 Changes in technology tend to reveal what these
assumptions really are.

 Wireless technologies are just such a change.
 When you violate the assumptions, things break.

 Not writing these assumptions down in advance is good.
 Specify the minimum required for interoperation and safe

network behavior.
 Otherwise we can’t be flexible.

 At what stage do we make implicit assumptions explicit?
 Do we add inter-layer "hints" to retain flexibility?
 In which cases do we modify Internet protocols to change

their assumptions?

 End-system IP-level assumptions:

 Routing pre-computes viable routes to all reachable
destinations.

 An IP source sends a datagram which is delivered to a
destination.

 There are no guarantees about when or if it arrives.
 (NATs violate this assumption)

 The destination address should be reachable.
 Usually via pre-computed routing tables in routers.

 What do we assume about the source address?
 Does it have to be the same host?
 Does it have to be the same network?
 Do routers check it?

 End-system IP-level assumptions:

 What do we assume about the source address?
 Does it have to be the same host?
 Does it have to be the same network?
 Do routers check it?

 As of 15th Feb 2000:

 RFC 2267 "Network Ingress Filtering: Defeating Denial of
Service Attacks which employ IP Source Address
Spoofing" is "Best Current Practice"

 What’s the implication for Mobile IP?

 TCP: Assumptions about IP

 Endpoint addresses are static
 Connection can’t survive renumbering

 Packet loss is caused by congestion
 Halve transmission rate.

 Corrupted packets should be dropped

 Packet reordering in the network is small scale
 less than 3 packets out-of-order (or 3 DUP ACKs imply

loss).

 Delay is predictable
 less than SRTT + 4*RTT_var or treated as loss.

 TCP: Assumptions about IP

 Packet loss is caused by congestion

 For congestion, correct behavior is:
 Halve congection window,
 Or exponentially backoff of retransmit timeout

 What about fading, corruption, or link-layer initiational
delays?

 The temptation is to design link-layer specific protocols or
extensions.

 This is bad.
 TCP/IP works end-to-end across many concatenated link

layers.

 TCP: Packet loss = Congestion

 Without admission control, an IP network will always (in
some cases) have to drop packets to cope with congestion.

 Explicit Congestion Notification (ECN):
 mark packets at times of mild congestion
 drop packets at times of severe congestion because the

buffer is full.
 ECN will greatly decrease the number of losses due to

congestion, but cannot change the basic assumption that
loss implies congestion.

 TCP: Packet loss = Congestion

 Inter-layer hints to disambiguate non-congestive loss are
perhaps reasonable?

 "Explicit Corruption Notification" hint
 "Destination Now Reachable" hint

 Loss of a hint only results in more conservative behavior

 TCP Header Compression: Loss = Congestion

 TCP/IP header compression (RFC 1144) works by not
sending fields that change in a predictable way.

 Only intended for single hop links:
 Congestive loss of compressed packets cannot happen

because compression takes place on the output from the
queue.

 Assumes the link itself is negligably lossy.
 If not, context is lost.
 Bad assumption with a Metricom modem!

 draft-jonsson-robust-hc-03.txt is a possible solution

 TCP: Packet reordering is small scale

 3 DUP ACKs imply to TCP that the packet was lost.
 => retransmit and halve the congestion window.

 Why 3?
 Tradeoff between reacting fast to loss and reacting

spuriously to reordering.
 Link-layer ARQ might confuse this (probably not)
 Wireless handoffs can change routing and delay.
 Diversity routing in multi-hop wireless.

 TCP-Sack (draft-floyd-sack-00.txt) allows spurious
reordering to be detected and the DUP-ACK threshold to
be adaptive.

 Delay is Predicable

 Delay is less than:
 RTO = SRTT + 4*RTT_var
 Or retransmission occurs, the congestion window is

halved, and slowstart occurs.

 TCP-Sack (draft-floyd-sack-00.txt) allows spurious
retransmission to be detected.

 How to adapt is an open question.

 TCP: Delay is Predicable

 Link-layer ARQ can cause interesting delays:
 64 bytes from 192.150.187.20: icmp_seq=2 ttl=237 time=430.150 ms
 64 bytes from 192.150.187.20: icmp_seq=3 ttl=237 time=420.148 ms
 64 bytes from 192.150.187.20: icmp_seq=4 ttl=237 time=400.201 ms
 64 bytes from 192.150.187.20: icmp_seq=5 ttl=237 time=420.174 ms
 64 bytes from 192.150.187.20: icmp_seq=6 ttl=237 time=420.180 ms
 64 bytes from 192.150.187.20: icmp_seq=7 ttl=237 time=820.171 ms
 64 bytes from 192.150.187.20: icmp_seq=8 ttl=237 time=510.240 ms
 64 bytes from 192.150.187.20: icmp_seq=9 ttl=237 time=538.432 ms
 64 bytes from 192.150.187.20: icmp_seq=0 ttl=237 time=480.157 ms
 64 bytes from 192.150.187.20: icmp_seq=1 ttl=237 time=470.189 ms
 64 bytes from 192.150.187.20: icmp_seq=2 ttl=237 time=440.208 ms
 64 bytes from 192.150.187.20: icmp_seq=3 ttl=237 time=410.193 ms
 64 bytes from 192.150.187.20: icmp_seq=4 ttl=237 time=410.224 ms
 64 bytes from 192.150.187.20: icmp_seq=5 ttl=237 time=430.184 ms

 Metricom modem, lightly loaded path.

 Assumptions of Non-TCP Apps

 SCTP
 Congestion Control mechanisms make similar assumptions

to TCP.

 RTP
 Predicable delay (for adaptive playout buffer)

 NTP
 Symmetric delay

 Reliable Multicast
 SRM: Predictable delay (for feedback suppression)

 Link-layer assumptions about IP

 Delay/loss tradeoff:
 "Best-effort IP makes no guarantees about delay or loss"
 How much delay is reasonable?

 Packets are independent?
 Reordering doesn’t matter?

 It’s all TCP?

 Interesting Delays:

 64 bytes from 204.179.128.49: icmp_seq=174 ttl=243 time=28097.003 ms
 64 bytes from 204.179.128.49: icmp_seq=177 ttl=243 time=29893.651 ms
 64 bytes from 204.179.128.49: icmp_seq=180 ttl=243 time=28236.982 ms
 64 bytes from 204.179.128.49: icmp_seq=185 ttl=243 time=28051.881 ms

 Metricom modem, loaded with an incoming 16Kb/s UDP
stream (loss rate is 40%).

 These delays won’t happen with TCP...
 Bad to design a network assuming TCP.

 Miscellaneous Issues for Wireless IP

 Multicast
 Can receive anywhere, but...
 Reverse-Path Forwarding check on source address means

cannot send using home source address without relaying
through home agent.

 DDoS Attacks
 Unicast RPF may be desirable.
 May be at odds with Mobility.

 Middle-boxes
 E.g., Akamai, etc
 More implicit assumptions about location.

 Mobile clients vs Mobile Servers?

 Conclusions

 Layering is a simple design principle that means each protocol
designer only has to deal with two interfaces: one to the layer
below and one to the layer above.

IP
TC

P
U

D
P

IC
M

P

H
TT

P

FT
P

D
N

S

S
M

TP

N
N

TP
P

P
P

S
LI

P

R
S

23
2

E
th

er
ne

t
W

av
el

an
S

on
et

F
D

D
I

N
FS

P
in

g

80
2.

x

Applications

 Conclusions

 Layering is a simple design principle that means each protocol
designer only has to deal with two interfaces: one to the layer
below and one to the layer above.

 If you believe this, you are designing for the lowest
common denominator service.

 Good performance means:
 Taking into account the assumptions of all other layers,

whether written down or not.
 Making protocols more adaptive so they have fewer rigid

assumptions.
 Making the tradeoffs more explicit in the form of hints.
 But don’t design transport protocols to assume a

particular link-layer.

