IAB Unwanted Internet Traffic Workshop

Session 7 - What's in the pipeline, and what should be in the pipeline?

Danny McPherson danny@arbor.net
March 10, 2006

Keep it simple...

- Central repository and subsequent functions & benefits
- Flow data detect and remove bot substrate, many other functions as well
- DarkNets
- And, of course, "clue sharing" and associated implications (more "raising the bar" tutorials, etc..). No excuses for operators not employing X, Y & Z.

Two biggest problems...

Route hijacking

Lack of inter-domain policy application

Source address validation

- Spoofing
- Reflection & amplification
- Traceback

How to begin addressing

- [Central] up to date repository (RIR/IRR) w/AAAish functions, w/IRRD toolset
- Vendor support for extremely large (BGP prefix) control and data path filters (need at customer & peering edge)
- Cost|Risk|Benefit Analysis: Lots of bang for the buck\$

Flow Data

- Used to convey
 Network & Transport
 Layer attributes of
 network transactions
 transiting or terminating
 on a network device
 - NetFlow
 - sFlow
 - JFlow
 - IPFIX
- Lots of open source and commercial tools available

- Application
 - DDOS Traceback
 - Botnet Detection
 - Traffic/PeeringAnalytics
 - Worm Detection
 - Spyware Detection
 - Compliance
 - Misuse
 - Etc..

Flow-based Anomaly Detection

- Monitor flows on the network and build baselines for what normal behavior looks like:
 - Per interface
 - Per prefix/IP Address
 - Per Transport Layer protocol type, ports/ICMP types/codes
 - Build time-based buckets (e.g., 5 minutes, 30 minutes, 1 hours, 12 hours, day of week, day of month, day of year), could couple with routing or other datasets (e.g., BGP community)

Flow-based Detection (cont)

- Once baselines are built anomalous activity can be detected
 - Pure rate-based/statistical (pps or bps) anomalies may be legitimate or malicious
 - Many misuse attacks can be immediately recognized, even without baselines (e.g., TCP SYN or RST floods)
 - Signatures can also be defined to identify "interesting" transactional data (e.g., 'proto udp and port 1434 and 404 octets' (376 payload) == slammer?)
 - Employ relational databases (perhaps with temporal behavior consideration) and detect zero-day worm, subtle misuse, backdoors, multi-phase propagation, infection, etc..
 - E.g., tcp/80 ->then tcp/9898 -> then n within t == infection <math>x
 - Feeds for known bad entities, botnet controllers, etc..

Internet Motion Sensor (IMS)

unfortunate collision of acronyms with Internet Multimedia Subsystem

http://ims.eecs.umich.edu

Email: ims@umich.edu

Thanks to Evan Cooke, Michael Bailey, Farnam Jahanian, Jose Nazario & Dug Song

About Dark IP Analytics

- Significant % of routed Internet address space lacks actual end hosts
 - (IANA->RIR->LIR/SP->HOST)
- Exploit to infer denial of service activity, gauge infected worm population, detect misconfiguration, scanning and other reconnaissance
- Even more intelligent pick up payload with active responders, coordinate, aggregate & correlate

IMS Overview

 There is significant malicious and non-productive activity on the Internet today (e.g. DoS, worms, botnets, misconfiguration)

IMS Overview

 Much of this non-productive traffic is observed by unused addresses

IMS Overview

 The IMS project monitors these unused address spaces (called *darknets*) at *providers*, *enterprises*, and academic institutions to provide intelligence on global Internet threat activity.

IMS Deployment

- 17,096,192 IPs monitored
- 1.15% of routed IPv4 space
- 31 /8 blocks with an IMS sensor
- 21% of all routable /8 blocks have at least one sensor
- ⇒Tier 1 SPs, Regional ISPs, National ISPs, Large Enterprises, Academic Networks
- Expanding IMS (5 continents soon)

Operational Value

IMS Operational Utility:

IMS portal used to investigate anomalies:

"Anyone seeing an uptick on UDP 5060?"

 Daily IMS reports provide detailed forensics on infected machines on your network:

<u>Source IP</u> <u>TCP Pkts Top Dst Ports</u> 10.0.153.156 219602 tcp/445:219593 tcp/80:9

IMS Observations

Two major trends observed with IMS:

1. Attacks are more targeted (e.g. botnet targeted scanning)

Bot Command Detected	∆ IMS Detection	Scan Type
ipscan r.r.r.r dcom2	11 secs	Global Random
ipscan 24.s.s.s dcom2	-	Local 24/8 Seq.
ipscan 69.27.s.s dcom2	-	Local 69.27/16 Seq.
ipscan s.s.s lsass	0 secs	Local /8 Seq.
ipscan s.s webdav3	0 secs	Local /16 Seq.

 Vulnerability ≠ Threat (many threats today AgoBot/SDBot/GTBot leverage similar exploits)

Ubiquitous Darknets

Distributed Darknets Inside a /16

Infected/Misconfigured Sources in the same /16

- To catch targeted attacks IMS now supports many noncontiguous darknets within a network
- Data visualization w/2D Quad Charts courtesy of IPMAPS: monkey.org/~phy/ipmaps

Resource-aware Data Collection

- Each IMS sensor dynamically adjusts its requirements based on resource availability
- Historical data is dynamically scaled into more compact representations as it ages
- Constructed from the ground up using standard formats: pcap, NetFlow, text

Infinite Time Queries

- Ability to query over the entire history of the sensor (hour, day, week, month, year, etc)
- Support for complete
 pcap filter expressions (can run over full
 historical data)
- Can view full payload for months to years depending on space allocation (~1 year on /24)

Ports with the biggest changes over a 5 month timeframe

•Significant changes are routine, though some are more interesting than others
•Such as the 2745 and 3127, Bagle and MyDoom backdoors

% of packets from local /16, /8, or global at 10 sensors over 1 week

Overlap in Scanning IPs

		/17		/18			
		1023	5554	9898	1023	5554	9898
/17	1023	173					
	5554	142	470				
	9898	168	424	536			
/18	1023	0	0	0	99		
	5554		10	9	94	231	
	9898			14	99	224	280

Unique SRCs: 3 sensors, 5 minute bins

Differentiate Services

- UDP/ICMP are OK passive because we get information in the first packet.
- However, TCP is a problem because no information until handshake
- Solution: Use a lightweight active responder to get the first data packet
- Very simple:
 - Get SYN, Respond with SYN-ACK (no state)

Flexible Honeypot Responders

 To catch more complex attacks IMS capture architecture now supports different active responders: example: ims.conf

```
# darknet declarations
darknet my16 {
   filter "dst net xxx.xxx.0.0/16"
                                       Can have different
 responder passive
                                       responder
   capture pcap nf summary
   path /usr/local/ims/data
                                      strategies on
   size 70 GB
                                       different darknets
                                       or portions of larger
   # sub darknet
                                       darknet
   darknet my16-sub-synack24
       filter "dst net xxx. xx.0.0/24"
      responder synack
       capture pcap nf summary
                                       Could integrate w/
       path /big-disk
                                       honeyd
       size 10 GB
```

}}

The Blaster Worm - Live Host

Instrumented Live Host

The Blaster Worm - Passive

The Blaster Worm - IMS

The Worms

- Worm infected source addresses highly distributed over IP space
- Although... notice how few sources from Class B allocation space... enterprise egress filtering?

Example: /8 Darknet

Payload Caching

- Active responder produces lots payload data
- Solution: only store payloads if they are 'new'
- Implementation: take MD5 hash of payloads and only store payloads which have a unique hash

Packets per 5 minutes of TCP/445 over 7 days at 1 /24

% of Payload Cache Hits over 5 Months at 3 sensors

•~95% signature cache hit-rate

•Most payloads have been seen before

Worms

Worm	Sasser	Sasser.e	Dabber.a
Vulnerability	LSASS	LSASS	Sasser-FTP
	(MS04-011)	(MS04-011)	
Population	Windows XP	Windows XP	Sasser infected
	Windows 2K	Windows 2K	hosts
Scan Port	TCP/445	TCP/445	TCP/5554
Backdoor Port	TCP/5554	TCP/1023	TCP/9898
Release	May	May	May
Who Cares?	First LSASS	Changes backdoor port	Vulnerability hits bugs in a worm backdoor

Packets per 5 minutes on a /17 and a /18 over 3 days for TCP/1023

- Large, short lived spikes
- Same shaped graph across (1023, 5554, 9898)
- Nearly all sources in China and Korea

Packets per 1 minute on 4 sensors over 3 days for TCP/9898, normalized by /24

- D -> E -> B -> G (Ordered by /8)
- ~6 /8's an Hour

Cumulative Unique Sources on a /17 and a /18 over 3 days for TCP/9898

- small number of hosts are involved (~100)
- the size of the bumps is similar each time
- Hosts dwarfed by background noise

Packets per 5 minutes on a /17 and a /18 over 3 days for TCP/5554

Packets per 5 minutes on a /17 and a /18 over 3 days for TCP/9898

Signature Analysis

- No signatures captured on 9898/tcp
- 2 unique signatures on port 5554/tcp
- Same 2 unique signatures on port 1023/tcp
- Here are the sigs:
 - e5502ddb7ce4a7ff2176e6455732601c
 00000000 55 53 45 52 20 78 0a |USER x.|
 00000007
 - F623e75af30e62bbd73d6df5b50bb7b500000000 44 |D| 00000001

TCP 42 Activity

- November 24, 2004 vulnerability announced on remotely exploited overflow in the WINS server component of Microsoft Windows
- December 2004 an increase in activity to TCP/42 was detected
- January 2005 news of significant amounts of increased activity on TCP/42 was noted in multiple reports

TCP 42 Payloads

- Captured live payloads that match byte-for-byte with template exploit code
- Same exploit is being used to reinject many different payloads (same exploit with very different shellcode)

```
00 03 0d 4c 77 77 ff 77 05 4e 00 3c 01 02 03 04 |...Lww.w.N.<....
00000000
00000010 6c f4 3d 05 00 02 4e 05 00 02 4e 05 00 02 4e 05 |l.=...N...N..
00000020 00 02 4e 05 00 02 4e 05 00 02 4e 05 00 02 4e 05
                                                                     | . . N . . . N . . . N . . . N .
00000030 00 02 4e 05 90 01 4e 05 90 00 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N .
00000040 90 00 4e 05 90 00 4e 05 90 00 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N .
00000050 90 03 4e 05 90 00 4e 05 90 01 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N . |
00000060 90 00 4e 05 90 00 4e 05 90 00 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N .
00000070 90 00 4e 05 90 03 4e 05 90 00 4e 05 90 01 4e 05
                                                                     | . . N . . . N . . . N . . . N .
00000080 90 00 4e 05 90 00 4e 05 90 00 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N .
00000090 90 00 4e 05 90 00 4e 05 90 03 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N .
000000a0 90 01 4e 05 90 00 4e 05 90 00 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N .
000000b0 90 00 4e 05 90 00 4e 05 90 00 4e 05 90 03 4e 05
                                                                     | . . N . . . N . . . N . . . N .
000000c0 90 00 4e 05 90 01 4e 05 90 00 4e 05 90 00 4e 05
                                                                     | . . N . . . N . . . N . . . N .
000000d0 90 00 4e 05 90 00 4e 05 90 00 4e 05 90 00 4e 05
                                                                     | ... N ... N ... N ... N ...
000000e0 90 03 4e 05 90 00 4e 05 90 01 4e 05 90 00 4e 05
                                                                     | ... N ... N ... N ... N ...
000000f0 90 00 4e 05 90 00 4e 05 90 00 4e 05 90 00 4e 05
                                                                    | . . N . . . N . . . N . . . N . |
```

- Evidence suggests attacks are from manual activity and not automated worm
- However, vulnerability is wormable
- http://ims.eecs.umich.edu/reports/port42

TCP 6101 Activity

- December 16, 2004 iDEFENSE Announces Buffer Overflow vulnerability in Veritas Backup Agent
- January 11, 2005 Hat-Squad publishes exploit code
- January 11, 2005 IMS Detects activity on TCP/6101

TCP 6101 Payloads

 Captures live payloads that match byte for byte with template exploit code:

- Evidence suggests attacks are from manual tools and not automated worm
- Vulnerability is wormable
- Both port 42 & 6101 were zero-day threats! Exploits released and same day attacks began
- http://ims.eecs.umich.edu/reports/port6101

References

- Check out IMS site
- Check out Arbor site or email me...
- Lots of references and research papers (e.g., worm04, sruti, etc..) on detecting & distributing botnets, building darknets, implications on sensor placement, etc.., should be easy to find..

Thanks!

danny@arbor.net