

Application Communications Requirements for “The Internet of Things”
Bob Dolin
Echelon Corporation

I. Introduction
The purpose of this paper is to document the requirements that the collection of
applications sometimes referred to as “the Internet of Things” need based upon
the knowledge gleaned from years of experience providing distributed
communications and control technology for applications that run on resource
constrained devices .
Echelon Corporation has been in the business of providing technology and
components to create low cost, peer to peer networks for very resource
constrained devices for about 20 years now. Echelon has shipped over 100 million
nodes, and other companies who implement ANSI/CEA 709.1 or EN-14908-1 or GB/Z
20177.1, the U.S., European, and Chinese standards of the protocol invented by
Echelon, have shipped many additional nodes over Echelon’s 100 million node
figure.
Of Echelon’s shipments about 35 million nodes are Smart Meters and about 65
million nodes are in a variety of building, industrial, home and utility
applications. Since this paper is about application requirements, the credit for
generating these requirements largely goes to Echelon’s customers as they are
the creators of most of the applications that use the protocol to help implement
their networked applications. Today, none of these nodes are IP based. Back when
Echelon began, IPv4 was what was available, and that version of IP is not suited
to environments with short application messages (as few as 3 or 4 bytes of
application data) and limited network bandwidth. This is due to IPv4’s
relatively long and not very compressible headers that drive both RAM
consumption for buffers and bandwidth consumption in protocol overhead versus
the very short amount of application data per packet sent that is found in
control applications. Today, with IPv6, it is possible to build resource
constrained IP based nodes using an adaptation layer for IPv6 header
compression. These nodes can operate on networks with limited bandwidth. It is
also possible to build a set of services on top of IPv6/UDP that meet all the
communications needs of application developers who currently use the EN-14908-1
protocol. Echelon demonstrated such an implementation at the last IPSO face to
face meeting on October 11-12, 2010.
II. Applications
The set of applications envisioned for the Internet of Things is very diverse,
as the goal is to provide a single communications technology that can span all
device based applications: Smart Meters, Smart Grids, home energy networks,
building automation networks, process control networks, factory automation
networks, and even some applications that aren’t traditionally thought of as
networks: street lights, theaters on Broadway in New York, and even the Hotel
Bellagio fountain in Las Vegas. These last two applications are mentioned
because what the network does is very visible, and is likely to have been seen
by many readers.
The Bellagio fountain is a huge pool of water with jets that can shoot water up
high and in different directions. Each jet is a node on the network.
Synchronized to the jets, is colored theatrical lighting. Each light is a node.
The water jets and lights are synchronized to music such that as the music
changes, lights are aimed and colored and water jets shoot water at different
heights and directions to create a very dramatic show. Rather than read anymore
about it, it would be best to go to http://www.5min.com/Video/Learn-About-the-
Bellagio-Fountains-278834664 and watch what it does.
The fountain is a distributed control system built with the EN-14908-1 protocol.
While the application appears unique, it does many of the things that any
industrial or building control system does. Things are turned on and off in real
time, motion is timed and controlled in synchronization to other moving parts –
all across the network. A great many of the applications envisioned for the

Internet of Things are, in fact, distributed control systems. Sensors sense
things and publish their data, controllers or actuators receive sensor data and
decide to turn on and at what speed, a controller times events and sends
messages to orchestrate actions or modes of the system. Even systems that are
referred to as monitoring systems have this requirement for control. In a
patient monitoring system, for example, the system detects, for example an
irregular heartbeat, and then actuates some sort alarm or page to personnel to
come to the patient’s aid, and also issue the event to an event monitoring log.
Given that there is this commonality across these broad applications, there
should be a way to provide a set of common, standard communication services that
enable these applications over an IPv6 network.
III. Communications Requirements
All the requirements below do not apply to all applications. However, having a
rich set of services in a protocol stack allows that protocol stack to be used
across the entire application space, and application developers can know and
depend upon the common set of communications services as they implement. The
scope of these requirements is for the protocol stack that exists between the
MAC/PHY and the application itself. No attempt is made to mandate that some of
the requirements be met in the network, transport, or application layers. It is
notable that no mention of determinism of the network is made in these
requirements. Determinism, while a requirement for some applications, is
typically a feature of a MAC/PHY layer and thus, is outside the scope of this
document.
The three dominating constraints on these sorts of applications are link
bandwidth, application response time and RAM. It follows then that they become
the first three requirements:
1. The protocol stack must recover from intermittent packet loss quickly via
packet retransmission or report a message failure to the application. Rationale:
The sorts of links that these networks run on have very low bandwidth compared
to Ethernet, and unlike Ethernet the links are not nearly as reliable. Packets
can be lost due to interference and noise as well as due to collisions. When
these events happen, and they happen frequently, more bandwidth is consumed to
recover from the loss in the form of a packet retransmission. Secondly, because
these systems typically have real time constraints, delivering the packet well
beyond the application’s timing constraints is not important or even desiriable.

2. It must be possible to engineer the communications network such that the real
time requirements of the application are met. This involves being able to:

a. Design the network to meet response time criteria by limiting the number of
nodes per link, and tune the communications such that the network will not
become overloaded.

b. Specify that a given communications transaction will either succeed or fail
within a specified time, with the success or failure of that transaction known
to the application.

Rationale: In the Bellagio fountain example, a late packet would result in some
node not doing its function in synchronization with the show. On a factory
floor, a material handler might drop something, in a semiconductor fab line, a
wafer handler might fail to place a wafer on a probe station. Late packets are
communication failures in most control systems.

3. The protocol stack must implement all services that are needed in all nodes.
These services are all the requirements in this document with the exception of
number 11. To meet this requirement, RAM consumption for the protocol stack must
be limited to provide the application with adequate RAM as well. To put this
requirement in perspective, currently available candidate devices the combine
both the microcontroller and an IEEE 802.15.4 radio typically have between 8K
and 12K RAM to share between the protocol stack and the application. Most

application developers, when they pick such a platform, expect to be able to use
much of the RAM for their applications.

Rationale: In the world of low cost systems on a chip (SOCs), RAM is the most
precious resource. In communications applications RAM is needed for buffers, to
maintain state to know when to retry a packet, to detect a duplicate packet, to
put packets in correct order for delivery to the application, etc. These memory
requirements are all in direct competition with what the application needs for
its memory – the more used by the communications, the less that can be used by
the application. Given that these nodes are in a cost sensitive environment, the
use of SOCs is a way to meet the cost constraints of the application.

4. The protocol stack must be independent of the underlying MAC/PHY. Rationale:
There is no single link that meets all communication needs for the Internet of
Things. Today multiple RF links, multiple power line links and a variety of
wired solutions are needed to implement the various applications. Furthermore,
transceiver development is an area of active research and investment, so the
protocol stack must be able to take advantage of new technologies as they become
available.

5. The protocol stack must scale to thousands of nodes and multiple links of
different speeds in a single logical network. Rationale: Many building and
factory systems today are composed of well over 1000 nodes spread out among
multiple links with a high speed backbone.

6. Network-wide (spanning all links within the system) multicast must be
supported. The notion of multicast group membership must be supported so that
all applications do not see all multicasts and consume the node resources
required to do more than discard the packet at a low layer in the stack.
Rationale: multicast conserves bandwidth and improves response time over
multiple, serial unicast messages. When closing a control loop over a network it
is sometimes critical that all nodes that subscribe to a sensor value get that
value at very nearly the same time. Applications cannot be constrained to have
all the nodes in their multicast group on their link as some such messages, such
as emergency messages must go to most or even all of the nodes on the network.
Applications do not have the memory to process all multicasts just to discover
that they do not apply to their node.

7. Confirmed, network-wide (spanning all links within the system) multicast must
be supported. Rationale: in applications where the message must get through or
a major equipment shutdown is required, for example for safety reasons, the
sending node must be able to have confirmation that its message was received by
all the members of the multicast group.

8. The protocol stack must support duplicate packet detection and resend the
previously generated response without reprocessing or regenerating it.
Rationale: There are some sorts of transactions that are inherently not
idempotent. For example, an electricity customer is on a pre-pay contract with
the utility. The customer adds money to his account and the additional credit
is transferred to the customer’s meter, but the meter acknowledgement is lost.
So, the utility re-sends the add credit message. Correct behavior would be that
the meter only adds the credit one time.

9. The protocol stack must support a mechanism that allows emergency messages to
be routed in an expedited manner to overcome queuing delays within the nodes as
well as queuing delays in routers between links. Rationale: in control systems
sometimes all the nodes are synchronized to an external event that causes a
flood of messages. Not all those messages are important in dealing with the
external event (like the oil refinery is about to catch fire), but some

messages, that could avoid the impending problem must be propagated quickly
across the network.

10. The protocol stack must ensure that packets are received in the order they
are sent between any source and destination. Rationale: There are many control
operations that depend upon a sequence to prevent damage to equipment or simply
to just work correctly.

11. The protocol stack must support a sender node being able to poll multiple
nodes in sequence without waiting for the response from one node to arrive
before going on to the next node. Rationale: Most control systems have
supervisory nodes that ping the status of all the nodes in the network and drive
an operator display of the system health. In this operation, if a node is down,
the update of the entire display will halt until communication with the down
node finally times out after some number of retries unless the protocol supports
having multiple responses outstanding and a means to correlate those responses
to original requests.

12. The protocol stack must support peer-to-peer communications. Rationale: For
response time reasons, nodes cannot wait to be granted access to the network by
a server. For finely distributed systems, the nodes must interact as groups
performing a function across the network, e.g. light dimmers and lights.

13. It must be possible to provision timers in the protocol stack to indicate
when re-send a packet that has not been confirmed. These timers should be
individually provisioned according to the destination address in the packet.
Rationale: This can improve response time and limit bandwidth consumption. How
quickly a node should retry a message is a function of the round trip delay
to/from the destination address. Retrying too early wastes bandwidth and may
cause network congestion and packet collisions. Retrying too late makes response
time suffer when a packet is lost. In a network composed of multiple links of
differing speeds, a resource constrained node cannot be expected to know the
round trip delays to all the subscribers of its data. Therefore, for large
networks, a node with topology knowledge needs to provision these parameters.

14. It must be possible to discover the application level information that a
node can publish over the network. Rationale: Some networks are ad-hoc in their
formation and allow nodes to come and go without a management station being
available or required.

15. The protocol must have a means to transfer a sequence of packets as a
logical unit, for example a firmware upgrade, a data log, provisioning
information. Rationale: Data logging is a common control network function, being
able to upgrade firmware is often required, and provisioning such as
linearization tables for sensors, calibration data, etc. is often needed by
sensor nodes.

16. Future versions of the protocol must work with prior versions and provide
all the same capabilities as prior versions. Rationale: Control networks are
long-lived, as long as 20+ years in many cases, yet they are networks, so
additional nodes and additional applications are added to them over time. It is
unreasonable, and often prohibitively costly to upgrade all the existing nodes
in a network to the new version – they may not have enough memory, or there may
be some other constraint.

17. There must be some lightweight application interoperability model to
facilitate the exchange of data between publishers and subscribers. Rationale:

Resource constrained nodes cannot support parsers of data streams, for example,
today’s xml parsers are code space and RAM intensive.

18. Today, the vast majority of control networks are not secured. This will
change, so the protocol must be able to support strong encryption, mutual
authentication, and protection against record/playback attacks. To sell networks
to the U.S. government, the requirement is that the algorithms used be NSA suite
B approved. Rationale: as the world moves from hardwired control systems and
closed, unconnected networks to networks that can be connected to the internet,
the attacks perfected on the internet can be repurposed to attack the Internet
of Things.

