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I. Introduction 
The purpose of this paper is to document the requirements that the collection of 
applications sometimes referred to as “the Internet of Things” need based upon 
the knowledge gleaned from years of experience providing distributed 
communications and control technology for applications that run on resource 
constrained devices .  
Echelon Corporation has been in the business of providing technology and 
components to create low cost, peer to peer networks for very resource 
constrained devices for about 20 years now. Echelon has shipped over 100 million 
nodes, and other companies who implement ANSI/CEA 709.1 or EN-14908-1 or GB/Z 
20177.1, the U.S., European, and Chinese standards of the protocol invented by 
Echelon, have shipped many additional nodes over Echelon’s 100 million node 
figure. 
Of Echelon’s shipments about 35 million nodes are Smart Meters and about 65 
million nodes are in a variety of building, industrial, home and utility 
applications. Since this paper is about application requirements, the credit for 
generating these requirements largely goes to Echelon’s customers as they are 
the creators of most of the applications that use the protocol to help implement 
their networked applications. Today, none of these nodes are IP based. Back when 
Echelon began, IPv4 was what was available, and that version of IP is not suited 
to environments with short application messages (as few as 3 or 4 bytes of 
application data) and limited network bandwidth. This is due to IPv4’s 
relatively long and not very compressible headers that drive both RAM 
consumption for buffers and bandwidth consumption in protocol overhead versus 
the very short amount of application data per packet sent that is found in 
control applications. Today, with IPv6, it is possible to build resource 
constrained IP based nodes using an adaptation layer for IPv6 header 
compression. These nodes can operate on networks with limited bandwidth. It is 
also possible to build a set of services on top of IPv6/UDP that meet all the 
communications needs of application developers who currently use the EN-14908-1 
protocol. Echelon demonstrated such an implementation at the last IPSO face to 
face meeting on October 11-12, 2010. 
II. Applications 
The set of applications envisioned for the Internet of Things is very diverse, 
as the goal is to provide a single communications technology that can span all 
device based applications: Smart Meters, Smart Grids, home energy networks, 
building automation networks, process control networks, factory automation 
networks, and even some applications that aren’t traditionally thought of as 
networks: street lights, theaters on Broadway in New York, and even the Hotel 
Bellagio fountain in Las Vegas. These last two applications are mentioned 
because what the network does is very visible, and is likely to have been seen 
by many readers. 
The Bellagio fountain is a huge pool of water with jets that can shoot water up 
high and in different directions. Each jet is a node on the network. 
Synchronized to the jets, is colored theatrical lighting. Each light is a node.  
The water jets and lights are synchronized to music such that as the music 
changes, lights are aimed and colored and water jets shoot water at different 
heights and directions to create a very dramatic show. Rather than read anymore 
about it, it would be best to go to http://www.5min.com/Video/Learn-About-the-
Bellagio-Fountains-278834664 and watch what it does.  
The fountain is a distributed control system built with the EN-14908-1 protocol. 
While the application appears unique, it does many of the things that any 
industrial or building control system does. Things are turned on and off in real 
time, motion is timed and controlled in synchronization to other moving parts – 
all across the network. A great many of the applications envisioned for the 



Internet of Things are, in fact, distributed control systems. Sensors sense 
things and publish their data, controllers or actuators receive sensor data and 
decide to turn on and at what speed, a controller times events and sends 
messages to orchestrate actions or modes of the system. Even systems that are 
referred to as monitoring systems have this requirement for control. In a 
patient monitoring system, for example, the system detects, for example an 
irregular heartbeat, and then actuates some sort alarm or page to personnel to 
come to the patient’s aid, and also issue the event to an event monitoring log. 
Given that there is this commonality across these broad applications, there 
should be a way to provide a set of common, standard communication services that 
enable these applications over an IPv6 network. 
III. Communications Requirements 
All the requirements below do not apply to all applications. However, having a 
rich set of services in a protocol stack allows that protocol stack to be used 
across the entire application space, and application developers can know and 
depend upon the common set of communications services as they implement. The 
scope of these requirements is for the protocol stack that exists between the 
MAC/PHY and the application itself. No attempt is made to mandate that some of 
the requirements be met in the network, transport, or application layers. It is 
notable that no mention of determinism of the network is made in these 
requirements. Determinism, while a requirement for some applications, is 
typically a feature of a MAC/PHY layer and thus, is outside the scope of this 
document. 
The three dominating constraints on these sorts of applications are link 
bandwidth, application response time and RAM.  It follows then that they become 
the first three requirements: 
1. The protocol stack must recover from intermittent packet loss quickly via 
packet retransmission or report a message failure to the application. Rationale: 
The sorts of links that these networks run on have very low bandwidth compared 
to Ethernet, and unlike Ethernet the links are not nearly as reliable. Packets 
can be lost due to interference and noise as well as due to collisions. When 
these events happen, and they happen frequently, more bandwidth is consumed to 
recover from the loss in the form of a packet retransmission. Secondly, because 
these systems typically have real time constraints, delivering the packet well 
beyond the application’s timing constraints is not important or even desiriable. 
 
2. It must be possible to engineer the communications network such that the real 
time requirements of the application are met. This involves being able to: 
 
a. Design the network to meet response time criteria by limiting the number of 
nodes per link, and tune the communications such that the network will not 
become overloaded. 
 
b. Specify that a given communications transaction will either succeed or fail 
within a specified time, with the success or failure of that transaction known 
to the application. 
 
Rationale: In the Bellagio fountain example, a late packet would result in some 
node not doing its function in synchronization with the show. On a factory 
floor, a material handler might drop something, in a semiconductor fab line, a 
wafer handler might fail to place a wafer on a probe station. Late packets are 
communication failures in most control systems. 
 
 
3. The protocol stack must implement all services that are needed in all nodes. 
These services are all the requirements in this document with the exception of 
number 11. To meet this requirement, RAM consumption for the protocol stack must 
be limited to provide the application with adequate RAM as well. To put this 
requirement in perspective, currently available candidate devices the combine 
both the microcontroller and an IEEE 802.15.4 radio typically have between 8K 
and 12K RAM to share between the protocol stack and the application. Most 



application developers, when they pick such a platform, expect to be able to use 
much of the RAM for their applications. 
 
Rationale: In the world of low cost systems on a chip (SOCs), RAM is the most 
precious resource. In communications applications RAM is needed for buffers, to 
maintain state to know when to retry a packet, to detect a duplicate packet, to 
put packets in correct order for delivery to the application, etc. These memory 
requirements are all in direct competition with what the application needs for 
its memory – the more used by the communications, the less that can be used by 
the application. Given that these nodes are in a cost sensitive environment, the 
use of SOCs is a way to meet the cost constraints of the application. 
 
4. The protocol stack must be independent of the underlying MAC/PHY. Rationale: 
There is no single link that meets all communication needs for the Internet of 
Things. Today multiple RF links, multiple power line links and a variety of 
wired solutions are needed to implement the various applications. Furthermore, 
transceiver development is an area of active research and investment, so the 
protocol stack must be able to take advantage of new technologies as they become 
available. 
 
5. The protocol stack must scale to thousands of nodes and multiple links of 
different speeds in a single logical network.  Rationale: Many building and 
factory systems today are composed of well over 1000 nodes spread out among 
multiple links with a high speed backbone. 
 
6. Network-wide (spanning all links within the system) multicast must be 
supported. The notion of multicast group membership must be supported so that 
all applications do not see all multicasts and consume the node resources 
required to do more than discard the packet at a low layer in the stack. 
Rationale: multicast conserves bandwidth and improves response time over 
multiple, serial unicast messages. When closing a control loop over a network it 
is sometimes critical that all nodes that subscribe to a sensor value get that 
value at very nearly the same time. Applications cannot be constrained to have 
all the nodes in their multicast group on their link as some such messages, such 
as emergency messages must go to most or even all of the nodes on the network. 
Applications do not have the memory to process all multicasts just to discover 
that they do not apply to their node. 
 
 
7. Confirmed, network-wide (spanning all links within the system) multicast must 
be supported.  Rationale:  in applications where the message must get through or 
a major equipment shutdown is required, for example for safety reasons, the 
sending node must be able to have confirmation that its message was received by 
all the members of the multicast group. 
 
8. The protocol stack must support duplicate packet detection and resend the 
previously generated response without reprocessing or regenerating it.  
Rationale: There are some sorts of transactions that are inherently not 
idempotent. For example, an electricity customer is on a pre-pay contract with 
the utility.  The customer adds money to his account and the additional credit 
is transferred to the customer’s meter, but the meter acknowledgement is lost. 
So, the utility re-sends the add credit message. Correct behavior would be that 
the meter only adds the credit one time. 
 
 
9. The protocol stack must support a mechanism that allows emergency messages to 
be routed in an expedited manner to overcome queuing delays within the nodes as 
well as queuing delays in routers between links. Rationale: in control systems 
sometimes all the nodes are synchronized to an external event that causes a 
flood of messages. Not all those messages are important in dealing with the 
external event (like the oil refinery is about to catch fire), but some 



messages, that could avoid the impending problem must be propagated quickly 
across the network. 
 
10. The protocol stack must ensure that packets are received in the order they 
are sent between any source and destination. Rationale: There are many control 
operations that depend upon a sequence to prevent damage to equipment or simply 
to just work correctly.  
 
 
11. The protocol stack must support a sender node being able to poll multiple 
nodes in sequence without waiting for the response from one node to arrive 
before going on to the next node. Rationale: Most control systems have 
supervisory nodes that ping the status of all the nodes in the network and drive 
an operator display of the system health. In this operation, if a node is down, 
the update of the entire display will halt until communication with the down 
node finally times out after some number of retries unless the protocol supports 
having multiple responses outstanding and a means to correlate those responses 
to original requests. 
 
12. The protocol stack must support peer-to-peer communications. Rationale: For 
response time reasons, nodes cannot wait to be granted access to the network by 
a server. For finely distributed systems, the nodes must interact as groups 
performing a function across the network, e.g. light dimmers and lights. 
 
 
13. It must be possible to provision timers in the protocol stack to indicate 
when re-send a packet that has not been confirmed. These timers should be 
individually provisioned according to the destination address in the packet. 
Rationale: This can improve response time and limit bandwidth consumption. How 
quickly a node should retry a message is a function of the round trip delay 
to/from the destination address. Retrying too early wastes bandwidth and may 
cause network congestion and packet collisions. Retrying too late makes response 
time suffer when a packet is lost. In a network composed of multiple links of 
differing speeds, a resource constrained node cannot be expected to know the 
round trip delays to all the subscribers of its data. Therefore, for large 
networks, a node with topology knowledge needs to provision these parameters. 
 
14. It must be possible to discover the application level information that a 
node can publish over the network. Rationale: Some networks are ad-hoc in their 
formation and allow nodes to come and go without a management station being 
available or required. 
 
 
15. The protocol must have a means to transfer a sequence of packets as a 
logical unit, for example a firmware upgrade, a data log, provisioning 
information. Rationale: Data logging is a common control network function, being 
able to upgrade firmware is often required, and provisioning such as 
linearization tables for sensors, calibration data, etc. is often needed by 
sensor nodes. 
 
16. Future versions of the protocol must work with prior versions and provide 
all the same capabilities as prior versions. Rationale: Control networks are 
long-lived, as long as 20+ years in many cases, yet they are networks, so 
additional nodes and additional applications are added to them over time.  It is 
unreasonable, and often prohibitively costly to upgrade all the existing nodes 
in a network to the new version – they may not have enough memory, or there may 
be some other constraint. 
 
 
17. There must be some lightweight application interoperability model to 
facilitate the exchange of data between publishers and subscribers. Rationale: 



Resource constrained nodes cannot support parsers of data streams, for example, 
today’s xml parsers are code space and RAM intensive. 
 
18. Today, the vast majority of control networks are not secured.  This will 
change, so the protocol must be able to support strong encryption, mutual 
authentication, and protection against record/playback attacks. To sell networks 
to the U.S. government, the requirement is that the algorithms used be NSA suite 
B approved. Rationale: as the world moves from hardwired control systems and 
closed, unconnected networks to networks that can be connected to the internet, 
the attacks perfected on the internet can be repurposed to attack the Internet 
of Things.  
 


