Cross-Layer Coordination: Let’s Talk About Intentions

Philipp S. Schmidt

philipp@inet.tu-berlin.de
TU Berlin

ABSTRACT

To evolve a network beyond a stupid bitpipe, the network needs
information about the applications’ intentions and communication
preferences. We give an brief overview about our earlier work,
Socket Intents, that augments the standard BSD socket interface to
enable the application to express what it knows about its communi-
cation patterns and preferences. This information can then be used
by our proactive policies to choose the appropriate interface, tune
the network parameters, or even combine multiple interfaces. We
also give an outlook how similar mechanism can be used in other
parts of the network to exploit synergies between the network lay-
ers without violating the layering.

1. INTRODUCTION

The end to end argument [5] and the hourglass shape of its pro-
tocol hierarchy are, from an architectural perspective, definitely
among the most important reasons for the success of the Internet.
This architecture allowed for easy adoption of new network pro-
tocols on top of IP. However, the introduction of middleboxes that
do in-network modification of traffic for performance and security
reasons has mostly ended this. New transport and sometimes also
application layer protocols become hard to deploy in a network that
filters or modifies traffic it does not know. When thinking about
the next steps in the IP Stack evolution, we have to ask why we
can’t have both: In-network performance optimization and security
checks through middle boxes and application evolvability?

In this paper, we propose an easy solution for this complicated
problem: Let the network elements talk to each other about their
intentions and preferences, even across layer boundaries. When
signaling what in-network modifications to their communication
applications request or tolerate, it is possible to take advantage of
the benefits without disturbing new protocols.

The remainder of the paper is structured as follows: We first in-
troduce our earlier work, Socket Intents[6], that augments the stan-
dard BSD socket interface to enable the application to express what
it knows about its communication patterns and preferences, as a
working example of cross-layer coordination. We then present a
few examples that can benefit from similar approaches and finally
conclude.

2. SOCKET INTENTS

Socket Intents[6] are a proactive, application informed approach
that augments the socket interface to enable the application to ex-
press its communication preferences. Here, preferences can refer
to high bandwidth, low delay, connection resilience, etc. This in-
formation can then be used by our dynamic proactive policies to

Theresa Enghardt
theresa@inet.tu-berlin.de

TU Berlin
Intent Type Value
Category Enum Query, bulk transfer, control traffic, stream
File size Int Number of bytes transferred by the application
Duration Int Time between first and last packet in seconds
Bitrate Int Size divided by duration in bytes per second

Burstiness Enum Random bursts, regular bursts, no bursts or bulk
(congestion window limited)
Timeliness Enum Stream (low delay, low jitter),
interactive (low delay),
transfer (completes eventually)
or background traffic (only loose time constraint)
Resilience Enum Sensitive to connection loss,
undesirable (loss can be handled)
or resilient (loss is tolerable)

Table 1: List of proposed Socket Intents.

choose the appropriate interface, tune the network parameters, or
even combine multiple interfaces.

The principle observation that the application has critical infor-
mation is not novel, but has been made before in the context of
Quality of Service. The main difference between QoS and our
Socket Intents approach is that "(...) the application tells what
it knows as opposed to what it wants, as in prior work on QoS". !
Therefore, the application expresses what it knows about the com-
munication, what the traffic might look like and what the applica-
tion can tolerate.

In summary, our Socket Intents of (i) an augmented socket li-
brary to communicate the needs of the application, (ii) a set of
policies to select or combine appropriate network interfaces, and
(ii1) mechanisms to combine or select interfaces.

Principle

Let’s start with some examples: (i) If the antivirus software needs
an update, this usually implies downloading a large file in a bulk
transfer, maybe with a known file size. Timing is typically noncrit-
ical and the data can be downloaded as background traffic. If the
TCP connection was closed during the transfer, it would not hurt,
as the download can be continued. Here the application can set the
general category bulk transfer, and provide additional information
such as file size, timeliness, and resilience.

(ii) If you want to stream a video, the streaming application may
know the bitrate and the duration. It does not want the TCP con-
nection to be disconnected because this may be visible to the user.
Here it can specify the general category stream transfer with addi-
tional information about duration, bitrate and resilience.

Based on this philosophy, we propose a set of Socket Intent op-
tions, see Table 1. Socket Intents are optional in the sense that

' As smartly summarized by the CONEXT’13 TPC

they are not required but any number of them can be specified.
They are structured hierarchically, starting with the “category” op-
tion with possible values of query, bulk transfer, control traffic, and
stream, which are realized as enum. Then we have more specific
options which include file size, duration of the flow, expected bi-
trate, whether the traffic is bursty, whether the timeliness of the flow
completion matters and how resilient the application is against con-
nection loss. Each of these can either be enums or integers. Note
that these are extensible and Table 1 is only a first proposal.

System architecture

In the following we discuss where in the stack Intents should be
specified to enable the components to cooperate.

Figure 1(a) shows how communication works within today’s OSes.

The application request a socket, either TCP or UDP, via the
Socket API, today’s almost universal interface. The OS then maps
the socket to a specific network interface using a fixed internal pol-
icy, which gets minimal information from the application, and then
uses it for the communication.

To benefit from the information about the upcoming communi-
cation that is available within the application, the programmer has
to pass it along with the request for communication.

Accordingly, we augment the Socket library of the Socket API
with additional socket options and add an explicit user space policy
manager, Figure 1(b). Upon (1) recognizing a Socket Intent option,
the Socket library (2) calls the user space policy manager which can
then (3) choose either a single interface or multiple interfaces. This
is then used to (4) override the kernel interface selection policy.

Policies

Our system design places the hardest problem, the actual decision
which interface(s) to use for which communication, into the policy
component. It is important to note that the specific policy that is
most beneficial will likely depend on the configuration of the host,
the current location, the current network availability, etc.

A rather obvious example for a policy is to use high bandwidth
interfaces for application requests of the category bulk transfer and
low latency interfaces for application requests of the category query.
With Socket Intents, we enable the policy to decide what to opti-
mize for, which would be undecidable otherwise.

Policies are not limited to the use of a single interface if the trans-
port protocol supports the simultaneous use of multiple interfaces.
The polices in our current prototype use socket options to control
use of MPTCP [3] or multiple paths in SCTP to allow for transport
layer innovation without having to change the application.

3. CROSS LAYER COORDINATION

The idea of cross layer coordination is not limited to the Socket
Interface. In this section, we give another examples how cross-

(a) Traditional.

(b) With Socket Intents.

Figure 1: Within host: Applications/network interfaces.

layer coordination already works on the internet and an interesting
candidate of new cross layer coordination mechanisms.

Packet Chunking

Chunking refers to splitting an object, a bitstream, or a sets of pack-
ets into one or more parts. This process is essential to transmit a
byte stream or packet given to the socket using the transport- and
network layer through the internet. For chunking, the evolution of
the internet has come to a rough consensus how to solve it: Use
the largest possible chunks within the application and let the TCP
stack of the end hosts find out the largest chunk size that traverse the
whole network without re-chunking. To take advantage of this sep-
aration, the only cross layer coordination needed is that each layer
is aware of the MTU presented by the layer below and a mecha-
nism like path MTU discovery allowing the end hosts to adapt their
chunking accordingly.

Access Network Load Indication

How to handle hosts and/or networks with multiple network con-
nections is a buzzing as well as long standing research problem.
Today, the focus is how to seamlessly take advantage of multiple
connections within the protocols. Even if all systems have differ-
ent objections, e.g. to shift traffic from from cellular networks [2],
shift traffic to cellular networks [4] or to take advantage of the union
bandwidth of multiple access links via Multi-Path TCP [3], or by
distributing IP flows [1], all have a common problem, to determine
whether the network has the necessary resources for the traffic.

While loss based mechanisms like used in TCP work fine, they
are hard to influence from a network management standpoint. QoS
with reservation is no alternative, as it has a large signaling over-
head and has only been deployed in small parts of the network.

We propose Advisable Access Network Load Indication as an
addition, that allows the network to indicate its load to clients be-
fore congestion happens. With such an indication, transport layer
protocols like MPTCP can decide whether to add a subflow using
this network and even applications can decide to postpone actions
to take load from the network.

4. CONCLUSION

As demonstrated with Socket Intents, cross layer coordination
has a high potential to become one of the key ideas to evolve the
IP stack. Where already taking place, like in the case of chunk-
ing, it enables coordination of several layers without violating layer
boundaries. We think that cross layer coordination can have simi-
lar benefits in other areas, like Access Network Load Indication and
the signaling whether in-network modification and optimization is
advisable, and therefore can also be a tool to solve the conflict be-
tween in-network modification and application evolvability.

S. REFERENCES

[1] A. De La Oliva, C. Bernardos, M. Calderon, T. Melia, and
J. Zuniga. Ip flow mobility: smart traffic offload for future
wireless networks. IEEE Communication Magazine, Oct 2011.
[2] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile data
offloading: how much can wifi deliver? In Proceedings of the
ACM SIGCOMM 2010 conference, SIGCOMM 10, pages
425-426, New York, NY, USA, 2010. ACM.
C. Paasch and O. Bonaventure. Multipath tcp. Queue, 12(2),
Feb 2014.
[4] C.Rossi, N. Vallina-Rodriguez, V. Erramilli, Y. Grunenberger,
L. Gyarmati, N. Laoutaris, R. Stanojevic, K. Papagiannaki,
and P. Rodriguez. 3gol: Power-boosting adsl using 3g

3

—_—

(5]

(6]

onloading. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies,
CoNEXT ’13, pages 187-198, New York, NY, USA, 2013.
ACM.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Trans. Comput. Syst., 2(4),
1984.

P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann.
Socket intents: Leveraging application awareness for
multi-access connectivity. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and
Technologies, CONEXT ’13, pages 295-300, New York, NY,
USA, 2013. ACM.

	Introduction
	Socket Intents
	Cross Layer Coordination
	conclusion
	References

