
Thing Description as Enabler of Semantic Interoperability on the Web of Things

Sebastian Käbisch, Darko Anicic

Siemens AG - Corporate Technology

Internet of Things (IoT) will connect devices, facilities, and networks with advanced sensors,

controls and software applications. Combined with the power of analytics, artificial reasoning,

automation and deep domain expertise, it has the potential to increase performance gains

across global industry sectors. Yet the vision of Internet of Things is challenged today by a

number of issues, few of which are associated with data silos, machine interoperability,

automated resource discovery, unambiguous interpretation of IoT data, smooth engineering and

maintenance of IoT systems and many others. Hence a few challenges that motivate the need

for IoT Semantics are:

Semantic interoperability - ensures that IoT data can be comprehended unambiguously by both
human users and software programs across different platforms and domains. It offers interaction
between heterogeneous Things on a higher level of abstraction.

Interpretation of data and knowledge – makes the data generated by Things understandable by
machines and humans, without prior knowledge about Things that produced them.

Unambiguity – deals with an unambiguous meaning of Thing’s data and properties. For example,
it is not sufficient to know that there exists a Thing, but it is important to know what exactly a
capability of the Thing is, and to unambiguously understand the data it produces or consumes.

Data/knowledge integration – integrates data/knowledge from multiple vertical domains into

cross-domain applications.

Thing Description

The approach of W3C WoT IG, which addresses challenges presented in the previous section, is

grounded on Thing Description - a semantic description of actual Thing’s capabilities and the

information on how to access them. Thing Description (TD) is designed to be minimal in a sense

that it is applicable to any Thing, regardless of the Thing’s size or an application domain the

Thing is used in. It is important to make TD applicable for very resource constrained devices

such as for example MSP430, ARM Cortex-M3, ESP8266. Also it is important to make TD

extensible so that TD is applied to different vertical domains and cross-domain applications. The

task force of the TD group has currently identified following main aspects to specify a TD

instance:

Thing’s metadata:
- Generic information of a Thing (e.g., name of Thing, supported protocols, encodings etc.);

- Extended-able with domain or vendor specific information.

Thing’s Interaction Resources:
- Property: used to describe Thing properties. A property can be either static or dynamic (e.g.,

temperature value, fill level water measurement etc.).

- Action: invokes actions on a Thing which starts a process (e.g., LED fade in, move a robot,

brew a cup of coffee etc.).

- Event: enables an intention to be notified by the Thing on a certain condition (e.g., door

opened).

Thing’s Communication:
- Protocol and addresses location (e.g., HTTP, CoAP, BLE, etc.);

- Bindings to the interaction resources.

Thing’s Security:
- Describing prerequisites to access Thing’s resources;

- Protecting TD.

The TD relays on the Resource Description Framework (RDF) as an underlying data model this

also enable to be extendable, e.g., to involve domain or vendor specific information. As a current

serialization format JSON-LD has been proposed in order to benefit from both the widely used

JSON-based format and JSON-LD’s

concept of @context (that provides the

mapping from JSON to an RDF model).

Since JSON-LD is a text-based

representation, a TD may be a burden for

resource constrained devices. Based on

this, additional binary RDF encoding

formats that handle string redundancies

well will be also considered in the future.

Figure 1 shows a sample TD of a LED

Thing (“MyLED”) serving a status (on/off)

information as a Property and two Actions

fadeIn and fadeOut that both takes a time

input (=unsignedByte). In addition, the

Thing supports two application protocols,

namely HTTP and CoAP, as well as the

used JSON as data exchange format. For

addressing the concrete property and

action the known href is used in the TD. Another important aspect which has to be semantically

understood and processed is the data type of Thing’s resources. Current working assumption

relies on XML Schema data types that are also supported by RDF. This takes the advantage to

describe the data in a very precise manner (e.g., use data types relevant for constrained devices

(e.g., bytes) and define ranges/limitations etc.).

Extending Thing Description with Contextual Semantic Models

Thing Description offers the basic information about a Thing. For example, “MyLED” is a Thing

that has a Property “status” and data that can be either “true” or “false” (see the TD sample

above). But if we want to discover a Thing or use it for an interaction with another Thing we need

further information. For instance, we need to know what kind of a Thing it is and what additional

properties and capabilities it has.

Figure 1 TD sample based on a LED Thing

https://en.wikipedia.org/wiki/Resource_Description_Framework

“MyLED” is just a string that a human may understand. For machines it is meaningless. For

example, a machine cannot discover “MyLED” when it was given a task to find a sensor of type

light, or a lighting device with a certain RGB specification, location and so forth. This information

does not exist in its TD. Hence it is not possible to discover the Thing based on it. In many

applications we actually discover Things exactly based on such information, and need their TD

only after Things are discovered.

Further on, to connect Things in a semantically meaningful way we need again more semantic

information than provided in TD. For instance, a temperature sensor from Thing 1 may control

air-condition from Thing 2. We are allowed to connect these two devices based on their TDs,

also when the connection is semantically incorrect (e.g., the sensor provides temperature data in

Celsius and the air-conditioner expects data in Fahrenheit).

Discovery and Thing to Thing interaction are

only two examples where we see that TD needs

further enrichment with semantic models.

Figure 2 shows how Thing Description can be

extended with additional semantic layers. For

example, TD may be accompanied with Domain

Independent Models. Horizontal semantic

models are typical examples of such models,

e.g., the QUDT Ontologies1 to provide quantities,

units, dimensions and data types, or Semantic

Sensor Network Ontology2 to describe sensors

irrespective of a domain in which a sensor is used. Domain Dependent Models is another layer

that provides domain specific semantics, also when a model covers few different domains.

Examples of such models are eCl@ss3, IEC Common Data Dictionary4 and many others

available today. Our position is that we need to provide a mechanism which enables TD to utilize

existing semantic models relevant for WoT. The question arises as to how existing data models

can be mapped against TD and each other to offer interworking. We believe that RDF as an

underlying data model offers a solid base for such an integration. This is the reason why we

grounded TD on RDF. But the question how to “convert” existing non-RDF data models into RDF

ones needs to be discussed. Smart Appliances REFerence (SAREF) ontology5 is a good

example that this is possible. It is an RDF/OWL ontology that facilitates the matching of existing

assets (standards, protocols, data models etc.) in the smart appliances domain. Existing

standards considered in SAREF ontology are for example: ECHONET, KNX, EnOcean, Z-Wave,

OMA Lightweight M2M, UPnP and others. Originally data models of these standards were not

provided in RDF. However, thanks to SAREF project, they are now available in RDF/OWL and

can be used in semantic WoT applications.

1
 http://www.qudt.org/

2
 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

3
 http://www.eclass.eu/

4
 http://std.iec.ch/iec61360

5
 https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology

Figure 2 Enrichment of Thing Description with
Contextual Semantic Models

https://sites.google.com/site/smartappliancesproject/ontologies/echonet-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/knx-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/enocean-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/z-wave-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/oma-lightweight_m2m-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/upnp-ontology
http://www.qudt.org/
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.eclass.eu/
http://std.iec.ch/iec61360
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology

