
1

Tutorial on Bridges, Routers, 
Switches, Oh My!

Radia Perlman
(radia.perlman@sun.com)



2

Why?

• Demystify this portion of networking, so 
people don’t drown in the alphabet soup

• Think about these things critically
• N-party protocols are “the most interesting”
• Lots of issues are common to other layers
• You can’t design layer n without 

understanding layers n-1 and n+1



3

Why, continued

• Cross-fertilization is important
• For instance, we can't expect a 90-minute 

overview of security to “teach security”
• But if we want security experts to help out 

with arcane other groups, it's not fair to make 
them have to figure out the language and 
catch up on years of lore

• Even for people in the area, summaries are 
good



4

What this isn't

• An in-depth tutorial about the details of any 
particular protocol

• An attempt to sell a particular approach
– Though understanding tradeoffs, and how one 

thinks about things is good to cover
• An overview of the routing area of IETF

– Not enough time to explain all the varied WGs 
and still give an overview of the concepts

– There are things outside IETF that are important 
to understand



5

What can we do in 1 ½ hours?

• Understand the concepts
• Understand various approaches, and 

tradeoffs, and where to go to learn more
• A little of the history: without this, it’s hard 

to really “grok” why things are the way 
they are



6

A plug for the edu team

• Web page is edu.ietf.org, lots of useful stuff 
there (including the slides for all the Sunday 
tutorials)

• Email to edu team: edu-team@ietf.org
• Mailing list for discussion:

– edu-discuss@ietf.org
– (signup

• edu-discuss-request@ietf.org
• http://www1.ietf.org/mailman/listinfo/edu-discuss



7

Outline

• layer 2 issues: addresses, multiplexing, 
bridges, spanning tree algorithm

• layer 3: addresses, neighbor discovery, 
connectionless vs connection-oriented
– Routing protocols

• Distance vector
• Link state
• Path vector



8

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 
designed before routers

• OSI Layers
– 1: physical



9

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 
designed before routers

• OSI Layers
– 1: physical
– 2: data link (nbr-nbr, e.g., Ethernet)



10

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 
designed before routers

• OSI Layers
– 1: physical
– 2: data link (nbr-nbr, e.g., Ethernet)
– 3: network (create entire path, e.g., IP)



11

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 
designed before routers

• OSI Layers
– 1: physical
– 2: data link (nbr-nbr, e.g., Ethernet)
– 3: network (create entire path, e.g., IP)
– 4 end-to-end (e.g., TCP, UDP)



12

Why this whole layer 2/3 thing?

• Myth: bridges/switches simpler devices, 
designed before routers

• OSI Layers
– 1: physical
– 2: data link (nbr-nbr, e.g., Ethernet)
– 3: network (create entire path, e.g., IP)
– 4 end-to-end (e.g., TCP, UDP)
– 5 and above: boring



13

Definitions

• Repeater: layer 1 relay



14

Definitions

• Repeater: layer 1 relay
• Bridge: layer 2 relay



15

Definitions

• Repeater: layer 1 relay
• Bridge: layer 2 relay
• Router: layer 3 relay



16

Definitions

• Repeater: layer 1 relay
• Bridge: layer 2 relay
• Router: layer 3 relay
• OK: What is layer 2 vs layer 3?



17

Definitions

• Repeater: layer 1 relay
• Bridge: layer 2 relay
• Router: layer 3 relay
• OK: What is layer 2 vs layer 3?

– The “right” definition: layer 2 is neighbor-
neighbor. “Relays” should only be in layer 3!



18

Definitions

• Repeater: layer 1 relay
• Bridge: layer 2 relay
• Router: layer 3 relay
• OK: What is layer 2 vs layer 3?
• True definition of a layer n protocol: 

Anything designed by a committee whose 
charter is to design a layer n protocol



19

Layer 3 (e.g., IPv4, IPv6, DECnet, 
Appletalk, IPX, etc.)

• Put source, destination, hop count on packet
• Then along came “the EtherNET”

– rethink routing algorithm a bit, but it’s a link not a 
NET!

• The world got confused. Built on layer 2
• I tried to argue: “But you might want to talk from 

one Ethernet to another!”
• “Which will win? Ethernet or DECnet?”



20

Layer 3 packet

data

Layer 3 header

source dest hops



21

Ethernet packet

data

Ethernet header

source dest



22

Ethernet (802) addresses

• Assigned in blocks of 224

• Given 23-bit constant (OUI) plus g/i bit
• all 1’s intended to mean “broadcast”

OUI

global/local admin
group/individual



23

It’s easy to confuse “Ethernet” with 
“network”

• Both are multiaccess clouds
• But Ethernet does not scale. It can’t replace IP as 

the Internet Protocol
– Flat addresses
– No hop count
– Missing additional protocols (such as neighbor 

discovery)
– Perhaps missing features (such as fragmentation, error 

messages, congestion feedback)



24

Horrible terminology

• Local area net
• Subnet
• Ethernet
• Internet



25

So where did bridges come from?



26

Problem Statement

Need something that will sit between two Ethernets, and
let a station on one Ethernet talk to another

A C



27

Basic idea

• Listen promiscuously
• Learn location of source address based on 

source address in packet and port from 
which packet received

• Forward based on learned location of 
destination



28

What’s different between this and 
a repeater?

• no collisions
• with learning, can use more aggregate 

bandwidth than on any one link
• no artifacts of LAN technology (# of 

stations in ring, distance of CSMA/CD)



29

But loops are a disaster
• No hop count
• Exponential proliferation

B1 B2 B3

S



30

But loops are a disaster
• No hop count
• Exponential proliferation

B1 B2 B3

S



31

But loops are a disaster
• No hop count
• Exponential proliferation

B1 B2 B3

S



32

But loops are a disaster
• No hop count
• Exponential proliferation

B1 B2 B3

S



33

But loops are a disaster
• No hop count
• Exponential proliferation

B1 B2 B3

S



34

What to do about loops?

• Just say “don’t do that”
• Or, spanning tree algorithm

– Bridges gossip amongst themselves
– Compute loop-free subset
– Forward data on the spanning tree
– Other links are backups



35

Algorhyme
I think that I shall never see

A graph more lovely than a tree.
A tree whose crucial property

Is loop-free connectivity.
A tree which must be sure to span

So packets can reach every LAN.
First the Root must be selected

By ID it is elected.
Least cost paths from Root are traced

In the tree these paths are placed.
A mesh is made by folks like me.

Then bridges find a spanning tree.
Radia Perlman



36

93

4

11
7

10

14

2 5

6

2,0,2

2,0,2

2,1,14
2,1,5

2,1,7

2,1,6

2,2,4

2,2,4

2,3,3

2,2,11

A

X



37

Bother with spanning tree?

• Maybe just tell customers “don’t do loops”
• First bridge sold...



38

First Bridge Sold

A C



39

So Bridges were a kludge, 
digging out of a bad decision

• Why are they so popular?
– plug and play
– simplicity
– high performance

• Will they go away?
– because of idiosyncracy of IP, need it for lower 

layer. 



40

Note some things about bridges

• Certainly don’t get optimal 
source/destination paths

• Temporary loops are a disaster
– No hop count
– Exponential proliferation

• But they are wonderfully plug-and-play



41

So what is Ethernet?

• CSMA/CD, right? Not any more, really...
• source, destination (and no hop count)
• limited distance, scalability (not any more, 

really)



42

Switches

• Ethernet used to be bus
• Easier to wire, more robust if star (one huge 

multiport repeater with pt-to-pt links
• If store and forward rather than repeater, 

and with learning, more aggregate 
bandwidth

• Can cascade devices…do spanning tree
• We’re reinvented the bridge!



43

Basic idea of a packet

Destination address
Source address

data



44

When I started

• Layer 3 had source, destination addresses
• Layer 2 was just point-to-point links 

(mostly)
• If layer 2 is multiaccess, then need two 

headers:
– Layer 3 has ultimate source, destination
– Layer 2 has next hop source, destination



45

Hdrs inside hdrs

R1

R2 R3

 
   

S D

As transmitted by S? (L2 hdr, L3 hdr)
As transmitted by R1?
As received by D?



46

Hdrs inside hdrs

R1

R2 R3

 
   

S D

S:

Layer 2 hdr Layer 3 hdr

Dest=
Source=

Dest=D
Source=S



47

Hdrs inside hdrs

R1

R2 R3

 
   

S D

R1:

Layer 2 hdr Layer 3 hdr

Dest=
Source=

Dest=D
Source=S



48

Hdrs inside hdrs

R1

R2 R3

 
   

S D

R2:

Layer 2 hdr Layer 3 hdr

Dest=D
Source=S



49

Hdrs inside hdrs

R1

R2 R3

 
   

S D

R3:

Layer 2 hdr Layer 3 hdr

Dest=
Source=

Dest=D
Source=S



50

What designing “layer 3” meant

• Layer 3 addresses
• Layer 3 packet format (IP, DECnet)

– Source, destination, hop count, …
• A routing algorithm

– Exchange information with your neighbors
– Collectively compute routes with all rtrs
– Compute a forwarding table



51

Network Layer

• connectionless fans designed IPv4, IPv6, 
CLNP, IPX, AppleTalk, DECnet

• Connection-oriented reliable fans designed 
X.25

• Connection-oriented datagram fans 
designed ATM, MPLS



52

Pieces of network layer

• interface to network: addressing, packet 
formats, fragmentation and reassembly, 
error reports

• routing protocols
• autoconfiguring addresses/nbr 

discovery/finding routers



53

Connection-oriented Nets

S

A
R1

R2

R3

R4

R5

D

3

4

7

2

4

3

1

2

3

(3,51)=(7,21)
(4,8)=(7,92)
(4,17)=(7,12)

(2,12)=(3,15)
(2,92)=(4,8)

(1,8)=(3,6)
(2,15)=(1,7)VC=8, 92, 8, 6

8

92

4

6



54

Lots of connection-oriented 
networks

• X.25: also have sequence number and ack 
number in packets (like TCP), and layer 3 
guarantees delivery

• ATM: datagram, but fixed size packets (48 
bytes data, 5 bytes header)



55

MPLS (multiprotocol label 
switching)

• Connectionless, like MPLS, but arbitrary 
sized packets

• Add 32-bit hdr on top of IP pkt
– 20 bit “label”
– Hop count (hooray!)



56

Hierarchical connections (stacks of 
MPLS labels)

R1

R2

S1

S8

S6

S9

S5

S2

S4

S3

D2
D1

D8

D2 D9

D3

D5
D4

Routers in backbone only need to know about
one flow: R1-R2



57

MPLS

• Originally for faster forwarding than 
parsing IP header

• later “traffic engineering”
• classify pkts based on more than destination 

address



58

Connectionless Network Layers

• Destination, source, hop count
• Maybe other stuff

– fragmentation
– options (e.g., source routing)
– error reports
– special service requests (priority, custom routes)
– congestion indication

• Real diff: size of addresses



59

Addresses

• 802 address “flat”, though assigned with 
OUI/rest. No topological significance

• layer 3 addresses: locator/node : 
topologically hierarchical address

• interesting difference:
– IPv4, IPv6, IPX, AppleTalk: locator specific to 

a link
– CLNP, DECnet: locator “area”, whole campus



60

Hierarchy within Locator

• Assume addresses assigned so that within a circle 
everything shares a prefix

• Can summarize lots of circles with a shorter prefix

27* 23*

2428*

2*

279* 272*



61

New topic: Routing Algorithms



62

Distributed Routing Protocols

• Rtrs exchange control info
• Use it to calculate forwarding table
• Two basic types

– distance vector
– link state



63

Distance Vector

• Know
– your own ID
– how many cables hanging off your box
– cost, for each cable, of getting to nbr

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”



64

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



65

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



66

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



67

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



68

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



69

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?



70

Looping Problem

A B C



71

Looping Problem

A B C

012 Cost to C



72

Looping Problem

A B C

012 Cost to C

direction
towards C

direction
towards C



73

Looping Problem

A B C

012 Cost to C

What is B’s cost to C now?



74

Looping Problem

A B C

012 Cost to C

3



75

Looping Problem

A B C

012 Cost to C

3

direction
towards C

direction
towards C



76

Looping Problem

A B C

012 Cost to C

34

direction
towards C

direction
towards C



77

Looping Problem

A B C

012 Cost to C

34

5

direction
towards C

direction
towards C



78

Looping Problem
worse with high connectivity

Q Z B A C N M V
H



79

Split Horizon: one of several 
optimizations

Don’t tell neighbor N you can reach D if you’d forward to D through N

A B C

A B

C

D



80

Link State Routing

• meet nbrs
• Construct Link State Packet (LSP)

– who you are
– list of (nbr, cost) pairs

• Broadcast LSPs to all rtrs (“a miracle occurs”)
• Store latest LSP from each rtr
• Compute Routes (breadth first, i.e., “shortest path” 

first—well known and efficient algorithm)



81

A B C

D E F

G

6 2
5

1

212
2 4

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1



82

Computing Routes

• Edsgar Dijkstra’s algorithm:
– calculate tree of shortest paths from self to each
– also calculate cost from self to each
– Algorithm:

• step 0: put (SELF, 0) on tree
• step 1: look at LSP of node (N,c) just put on tree. If 

for any nbr K, this is best path so far to K, put (K, 
c+dist(N,K)) on tree, child of N, with dotted line

• step 2: make dotted line with smallest cost solid, go 
to step 1



83

Look at LSP of new tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2) G(5)



84

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2) G(5)



85

Look at LSP of newest tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2) G(5)

E(4) G(3)



86

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(4) G(3)



87

Look at LSP of newest tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)



88

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)



89

Look at LSP of newest tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)



90

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)



91

Look at newest tree node’s LSP
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)



92

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)



93

Look at newest node’s LSP
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)
A(7)



94

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)

D(5)
A(7)



95

We’re done!
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)

D(5)
A(7)



96

“A miracle occurs”

• First link state protocol: ARPANET
• I wanted to do something similar for 

DECnet
• My manager said “Only if you can prove 

it’s stable”
• Given a choice between a proof and a 

counterexample…



97

Routing Robustness

• I showed how to make link state 
distribution “self-stabilizing”…but only 
after the sick or evil node was disconnected

• Later, my thesis was on how to make the 
routing infrastructure (not just the routing 
protocol), robust while sick and evil nodes 
are participating…and it’s not that hard



98

Distance vector vs link state

• Memory: distance vector wins (but memory is 
cheap)

• Computation: debatable
• Simplicity of coding: simple distance vector wins. 

Complex new-fangled distance vector, no
• Convergence speed: link state
• Functionality: link state; custom routes, mapping 

the net, troubleshooting, sabotage-proof routing



99

Specific Routing Protocols

• Interdomain vs Intradomain
• Intradomain:

– link state (OSPF, IS-IS)
– distance vector (RIP)

• Interdomain
– BGP



100

BGP (Border Gateway Protocol)

• “Policies”, not just minimize path
• “Path vector”: given reported paths to D 

from each nbr, and configured preferences, 
choose your path to D
– don’t ever route through domain X, or not to D, 

or only as last resort
• Other policies: don’t tell nbr about D, or lie 

to nbr about D making path look worse



101

Path vector/Distance vector

• Distance vector
– Each router reports to its neighbors {(D,cost)}
– Each router chooses best path based on min 

(reported cost to D+link cost to nbr)
• Path vector

– Each rtr R reports {(D,list of AS’s in R’s 
chosen path to D)…}

– Each rtr chooses best path based on configured 
policies



102

BGP Configuration

• path preference rules
• which nbr to tell about which destinations
• how to “edit” the path when telling nbr N 

about prefix P (add fake hops to discourage 
N from using you to get to P)



103

Rtg area in IETF

• Core routing (IS-IS, OSPF, BGP, RIP no 
longer)

• MPLS/GMPLS (CCAMP, PCE, L1VPN)
• Multicast (PIM, SSM)
• MANET
• Routing protocol security
• Others (BFD, FORCES, RTGWG, VRRP)



104

Wrap-up

• folklore of protocol design
• things too obvious to say, but everyone gets 

them wrong



105

Forward Compatibility

• Reserved fields
– spare bits
– ignore them on receipt, set them to zero. Can 

maybe be used for something in the future
• TLV encoding

– type, length, value
– so can skip new TLVs
– maybe have range of T’s to ignore if unknown, others 

to drop packet



106

Forward Compability

• Make fields large enough
– IP address, packet identifier, TCP sequence #

• Version number
– what is “new version” vs “new protocol”?

• same lower layer multiplex info
– therefore, must always be in same place!
– drop if version # bigger



107

Fancy version # variants

• Might be security threat to trick two Vn 
nodes into talk V(n-1)

• So maybe have “highest version I support” 
in addition to “version of this packet”

• Or just a bit “I can support higher” (we did 
this for IKEv2)

• Maybe have “minor version #”, for 
compatible changes. Old node ignores it



108

Version #

• Nobody seems to do this right
• IKEv1, SSL, even IP, unspecified what to 

do if version # different. Most 
implementations ignore it.

• SSL v3 moved version field!
– v2 sets it to 0.2. v3 sets (different field) to 3.0.
– v2 node will ignore version number field, and 

happily parse the rest of the packet



109

Avoid “flag days”

• Want to be able to migrate a running 
network

• ARPANET routing: ran both routing 
algorithms (but they had to compute the 
same forwarding table)
– initially forward based on old, compute both
– one by one: forward based on new
– one-by-one: delete old



110

Parameters

• Minimize these:
– someone has to document it
– customer has to read documentation and 

understand it
• How to avoid

– architectural constants if possible
– automatically configure if possible



111

Settable Parameters

• Make sure they can’t be set incompatibly 
across nodes, across layers, etc. (e.g., hello 
time and dead timer)

• Make sure they can be set at nodes one at a 
time and the net can stay running



112

Parameter tricks

• IS-IS
– pairwise parameters reported in “hellos”
– area-wide parameters reported in LSPs

• Bridges
– Use Root’s values, sent in spanning tree msgs



113

Summary

• If things aren’t simple, they won’t work
• Good engineering requires understanding 

tradeoffs and previous approaches.
• It’s never a “waste of time” to answer “why 

is something that way”
• Don’t believe everything you hear
• Know the problem you’re solving before 

you try to solve it!


