The javadoc Package

Jolle*
May 24, 2008

Abstract

The javadoc package provides an easy way to document source
code. It is related to the javadoc system for java source code and tries
to provide the same descriptions. But, of course, source code of other
languages can be documented using this package. The package is under
GNU GENERAL PUBLIC LICENSE!

Contents

1 Introduction

2 Options and Required Packages
3 Design-Commands

4 Linking in the Output-PDF

5 Known Issues

6 Structure of a class

7 Description of a class

7.1 The environment jdinheritancetable
7.2 Commands for all environments except jdinheritancetable
7.2.1 Modifier
7.2.2 Codebased Attributs L0
7.2.3 Javadocbased Attributs L.
7.3 Table with commands and environments

*Comments, Help, Questions, Hints, Critics to joerman.lieder@gmx.net

'www.gnu.org

S T U B R

1 Introduction

Javadoc is a powerful tool for java developer to document their source code.
It produces a comprehensive collection of HI'ML-pages out of special format-
tet comments in sourc code. The package javadoc uses the same attributes
to describe the source code with ITEX. In combination with the TexGen
doclet the TpX-documentation can be generated with the javadoc out of the
source code.

2 Options and Required Packages

The javadoc-package requires one other package. The longtable is used to
display the tables of inherited fields and methods.

The package provides options to customize the layout and structure of
the document. The package occupies 3 levels of hierarchy, with the options
chapter, section, subsection the highest level can be set, the others will
be adapt automatically. The default is section. The second possibility to
customize the behaviour is to set the table of content. The two forms of
chapter and chapter* and so on can be used. The following table lists the
possible options.

Option | Table of Content
tocO no level

tocl highest level, default
toc2 the two highest levels
toc3 all levels

toc like toc3

notoc | like tocO

The entries of the table of contents might be changed by other settings
independent of this package options.

The hyperref-option produces links inside of the document. This refers
to the datatypes of parameters, classes, methodreturns, etc. It also produces
many warnings during compilation process due to the missing targets. Using
this option, the package hyperref is loaded. Options can be set with the
\hypersetup command.

The package provides the possibility to use different languages. It belongs
to the headinds and words, no options or packages are loaded. Codespecific
words are not translated. An implemented option is deutsch, default is
english. Other languages can be easily integrated by translating the following
commands. All language-commands start with \ jd@lang@, the endings are
listed in table 2.

field author
method category
constr deprecated
parameter
fullname see
package serial
inherits serialData
implements serialField
outerclass since
return
elementname throws
inheritOf version
inheritancetable

Table 1: Language commands

3 Design-Commands

2 additional commands are helpful. \jdinh draws an arrow for inheritance
from right to left. \jdcode has one argument and changes the font to True-
Type.

4 Linking in the Output-PDF

For linkings the arguments of \jdtype and the first arguments of \JDpara
and \jdInhEntry must contain the link-information. These information
are set with \ jdtypesimple{type} or \jdtypearray{name}{dimension} or
\jdtypegeneric{name}{generic}. For generic types the single classes must
be signed with the named commands. The targets are set automatically. You
can use all these commands without worrying about the use of the hyperref
option. Without the option, the links are ignored and produces no errors or
warnings.

5 Known Issues

e Problems comes about the linkings to not described classes. There are
warnings during compilation process and missing links in the output.

e Only class- and interfacenames are linked, not methods or else.

e The label for linking contains the classname. Two equal named classes
produces errors.

e Method- und Fieldnames often produces overfull boxes in the headings.

6 Structure of a class

The hierarchy levels are already mentioned, here comes the description. De-
scribing a class starts with a classname. This name will be the highest
hierarchy level. Then the headings for Fields, Methods, Constructors follow,
the lowest level is for the elements of the class (methodnames, fieldnames...)

7 Description of a class

The outer environment for a class is jdclass. jdclass has an argument with
the classname. An option can be given with the type class or interface
or enum. Default is class. Inside of the class environment, the following
structure has to be kept.

jdclassheader

jdinheritancetable

jdfield

jdconstructor

jdmethod

The environment jdclassheader can be written once per class, the envi-
ronments jdconstructor and jdinheritancetable need no argument with
the name.

7.1 The environment jdinheritancetable

The table entries can be produced with the \ jdInhEntry command. It has
two arguments, the first one is the element the second the class, that inherited
the element.

7.2 Commands for all environments except jdinheritancetable

For all environments the same elements are valid in general. But not all
elements are used everywhere. The table 2 lists the usage of commands in
environments. The usage of commands not belonging to an environment
doesn’t produces a failure, but it has no effect. The javadoc-package has no
java-syntax-check, you can call contradictory modifier if you feel to.

7.2.1 Modifier
The following modifier can be named. They have no arguments.

e \jdpublic

\jdprotected

\jdprivate

\jdstatic

\jdabstract

\jdfinal

\jdtransient

\jdvolatile

7.2.2 Codebased Attributs

The following attributes are not javadoc-based but contains important in-
formation

e \jdpackage{packagename} The package containing the class.

e \jdinherits{classname} Inherited class. For a hierarchy, the arrow
\jdinh can be used.

\jdimplements{interface} A Interface, that is implemented. Can be
named more than once.

\jdouterclass{classname} Defines an outer class for an inner one.

\jdtype{type} Data type, especially for return values, and fiels. A
method without type gets automatically void.

7.2.3 Javadocbased Attributs
Most arguments have an argument containing their description.

e \JDcategory{description}

e \JDdeprecated{description}

\JDserial{description}

\JDserialData{description}

\JDserialField{description}

\JDsince{description}

\JDtext{description}

\JDversion{description}

e \JDreturn{description}

There are three other attributs, that can be named more than once
and/or contain more than one argument.

e \JDsee{description}
e \JDauthor{authorname}
e \JDpara{datatype}{name}{description}

e \JDthrows{exceptionname}{description}

7.3 Table with commands and environments

The table 2 sums up, which commands can be named in which environment.

Command

\jdpublic

\jdprotected

\jdprivate

\jdstatic

\ jdabstract

\jdfinal

M| 4| <] 4| 4| 4| jdclassheader

M| 4| >4| 4| <] 4| jdeconstructor

M| | 4| 4] | 4| jdmethod

\jdtransient

\jdvolatile

DAL DAL | 4| | | <] 4| jdfield

\ jdpackage{packagename}

\jdinherits{classname}

\jdimplements{interface}

\jdouterclass{classname}

aiksikaike

\jdtype{type}

\JDauthor{description}

\JDcategory{description}

\JDdeprecated{description}

\JDsee{description}

\JDserial{description}

iksiEaikalks

SiksiEsiksikalls

\JDserialData{description}

iksiEsiksikalls

SiksiEsiEaikasibalks

\JDserialField{description}

\JDsince{description}

\JDtext{description}

Sikalks

slks

slks

\JDversion{description}

Sikalks

\JDreturn{description}

\JDpara{datatype}{name}{description}

\JDthrows{exceptionname}{description}

Table 2: Usage of commands in environments

| <] A

| <] A

