The biocon package

Pieter Edelman

August 18, 2001

Abstract

The biocon package handles the typesetting of scientific species names. There are different modes of showing
these names. Multiple occurances in the same document are taken care of.

Contents

I "The built-up of the packagd 1

T Terfacd 1
PT Briefsyntax e e e e e e e e 1
g.2 The implementation for the declaration part 0o e 2

B~ The infernal workingg 3
b.l "T'he implementation for the use part partl o . o v v i i i e e e e e e e e e e e e e e 5

1 The built-up of the package

According to [?], each package foolows a standard built-up, which is:

(biocon.sty)=
(Identification part)
(Declaration of options)
(Ezecution of options)
(Package loading)
(Main code)

The identification part is easy. This package is designed exclusively for IATEX 2¢, and it provides the biocon
package.
(Identification part)=
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{biocon}[2001/08/18]

2 The user interface

2.1 Brief syntax

(Main code)=
(Declarations)
(The user interface)
(Internal workings)

The biocon package automates the process of typesetting biological species names. Different conventions are
followed for animals, bacteria, plants and fungi (the latter two follow the same conventions). These four main groups
are used in this package. The amount of information the user provides is variable, for example the user should be able
to typeset the full name with genus, old genus, author etc., but also just the normal binomial name.

Two kinds of commands are provided to reach this goal, the first is for quick-n-dirty use-only-once names. The
other is a set of commands were first the species is declared, and then used throughout the document.

The quick-n-dirty commands look like:

e \plantlike [how]{parameters}

o \funguslike [how]{parameters}

e \animallike [how]{parameters}

e \bactlike [how]{parameters}
The declaration commands look like:

e \newplant {identifier}{parameters}
e \newfungus{identifier}{parameters}
e \newanimal{identifier }{parameters}
e \newbact {identifier}{parameters}
Declarated species can be used with

e \plant [how]{identifier}

o \fungus [how] {identifier}

e \animal [how] {identifier}

e \bact [how]l{identifier}

In these commands, parameters define the actual species. They can consist of genus, oldgenus, epithet, oldepithet,
author, year, oldauthor, and oldyear, and follow a key=value syntax. Furthermore, more parameters can be defined
by the user. The identifier is the identifier by which a species is recognized by the user. The commands to declare
species are discussed below, while the commands to use them are discussed later.

The declaration commands are all piped through a single command. The quick-n-dirty commands also declare a
new species, but always with the same identifier. This command is the \n@wsp@cies{type}{identifier H{ parameters}
command, where type is P, F, A, B for plant, fungus, animal or bacterium.

2.2 The implementation for the declaration part

As described above, all the declaration commands are piped through a single command (the quick-n-dirty commands
don’t get a type identifier, only a single identifier is needed):

(The user interface)=
\newcommand{\newplant} [2] {\n@wsp@cies{P}{#1}{#2}}
\newcommand{\newfungus} [2] {\nQ@uwsp@cies{F}{#1}{#2}}
\newcommand{\newanimal} [2] {\n@wsp@cies{A}{#1}{#2}}
\newcommand{\newbact}[2] {\n@wsp@cies{B}{#1}{#2}}

\newcommand{\plantlike}[2] []
{\n@wsp@cies{}{Q@D}{#2}\plant [#1] {Q@D}\expandafter\Q@DCleanup\Q@DCleanlist+}
\newcommand{\funguslike}[2] []
{\n@wsp@cies{}{Q@D}{#2}\fungus [#1] {Q@D}\expandafter\Q@DCleanup\Q@DCleanList+}
\newcommand{\animallike} [2] []
{\n@wsp@cies{}{Q@D}I{#2}\animal [#1]{Q@D}\expandafter\Q@DCleanup\Q@DCleanList+}
\newcommand{\bactlike}[2] []
{\n@wsp@cies{}{Q@D}{#2}\bact [#1]{Q@D}\expandafter\Q@DCleanup\Q@DCleanList+}

3 The internal workings

For now, we ignore the commands to use the declared species, and instead define the internal workings of the
\n@wsp@cies command.
Since the key=value syntax is used, the keyval package is needed:

(Package loading)=
\RequirePackage{keyval}

The \n@wsp@cies command creates a command for all the different parameters it gets, which name is of Typeldenti-
fier@Parametername, for example, if the command would be \n@wsp@cies{A}{Hs}{genus=homo,epithet=sapiens},
it would define the commands \AHs@genus and \AHs@epiteth.

(Internal workings)=
(The n@uwsp@cies command)

(The nQusp@cies command)=
\newcommand{\n@wsp@cies}[3]{%

First this function determines what the first part of all the commands should be. It stores this in a parameter
called \curr@ntid.

(Declarations)=
\newcommand{\curr@ntid}{}

(The nQusp@cies command)+=
\renewcommand{\curr@ntid}H{#1#20}%

This command also adds a counter with name Curr@ntIDcounter, which will be used to track whether this
command has been used before (0 for no, 1 for yes) (for Q@D an exception is made).

(Declarations)+=
\newcounter{Q@D@counter}

The \n@wsp@cies command uses the ifthen package.

(Package loading)+=
\RequirePackage{ifthen}

(The n@Qusp@cies command)—+=
\ifthenelse{\equal{#2}{Q@D}}%
{\relax}y,
{\newcounter{\curr@ntid counterl}l}%
\setcounter{\curr@tid counter}{0}}

Then it goes forth by processing all the parameters. According to [0], for every key an apart function should
exist. For the quick-n-dirty commands a \Q@DCleanList command is created to which holds all the possible keys with
\relax associated. The \Q@DCleanup commands sets these keys (this is to prevent old values from being used when
a value is not given).

(Internal workings)+=
(The key=value functions)

(The key=value functions)=
\def\Q@DCleanup#1+{\nCwsp@cies{}{QeD}{#1}}

\newcommand{\add@species@key} [2]{%
\define@key{SpeciesParams}{#1}{#2}
\expandafter\ifx\csname Q@DCleanList\endcsname\relax

\def\Q@DCleanList{#1=\relax}
\else,
\edef\Q@DCleanList{\Q@DCleanlList,#1=\relax}/,
\fi%
}

(The n@Quwsp@cies command)+=
\setkeys{SpeciesParams}{#3}/
X

The handler for the genus should make sure it is written capitalized. Therefore a function is made which splits the
first letter of a word. It used more often in this package.

(Declarations)+=
\newcommand{\T@mpFirst}{}
\newcommand{\T@mpRest}{}

(The key=value functions)+=
\def\SplitG@nusL@tters (#1#2){%
\uppercase{\renewcommand{\T@mpFirst}{#1}}\lowercase{\renewcommand{\T@mpRest}{#2}}}

Then the genus is processed and stored in the right way.

(The key=value functions)+=
\add@species@key{genus}{%
\SplitGOnusL@tters (#1)%
\expandafter\edef\csname\curr@ntid genus\endcsname{\T@mpFirst\T@mpRest}’
}

Of course, this also goes for the old genus.

(The key=value functions)+=
\add@species@key{oldgenus}{/
\SplitG@nusL@tters (#1)7
\expandafter\edef\csname\curr@ntid oldgenus\endcsname{\T@mpFirst\T@mpRest}’
}

The epithet and old epithet all have to be completely lowercase.

(The key=value functions)+=
\add@species@key{epithet}{\lowercase{\expandafter\edef\csname\curr@ntid epithet\endcsname{#1}}}
\add@species@key{oldepithet}{\lowercase{\expandafter\edef\csname\curr@ntid oldepithet\endcsname{#1}}}

And there are the author, old author year and the old year.

(The key=value functions)+=
\add@species@key{author}{\expandafter\edef\csname\curr@ntid author\endcsname{#1}}
\add@species@key{year}{\expandafter\edef\csname\curr@ntid year\endcsname{#1}}
\add@species@key{oldauthor}{\expandafter\edef\csname\curr@ntid oldauthor\endcsname{#1}}
\add@species@key{oldyear}{\expandafter\edef\csname\curr@ntid oldyear\endcsname{#1}}

As mentioned, the user should also be able to add own taxonomical structures. Herefore a the \newtaxon{name}
is used.
(Internal workings)+=
\newcommand{\newtaxon} [1] {\add@species@key{#1}{\expandafter\edef\csname\curr@ntid #1\endcsname{##1}}}
Two special keys are for the default full style and the default abbreviation.
(The key=value functions)+=
\define@key{SpeciesParams}{fullstyle}
{\expandafter\def\csname\curr@ntid fullstyle\endcsname{\csname Sp@cies#1\endcsnamel}}
\define@key{SpeciesParams}{abbrstyle}
{\expandafter\def\csname\curr@ntid abbrstyle\endcsname{\csname Sp@cies#1\endcsnamel}}

3.1 The implementation for the use part part

There’s a lot to do with the actual showing of a species. This package was born from the the desire to automagically
show Genus epithet the first time a species was used, but us G. epithet all subsequent times. However, sometimes an
abbreviation should just be Genus, and someimes the full name is required. Even more, writing the complete species
names with subspecies and old genus stuff etc. is better left to the computer. By default, four different modes of
typesetting are provided; the how parameter specifies how the name should be typeset, this can be extended, which
gives all available information, long, which gives genus and epithet, abbreviated, which gives the first letter of the genus
followed by the epithet, and genus, which gives the genus only. It is also possible for the user to create typesetting
schemes, and to set the default full name and abbreviation per species or globally.

Let’s start with the commands used to write out the names stored in I#TEX’ memory. These are accesible by the
user and are already discussed:

e \plant [how]{identifier}
e \fungus [how] {identifier}
e \animal [how]{identifier}
e \bact [how]{identifier}

These command use “style” commands to do the actual typesetting. A “style” command contains text and

\taxon{pre! name! post} commands. Text is shown verbatim. The \taxon command shows the taxon name for the
current species enclosed by pre and post if this taxon exists. So the typesetting is done by \plant/Fungus/Animal/Bact— style
command—\taxon. Besides the Taxon command, there is a similar FirstTaxon command, which shows only the first

letter of that taxon.

(Internal workings)+=
(The Tazon commands)

Both the \taxon and the \taxonfirst command pipe through a single \Sh@wTax@n command, which takes its
argument in the form of +(pre! name! post) +how+. The unique enclosures are needed to prevent interference with the
pre and post from the user. how is either n for normal or a for abbreviated (first letter only).

(The Tazon commands)=
\newcommand{\taxon}[1] {\Sh@wTax@n+ (#1)+n+}
\newcommand{\taxonfirst}[1]{\Sh@wTax@n+(#1)+a+}

\def\ShQ@wTaxOn+ (#1!#2!#3)+#4+{%,

\curr@ntid is the ID of the species currently treated. This will be discussed later.

(The Tazon commands)+=
\expandafter\ifx\csname\curr@utid#2\endcsname,
\relax%

If the taxon exist, the function checks if it should display normal, and if this is the case it should display pre, the
taxon, and post.

(The Tazxon commands)+=
\else,
\ifthenelse{\equal{#4}{n}}{/
#1\csname\curr@ntid#2\endcsname#3Y,

Otherwise, only the first letter should be displayed. This is done by expanding the current taxon into the macro
\T@mpTax@n which is used as argument for the lettersplitting function.

(The Tazon commands)+=
H%
\edef\TOmpTax@n{\csname\curr@ntid#2\endcsnamel},
#1\expandafter\ShOQwFirst\TOmpTax@n+#3%
Yh
\fi%
}

\def\ShQwFirst#1#2+{#1}

New style can be created with the \newtaxastyle{name}{style} command, where name is an identifier for that
style, and style is, well, the style.
(The user interface)+=

(The newtazastyle command)

(The newtazrastyle command)=
\newcommand{\newtaxastyle} [2] {\expandafter\def\csname Sp@cies#1\endcsname{#2}}

It is often the case that some names should be printed in italics if the rest of the text is upright, or vice versa.
Herefore the command \taxit{} is provided, which is the same as \em in latex.ltx.

(Internal workings)+=
\DeclareRobustCommand\taxitalics
{\@nomath\em \ifdim \fontdimen\@ne\font >\z@
\upshape \else \itshape \fi}
\DeclareTextFontCommand{\taxit}{\taxitalics}
Using this, the default type can be implemented.

(Internal workings)+=
\newtaxastyle{ePlant}
{\taxit{\taxon{!genus!}\taxon{ !epithet!}}\taxon{ (!oldauthor!)}\taxon{ 'author!}}
\newtaxastyle{eAnimal}
{\taxit{\taxon{!genus!}\taxon{ (!oldgenus!)}\taxon{ !epithet!}}\taxon{ (!oldauthor!}’
\taxon{, !oldyear!)}\taxon{!author!}\taxon{, !year!}}

\newtaxastyle{f}
{\taxit{\taxon{!genus!}\taxon{ !epithet!}}}
\newtaxastyle{a}
{\taxit{\taxonfirst{!genus!.}\taxon{ !epithet!}}}
\newtaxastyle{g}

{\taxit{\taxon{!genus!}}}
Now the default styles can be set.

(Declarations)+=
\newcommand{\G1@balF@l1lStyle}{}
\newcommand{\Gl@bal@bbrStyle}{}
\newcommand{\G1@balPE@11Style}{}
\newcommand{\G1@balFEQ@11Style}{}
\newcommand{\Gl@balAE@11Style}{}
\newcommand{\G1@balBE@11Style}{}

(The user interface)+=

\newcommand{\defaultplante}[1]
{\renewcommand{\G1@balPE@11Style}{\csname Sp@cies#1\endcsnamel}}

\newcommand{\defaultfungusel}[1]
{\renewcommand{\G1@balFE@11Style}{\csname Sp@cies#1l\endcsnamel}}

\newcommand{\defaultanimale}[1]
{\renewcommand{\G1l@balAE@11Style}{\csname Sp@cies#l\endcsname}}

\newcommand{\defaultbacte}[1]
{\renewcommand{\G1@balBE@11Style}{\csname Sp@cies#1l\endcsnamel}}

\newcommand{\defaultfull}[1]
{\renewcommand{\G1@balF@11Style}{\csname Sp@cies#l\endcsname}}

\newcommand{\defaultabbr}[1]
{\renewcommand{\Gl@bal@bbrStyle}{\csname Sp@cies#l\endcsname}}

(Internal workings)+=
\defaultplante{ePlant}
\defaultfunguse{ePlant}
\defaultanimale{eAnimal}
\defaultbacte{eAnimal}
\defaultfull{f}
\defaultabbr{a}

The calling commands fisrt set \curr@ntid to the current ID (duh!). Furthermore, they have a decision tree: if
no style is provided, then it is determined whether or not this is the first use in the document, and action is taken
appropiately. This is all done using the \sh@wspQ@cies{type}{ID}{how}.

(The user interface)+=
(The calling commands)

(The calling commands)=
\newcommand{\plant}[2] [1{\sh@wsp@cies{P}{#2}{#1}}
\newcommand{\fungus}[2] []{\shQwsp@cies{F}{#2}{#1}}
\newcommand{\animal}[2] []{\shQwsp@cies{AF{#2}{#1}}
\newcommand{\bact} [2] []{\shQ@uwsp@cies{B}{#2}{#1}}

First, the command sets \curr@ntid (if it’s Q@D no type should be set).

(Internal workings)+=
(The sh@uwsp@cies command)

(The sh@wsp@cies command)=
\newcommand{\sh@wsp@cies} [3]1{%
\ifthenelse{\equal{#2}{QeD}}Y%
{\renewcommand{\curr@ntid}{#20@}}/
{\renewcommand{\curr@ntid}{#1#203}}%

Then there is checked for a provided style.

(The sh@uwspQcies command)+=
\ifthenelse{\equal{#3}{}}{%
\ifnum\value{\curr@ntid counter}=0%

If this is not the case, it is checked whether this is the first time the species is used. Of it is, for default full style
is checked and used.

(The sh@wsp@cies command)+=
\setcounter{\curr@ntid counter}{1}},
\expandafter\ifx\csname\curr@tid fullstyle\endcsname\relax,
\csname Gl@balF@l1lStyle\endcsname,
\elsel,
\csname\curr@ntid fullstyle\endcsname %

\fi%
Otherwise, the default abbreviation is checked and used.

(The sh@uwspQcies command)+=
\else,
\expandafter\ifx\csname\curr@ntid abbrstyle\endcsname\relax,
\csname Gl@bal@bbrStyle\endcsname,
\else’,
\csname\curr@ntid abbrstyle\endcsname,
\fi%
\fi%

If a style is provided, use this style. If this style is “extended”, select the appropiate style for the kingdom.

(The sh@wsp@cies command)+=
Ho%
\ifthenelse{\equal{#3}{e}}{%
\csname G1l@bal#1E@11Style\endcsname,
H%
\csname SpQ@cies#3\endcsname,
Yh
Yh
}

References

[1] David Carlisle. The keyval package, 16 March 1999.
[2] Michel Goossens, Alexander Samarin, and Frank Mittelbach. The BTEX comapanion. Addison-Wesley, 1994.

	The built-up of the package
	The user interface
	Brief syntax
	The implementation for the declaration part

	The internal workings
	The implementation for the use part part

