
Page 1IAGE Developer’s Guide

IAGEScript Developer
Reference

v020327

Copyright(c)2001-2002, R.Rawson-Tetley
Rawson-Tetley Data Systems

www.robin.rawsontetley.btinternet.co.uk
mailto:iage@btinternet.com

27th March, 2002

Page 2IAGE Developer’s Guide

IAGE Game File Format Specication
Header

The header of the IAGE le contains two lines, the rst of which contains the text “IAGE 2”.

The second will be a 0 or 1 indicator, set to 0 if the le is unencrypted, or 1 if the le is encrypted.

Sections

The IAGE le is separated into sections, starting with the section name in capital letters, containing any
number of properties. A line containing the word BREAK must be used to separate collections of objects. A
line containing the word END will terminate the section.

eg:

LOCATIONS
(properties)
BREAK
(properties)
END

Properties

IAGE Properties are stored as name/value pairs under the appropriate section. The equals sign is taken to
be the separator of the name/value pair and the Windows carriage return/linefeed (13 + 10) is taken to
be the line terminator.

 eg. Name = Smith.

Properties representing IAGEScript

Where properties represent a collection of IAGEScript code, the property name will be reiterated for each
line - eg:

OnInput = ‘ IAGE Code
OnInput = ‘ Written by Rob
OnInput =
OnInput = currentplayer.print Some^text.

Comments

Any line which does not have an equals sign or represent a start marker is ignored and treated as a comment.

Page 3IAGE Developer’s Guide

IAGEScript Reference
Variables

Variables are ways of temporarily storing a value. I say temporarily because the only forms of variable IAGE
supports are local variables. Variables declared in a script cannot be accessed from outside that script. You
must use the ag objects (and indeed other IAGE object properties) to persist variable data.

Variables are declared with the VAR command. All variables in IAGE are variants, which can hold numbers,
strings, boolean (true/false) values and arrays.

Variables can be initialised when they are declared also, Eg:

var x = 1

Would create a new variable “x” with a value of 1.

var orc

Would create a new variable “orc” with an uninitialised value. Uninitialised variables by default contain an
empty string, it is better to initialise variables to zero.

Arrays

All variables in IAGE are of variant type - they can hold strings or numbers or arrays. To manipulate arrays,
you use the inbuilt array object. Arrays can be persisted in any IAGE variant property (ags, get/setvalue).
The array object supports the following methods:

new <name> <itemlist>

This method creates a new array and gives it the name you specify and the contents you list.
Eg: array.new MyArray item1 item2 item3 item4 item5
Would create an array called “MyArray” containing the 5 values listed after it.

add <name> <item>

This method appends a new item to the end of the array.
Eg: array.add MyArray item6
Would add a 6th item to the array created in the example before.

get <name> <itemno>, set <name> <itemno> <value>

Retrieves the numbered item value from the array. Note that because it uses multiple arguments you cannot
use array.get in expressions. You need to declare a variable to hold the return value and then use that in your
expression. Set is used to explicitly set an array value (it must already exist to do this).

Eg: var myvar = array.get MyArray 3
Returns item 3 of the array into variable “myvar”.

Page 4IAGE Developer’s Guide

remove <name> <itemno>

Deletes the specied item from the array. If there are any higher entries in the array, they will be shufed
down.

getcount(<name>)

Returns the number of elements in the array. You are safe to use this method in expressions.

Page 5IAGE Developer’s Guide

Syntax - Referring to Objects and Collections
IAGE supports two types of objects - collection (or multi-instance) objects and single instance objects.

Single Instance Objects

You refer to single-instance objects to retrieve/set properties and call methods by using the object name,
followed by a dot (.) and then the name of the method or property you wish to access.

Eg: To store the second noun a player entered in a variable called “x”, I would use the following code:

var x = input.noun2
To redisplay the current location to a player, you need to call the “displaycurrentlocation” method of the
game object, like this:

game.displaycurrentlocation
Unlike most languages, when you make a method call which has no arguments in IAGE, you do not supply
the brackets.

Multi Instance Objects

Multi Instance Objects work just the same as Single Instance Objects, the only difference is that you need
to supply the ID of the object you wish to work with so IAGE knows which object within the collection
you are talking about.

Eg: If I wanted to display message with ID 53 to the current user:

message(53).show
 Or perhaps, I could move item 6 to a different location:

item(6).currentlocation = 3

Since items used named arguments, this would more typically be something like mailbox.currentlocation
= 3

Arguments

Sometimes, a method call requires arguments. If this is the case, simply include an extra set of brackets after
the method call containing the arguments.

Eg: To determine whether user boolean “islaser” exists in item 26:

if (item(26).getuserboolean(islaser) = true) then

Page 6IAGE Developer’s Guide

Maths:
Syntax:

All maths and expressions should be surrounded by pipes (|) to denote an expression. Only simple plus,
minus, divide and multiply mathematics are supported, although there is no limit on the complexity of the
numbers involved.

String concatenation is also supported via the ampersand character.

In IAGE, mathematic processing is sequential. It literally starts with the rst number, applies the second
number via the operand, then the third, then so on. If you take the example: 1 - 5 * 4, you will get an
answer of –16. This is because IAGE will evaluate the expression to 1-5 = -4 * 4 = -16.

If you performed this operation in most other languages, you would get the answer of –19 because it would
be evaluated to 1 – (5 x 4). This is because multiplications take precedence over addition and subtraction.

Symbols:

+ Plus
- Minus
/ Divide
* Multiply
& Concatenate
. Decimal Point

Functions:

Random A Random number between 0 and 1.
MakeInteger Always use with + to make the current result into an integer. Integers always round
down.
Space Inserts a space

Examples:
Flags(1).Value = |1 - 5 / 16 * 28 + Flags(298).Value|
(translates to 1 minus 5 divided by 16 multiplied by 28 add the contents of Flag 298)

Message(1000).Text = |Flags(298).Value & Message(1).Text|
 (translates to the contents of Flags 298 in string form with the text of message 1 on the end)

Flags(2).Value = |Random * 1000 + 1 + MakeInteger|
(translates to a number between 1 and 1000 which is then rounded down to be made a whole number)

Page 7IAGE Developer’s Guide

Code ow commands:
Goto <number or label>

Sends execution to the specied line number (see line numbering and labels above). Do not include the
semi-colon at the end of the line number or label using GoTo.

End

Terminates execution of the current code module. Useful when a condition is fullled and you do not wish
to execute the remainder of the code.

CancelEvent

Used to tell the system not to perform an action. For example, when the player quits the game, the
Game.OnQuit event runs. If a CancelEvent instruction is executed in the code, the player does not quit..

Page 8IAGE Developer’s Guide

Conditional Commands
If (condition) .. Then .. Else .. EndIf

If conditional blocks should follow the format of:

If (condition) Then
 Execute code
Else
 Execute code
EndIf

If there is no else clause, it can be omitted, but you MUST terminate with an EndIf. Note that line breaks
MUST be used in the correct places. The If always appears on it’s own line, as does the else and the EndIf.

Ifs can be quite safely nested to an unlimited depth.

Condition Syntax

Conditions should be contained by brackets with a space at either end. Operators should be outside the
brackets and only one expression at a time should be inside the brackets.

Eg:

If (ag(12).Value = true) AND (ag(14).value = false) then
If (currentplayer.cansee = true) OR (location(currentplayer.currentlocation).isdark = false) then

Boolean Comparison

Boolean AND and OR is allowed in if (and while) statements. These comparisons must be outside and
separating each bracketed expression.

Shorthand IF statements

IAGE allows two forms of shorthand IF statements, represented by the semi-colon (;) and the hash (#).

Semi-colon<verb text> is equivalent to “if (input.verb = x) then” where x is the ID of the verb text you enter.
This means that you can use the English words instead of having to memorise the verb IDs. It also means that
regardless of the verb text you enter, any of that verb’s synonyms will evaluate to true.

Eg:

;smell
endif
is the same as:

if (input.verb = 8) then
endif

Page 9IAGE Developer’s Guide

It’s just much more legible!

You can also use multiple verb texts, broken with a comma. The comma represents an OR comparison.

So:

;look,smell,listen
endif
Would evaluate to true if any of those verbs (or their synonyms) was the verb the player entered.

Finally, the hash symbol is functionally identical, but instead of checking the rst verb, it checks the rst
adverb - highly useful for checking for directions.

Eg:

#north,south,east
endif

Would evaluate to true if the player entered north, south or east (or any of their synonyms).

Page 10IAGE Developer’s Guide

Loops
At present IAGE only supports while/endwhile loops.

Start a while loop with the syntax “while <condition> then” and terminate the loop with “endwhile”.

The loop will execute whilstever the condition is evaluates to true.

The syntax for the condition is identical to the if statement.

Eg:

var x = 1
while (x < |currentplayer.count + 1|) then
 currentplayer.print playerarray(x).name
 x = |x + 1|
endwhile

This would create a loop which enumerated every player in the game and displayed their name to the
current player.

Page 11IAGE Developer’s Guide

Media Instructions
These commands are used to access IAGE’s multimedia functionality.

ShowPicture <name>

Displays the picture with <name>. You may use either a fully qualied URL, or one relative to the media
path set in the game preferences.

NB: The ShowPicture functionality was removed in a much earlier version of IAGE, however all references
to it still exist. It will be re-added in the near future.

Page 12IAGE Developer’s Guide

Functions
IAGE has some additional, handy functions which are very useful when writing a game.

Note that function syntax is slightly different. Because they behave like standalone objects, you do not wrap
brackets around any arguments. This means that they cannot be used in expressions directly. However, you
can create a variable to catch the returnvalue and then use that in an expression.

GetItemFromNoun

The GetItemFromNoun function does just that, you supply an expression which evaluates to a Noun ID and
it will return the ID of the item which uses this Noun ID as a base.

Eg:

var imid = getitemfromnoun input.noun
currentplayer.print item(imid).name

Would display the name of the rst item a player referred to.

Ask

The Ask function accepts an expression which equates to some text. The text is then output to the current
player and their game is frozen. The next response they make will be the response to the ask question (and
cannot be subjected to dictionary matching, etc.).

The player response will be returned as a string.

Eg:

var result = ask “Do you like burgers?”
if (result = n) or (result = no) then
 currentplayer.print “What the hell is the matter with you?”
endif

Would ask the player if they liked burgers and insult them if they didn’t.

OutputContentsOf

The OutputContentsOf function accepts two expressions which equate to a playerindex and a locationid

The contents of that location will be transmitted to the player at the index specied.

Eg:

outputcontentsof currentplayer.index westofhouse.id

Would show a list of all the items in location named “westofhouse” to the current player.

Page 13IAGE Developer’s Guide

PrintAllIn

Accepts two expressions, one representing a location ID and one representing the message to be output.

Eg:

printallin westofhouse.id message(58).text

Would output the text of message 58 to everyone in location “westofhouse”.

PrintAllExcept

Accepts two expressions, one representing a player index and one representing the message to be output.

Eg:

printallexcept currentplayer.index “Yahboosucks!”

Would output the message “Yahboosucks!” to everyone but the current player.

PrintAllInExcept

Accepts three expressions, a location ID, a player index and a message.

Eg:

printallinexcept 4 currentplayer.index “Not you current player!”

Would ouput “Not you current player!” to everyone in location 4 but the current player.

AddVerb, AddAdverb, AddNoun

These three commands allow you to dynamically add to the dictionary in a game. You can add nouns directly
in an item’s initialise event, or do dictionary entries en-masse in the game’s initialise event. You can even
add them while a game is running.

Each command accepts two paramters, an ID number and the text of the dictionary entry. Note that you are
not permitted to use expressions here - you must use number and string literals.

Eg:

AddVerb 601 Info
AddNoun 1001 Spoon
AddAdverb 54 with

Page 14IAGE Developer’s Guide

Location ID Constants:
By assigning the location ID of various IAGE properties to one of the following range of values, objects can
be contained, carried, on surfaces, in locations, or in limbo.

100,000 + Player Index Carried by Player
200,000 + Object ID Contained by Object ID
300,000 + NPC ID Carried by NPC ID
400,000 + Object ID On Surface of Object ID

Between 0 and 99,999 Location ID

0 Limbo
-1 Randomly Generated Location ID

Although this is technically how IAGE works underneath, it is highly recommended that you use the
containerlocation and surfacelocation properties of objects as these constants may change. Also note, the
keyword “random” can be used anywhere a location name is expected.

Page 15IAGE Developer’s Guide

Code On the Fly:
IAGE allows you to generate its core objects (NPCs, Items and Locations) entirely on the y in code while
your game is running by using the following commands.

AddNPC, AddLocation, AddItem

All of these accept one argument - an ID value for the created item. Eg:

AddLocation 153
Location(153).Name = “West Of House”
Location(153).Description = “You are standing in a eld, west of a white house.”

Would create a new location with ID 153 called “West Of House”.

RemoveNPC, RemoveLocation, RemoveItem

These also accept an ID argument and remove that object from the game.

Object Specic

All game objects implement the following methods to allow their code to be manipulated by IAGE code
that is already running:

<object>.CodeClear <Event>

Wipes all code from that particular event for that object.

<object>.CodeAddLine <Event> <String>

Adds the code in <String> to the event named on the object. Eg:

leaet.CodeAddLine “OnAction” “;examine”
leaet.CodeAddLine “OnAction” “currentplayer.print “Yo!”
leaet.CodeAddLine “OnAction” “endif”

Would override the leaet’s examine.

<object>.FireInLineEvent <Event> <Inline Event>

Runs the procedure named <Inline Event>, stored in the event named for the object. NOTE: You can actually
make up your own inline events - in effect creating your own object methods.

Page 16IAGE Developer’s Guide

Character Object (Multi-Instance)
The Character object collection contains information about all the NPCs (Non-Player Characters) in a game.

Properties Methods Events

Count SetValue OnTimer
ID GetValue OnTalk
Name CodeClear OnAction
CurrentLocation CodeAddLine
HitPoints FireInlineEvent Inline (OnAction)
DamageIndicator
Money Before_Display
AutoAttack Before_DisplayInitial
AttackWhenAttacked Initialise
AttackingWho Each_Turn
Description
DefaultExamine
NounID
TimerInterval
TimerIndex
TimeToNextRun
MovedFromOriginalLocation
AIMode
FollowPlayerIndex

Count

Returns the number of NPC objects in the game. As with all object/collections in IAGE, you do not need
to specify an individual item when requesting a count, you can omit the bracketed part completely (eg.
character.count).

ID

The ID of the NPC.

Name

The name of this NPC. This is what will be displayed to players once the NPC has it’s “MovedFromOriginal-
Location” ag set to true.

CurrentLocation

The ID of the location this NPC is currently in.

Page 17IAGE Developer’s Guide

HitPoints
(If using IAGE combat) The number of hit points this NPC has remaining before it dies.

DamageIndicator
The maximum amount of damage this NPC can cause during combat.

Money
The amount of money this NPC is carrying.

AutoAttack
If set to true, this NPC will automatically attack players as soon as they come into the same location as
the NPC.

AttackWhenAttacked
If set to true, this NPC will automatically attack players when they attack the NPC.

AttackingWho
If the NPC is currently attacking someone, this is the Index property of the player being attacked.

Description
The text shown instead of the NPC name when MovedFromOriginalLocation is false.

DefaultExamine
The default text displayed when the NPC is examined.

NounID
The ID of a group of nouns referring to this NPC.

TimerInterval
The number of milliseconds before the OnTimer event is run.

TimerIndex
The number of times since the server was started that the OnTimer event has been run for this NPC.

TimeToNextRun
Arbitrary value in milliseconds determining the time the OnTimer event will run. Do not use this property
for anything as it’s value is highly volatile.

MovedFromOriginalLocation
Determines whether the name or description is shown when the NPC is displayed. If this is true, the name
is shown.

FollowPlayerIndex
If using AIMode = 2, the index of the player this NPC is following.

AIMode
One of three different settings representing actions IAGE can make the NPC do for you. Set this property
to one of the following values:

Page 18IAGE Developer’s Guide

0 - Dormant (NPC does nothing but execute events)
1 - Follow Player (Set followplayerindex and NPC will follow them around)
2 - Random (NPC moves randomly around the map)
3 - Attacking (NPC attacks the player who’s index is specied in the AttackingWho property)

SetValue
Accepts a parameter name and allows you to assign a named value to this item. If a value exists with that
name, it is updated, otherwise it is created.

Eg:

thief.setvalue(doorcount) = 58

GetValue
Accepts a parameter name and returns the value for this named argument.

Eg:

currentplayer.print mat.getvalue(doorcount)

if (mat.getvalue(doorcount) = 58) then
 currentplayer.print “It’s 58!”
endif

OnTalk
The OnTalk event res when a player attempts to talk to the NPC. Inbuilt conversation is handled by a
player entering <npcname> followed by a comma, and then the actual conversation. Eg. “Gandalf, give me
the cheese”. This event is also red when a player uses “Say” in a location with an npc. You can use the
input.contains method to parse the text.

Note that when you are running script in the OnTalk event, IAGE shufes the Nouns down one place for
you (ie. You already know the rst noun because it’s the NPC, so IAGE discards it and shufes Nouns 2
and 3 down to become 1 and 2).

OnTimer
The OnTimer event res every time the duration of the TimerInterval property elapses. The TimerIndex is
also incremented every time this event is run.

Use the OnTimer event to implement AI. Eg. You could switch on random AI mode and then have the
NPC check players in it’s current location on the timer and “relieve them of a few valuables” like the
thief in Zork, or perhaps picking up and dropping objects at random to make the player’s job harder. It’s
entirely upto you.

Note that the timers run in real time - ie. They don’t wait for player responses. This is because players don’t
wait for each other’s responses in multiplayer games. If you are writing a single player game and you do
not want to use the real time timers, you will have to code your NPC AI in the RunAfterInput event (or a
particular location if the NPC is static).

Page 19IAGE Developer’s Guide

Also, because timers are not dependent on player input, the CurrentPlayer object is not valid for IAGEScripts
in OnTimer events.

OnAction
The OnAction event runs whenever any player makes a reference to the NPC. The OnAction event takes
precedence over all events but Location.OnInput. If a player was to enter “attack gandalf”, the OnAction
event for Gandalf would re before the internal engine attack code (all IAGE events take precedence over
the inbuilt code).

Before_Display
The before_display event is an inline event for the OnAction event. You must dene a procedure with the
name “before_display” which will be called by IAGE to look up an alternative for the character’s name
at runtime.

Eg:

proc before_display
 returnvalue = Newname
 cancelevent
end

Before_DisplayInitial
This event is identical to the before_display event, except it acts on the characters InitialDescription eld
instead of the name.

Initialise
The Initialise event is an inline event. You must dene a procedure with the name “initialise” which will be
called by IAGE when the game is rst started to allow you to perform any actions on the object. Note that
this event is only called once, and it is called before any players have entered the game.

Each_Turn
This event is red after every turn that every player makes in the game. These events always run and
they are red straight after the AfterInputImmediate event. This, together with get and set value are very
useful for writing daemons.

Example 1. The Thief From Zork
This is relatively simple to do. The thief in Zork moves randomly around the map (AI Mode 2) and
when his timer hits, he checks to see if there are any players in his location. If there are, he checks their
inventories to see if they have anything which is marked as a treasure (use IAGE “UserBooleans” to set
special values like this).

If they are carrying something marked as a treasure, the thief steals it and the user is told the thief has
“relieved them of a few valuables”.

With the script in it’s current form, it only steals the rst valuable item from the player. It could easily be
adapted to steal every valuable they had.

Page 20IAGE Developer’s Guide

Here is the script (I have included line numbers so I can refer to specic bits):

01 var i = 1
02 var cbi
03
04 while (i < |currentplayer.count + 1|) then
05
06 cbi = playerarray(i).getrstboolitem(treasure)
07 if (cbi > 0) and (playerarray(i).currentlocation = this.currentlocation) then
08 playerarray(i).print “The thief pauses to relieve you of some valuables.”
09 item(cbi).currentlocation = this.containerlocation
10 endif
11 i = |i + 1|
12 endwhile

First of all, line 1 creates a variable called “i” and assigned a starting value of 1 - this is to be our loopcounter
(determining how many times we have looped later on).

Line 2 creates a new variable “cbi” and does not assign it a value.

Line 4 starts a loop which will keep on going until the loopcounter (“i”) reaches the number of players
connected to the server plus 1. Why not until the number of players connected? If it did, the last player
would not be looked at because the while condition would be looked at, see that it was on the last player
and not execute the loop code.

Line 6 Calls a special player method called “getrstboolitem” - this returns the ID of the rst item the player
is carrying which has that UserBoolean value.

Line 7 then checks to see if the item returned from GetFirstBoolItem was 0. A zero will be returned if the
player has no items with that boolean. The other part of the condition makes sure that this player is in the
same location as the NPC. It wouldn’t be very fair to steal things from players when they aren’t even in
the same location would it?

Lines 8 and 9 obviously only run if line 7 is true and they output a message to the player, telling them they
got robbed and moves the item they had stolen to the thief’s pockets.

Finally, line 11 is the loop iterator - we have to have this in, otherwise IAGE would lock into an endless
loop.

Page 21IAGE Developer’s Guide

Player Object (Multi-Instance)
PlayerArray Object (Multi-Instance)
CurrentPlayer Object (Single-Instance)
The Player object collection contains information about all the connected players in a game.

There are actually three different methods of accessing a player object, however all the properties and
methods remain the same. These are:

CurrentPlayer.<property or method>

This returns the player which initiated this code run. So, if player 1 sends a “get all” command or something,
they re off the location afterinput code, the runafterinput code and nally the internal code. Because they
red it off, they are the current player (hence the object name!). It is important to note that there is one
special event in IAGE where the currentplayer is not valid and that is the NPC OnTimer event, since it runs
independently, no player is ever reponsible for ring the timer code.

Player(X).<property or method>

References a player by it’s Index property. Useful for referencing player objects from NPC “AttackingWho”
and various other IAGE properties since Index is always used to link them together.

PlayerArray(X).<property or method>

Because the index is an incrementing counter from when the server started, indexes may not start at one
and will go higher than the number of players connected. If you want to iterate through the players on the
system, you need something that does start at one and nish at the number of connected players. This is what
playerarray gives you - an array of players, indexed by an arbitrary number between 1 and player.count.

Page 22IAGE Developer’s Guide

Properties Methods Events
Count ShowScore (none)
Index ShowStatus
Name Print
DisplayName GetFirstBoolItem
Score DropAllItems
Turns IsCarrying
CurrentLocation DisplayCurrentLocation
IPAddress GetValue
CanSee SetValue
OutputToPlayer Quit
State SaveState
StateItem RestoreState
LastNoun AskParserQuestion
LastCommand
WeightCarried
ItemsCarried
SizeCarried
VerboseMode
HitPoints
DamageIndicator
ChanceOfHitting
Money
TextOnly
CP1-CP30

Count
Returns the number of players currently connected to the game server.

Index
The unique index of this player.

Name
The alias this player is using.

DisplayName
The alias output to other players in location descriptions.

Score
The player’s current score.

Turns
The player’s number of turns taken.

CurrentLocation
The ID of the location this player is currently in.

IPAddress - The IP Address of this player.

Page 23IAGE Developer’s Guide

CanSee
Returns true or false, depending on whether the player can see (if they are in a dark location and have a
lightsource available).

OutputToPlayer
Returns true or false, depending on whether any text has been transmitted to the player since their last
input.

State
Numeric property containing one of 4 settings:

1 - Normal
2 - Sitting
3 - Lying
4 - Stood On

StateItem
Used with State, the item the player is currently affecting. If they are stood on a bed for example and that is
item 5, StateItem would return 5 and State would be 4.

LastNoun
ID of the last noun the player used. Used internally by the parser for “it”

LastCommand
A string containing the last sentence the player transmitted. Used internally by the parser for “again”

WeightCarried
The total weight this player is carrying.

ItemsCarried
The total number of items this player is carrying.

SizeCarried
The total size this player is carrying.

VerboseMode
Determines whether the player is in verbose mode (true or false). If true, location descriptions will be
repeated for locations already visited.

HitPoints
Number of hit points the player has remaining.

DamageIndicator
The maximum number of hit points a player can take from an NPC/other player without a weapon.

ChanceOfHitting
The percentage chance this player has of hitting their target in combat.

Page 24IAGE Developer’s Guide

Money
The amount of money this player is carrying (only if using IAGE money).

CP1-CP30
Custom properties. The are variant properties (can hold numbers, strings or booleans) relating directly to
this player. For example, you could nominate custom property 1 (CP1) as a strength indicator and CP2 as
dexterity for a more role-playing sort of feel.

Quit
Makes the player quit, just as if they typed it at the console.

ShowScore
Displays the player’s score to them (by ring the OnScore event of the game object).

ShowStatus
Displays the player’s combat status to them (as if they typed “status” at the console).

Print
Displays the expression to the player. Mathematics and concatenation, or indeed any valid expression is
allowed. For more info on expressions, look up expressions in this script reference.

Eg: playerarray(2).print This^is^pretty^cool^isn’t^it?
Your^server^index^is^_&_playerarray(2).index

GetFirstBoolItem
Accepts a UserBoolean name, then looks through the player’s inventory for the rst item which has that
UserBoolean. If it nds one, the item’s ID is returned. If none are found, zero is returned.

Eg:

var iid = currentplayer.getrstboolitem(isgun)

DropAllItems
Forces the player to drop all their items.

IsCarrying
Accepts an expression which must return an Item ID. Returns true or false according to whether the player
is carrying that item.

Eg:

if (currentplayer.iscarrying(10)) then

DisplayCurrentLocation
Displays this player’s current location to them.

Page 25IAGE Developer’s Guide

SetValue
Accepts a bracketed argument representing a name and allows you to assign a value to it, efctively allowing
you to attach persistable variables to players aside from the CP properties. If a value with the name you
give exists, it is updated.

Eg:

currentplayer.setvalue(hasbignose) = You^sure^do!

GetValue
Allows you to retrieve a named value from a player object.

Eg:

currentplayer.print currentplayer.getvalue(hasbignose)

TextOnly
Allows you to set, or get whether this player is in text only mode (a mode initiated by clients which cannot
handle images or the other IAGE media). Both the ServPlet and client applet use text only mode.

SaveState
Accepts two arguments, one representing a unique identier and the other for a password. This routine
then saves the current player’s position (in multiplayer games), or a snapshot of the whole game world
(single player games).

Eg:
currentplayer.savestate 00 trousers

Saves the current player’s game with the identier 00 and the password trousers. To restore the game again,
the player will have to make sure they are using the same alias and do restorestate 00 trousers. (See the IAGE
library code in the StandardLib codemodule to see how this works).

RestoreState
Same syntax as SaveState, but used to reload a saved position. Again, see the IAGE library code. Note that
RestoreState sets ReturnValue to be true if the restore was a success.

AskParserQuestion
Tells the parser that the last text printed to this player asked a question that requires them to respond
with something. This is commonly used by the library, but you can make use of it yourself. It requires an
argument that states which noun is required - 1 to 3, or 4 if you want to ask for an adverb.
Eg. Say the player is going to throw a stone, you put some code in the stone to ask for a target (noun2 -
“THROW STONE AT X”) if the player does not supply one:

 ;throw
 if (input.noun2 = 0) then
 currentplayer.print |“What do you want to throw the “ & this.thename & “ at?”|
 askparserquestion 2

Page 26IAGE Developer’s Guide

Flag Object (Multi-Instance)
The ag object collection contains information about all the ags in a game.

Properties

Count
Value

Count
Returns the number of ags in the game.

Value
The value of this ag. Flag values are variants - they can hold strings, numbers, arrays and boolean
(true/false) types.

Page 27IAGE Developer’s Guide

Game Object (Single-Instance)
The game object contains useful game methods and events.

Methods
DisplayCurrentLocation
DisplayVersion
GetInventory

Events
OnScore
OnQuit
OnDisplayBanner
OnStart
RunBeforeInput
RunAfterInput

DisplayCurrentLocation
Displays the current player’s location to them.

DisplayVersion
Displays the game version to the current player.

GetInventory
Accepts an expression evaluating to a location ID and returns a string containing a list of all the objects in
that location ID (including players, NPCs, containers and surface containers).

OnScore
Runs when a score is requested by a player. Relies on the IAGE script in it to return a string displaying the
score as the returnvalue. The template has a default script for generating a score.

OnQuit
Runs when a player quits.

OnDisplayBanner
Runs whenever a banner request is made by a player (the default is score / turns in the template). The banner
is the top right text of the client.

OnStart
Runs when a player enters the game.

RunBeforeInput
Runs just before control is return to a player ready for further input.

RunAfterInput
Runs after a player has transmitted their input and after all other events have been run.

Page 28IAGE Developer’s Guide

Input Object (Single-Instance)
The input object contains information about a player’s most recent input.

Properties Methods

Noun Totalwords
Noun2 word
Noun3 contains
SNoun
SNoun2
SNoun3
Verb
SVerb
Verb2
SVerb2
Verb3
SVerb3
Adverb
SAdverb
Adverb2
SAdverb2
Adverb3
SAdverb3
IsNPCAddress

<dict>, <SDict>

Noun, Noun2, Noun3, Verb, Adverb etc. all return the ID of the dictionary item they represent as entered
by the player. So if the player entered GET ALL, then verb would be 5 (for get) and Noun would be 2
(for all).
The values prexed with S return the actual text of those words.

IsNPCAddress
Returns true if the input was addressing an NPC in the form <npcname>, <command>

Totalwords
Returns the number of words entered by the player.

Word(x)
Where x is a word number from 1 to Totalwords - returns the text of that word entered by the player.

Contains(expr)
Where expr evaluates to a string, checks to see if this string appears anywhere in the players input and
returns true if it does.

Page 29IAGE Developer’s Guide

Internal Object (Single-Instance)
The internal object allows you to directly call IAGE internal routines.
All routines follow the same syntax - Internal.[method] [arg1expr] [arg2expr] etc. and all routines act as if
the currentplayer performed the action.

Methods
AttackPlayer LieOn
AttackNPC Light
Close Open
Drop Put
Eat Read
Examine Remove
Extinguish SitOn
Get Stand
GetIn Unwear
GetOutOf Wear
Go
Inventory

AttackPlayer <PlayerIndex> [with <Item ID>]
AttackNPC <NPC ID> [with <Item ID>]
Close <Item ID>
Drop <Item ID>
Eat <Item ID>
Examine <Item ID>
Extinguish <Item ID>
Get <Item ID> or <All>
GetIn <Item ID>
GetOutOf <Item ID>
Go <Direction - n,s,e,w,u,d,ne,se,nw,sw>
Inventory
LieOn <Item ID>
Light <Item ID>
Open <Item ID>
Put <Item ID> [in <Item ID>]
Read <Item ID>
Remove <Item ID> [from <Item ID>]
SitOn <Item ID>
Stand
Unwear <Item ID>
Wear <Item ID>

Page 30IAGE Developer’s Guide

Item Object (Multi-Instance)
The item object collection contains information about all the items in a game.

Properties Methods Events
Count GetUserBoolean OnAction
ID AddUserBoolean
Name RemoveUserBoolean Inline (OnAction)
TheName GetValue
CurrentLocation SetValue Initialise
Description GetValueByExp After_Get
DefaultExamine SetValueByExp After_Drop
Weight CodeClear After_Insert
ContainedWeight CodeAddLine After_Remove
Size FireInLineEvent Before_Display
ContainedSize Before_DisplayInitial
IsLightSource Before_Get
IsLit Before_Drop
IsWearable Before_Insert
IsWorn Before_Remove
Invisible Each_Turn
IsContainer
IsWeapon
IsFixed
FixedMessage
HasSurface
CanBeStoodOn
CanBeSatOn
CanBeLaidOn
CanOpenClose
OpenCloseState
IsEdible
EdibleHitPoints
IsReadable
ReadableText
IsSubItem
SubItemOf
DamageIndicator
MovedFromOriginalLocation

Count
Returns the number of items in the game.

ID
The unique identier of this item.

Page 31IAGE Developer’s Guide

Name
The name of this item. This will output to the player in inventories and containers. This will also be output in
location descriptions if MovedFromOriginalLocation is true.

TheName
The name of this item without the singular/plural prex. Use this when you wish to refer to the item with
“the” - eg. Name = a brass lamp, TheName = brass lamp

CurrentLocation
The current position of this item.

Description
The initial description of the item, prior to it being moved. If this is blank, the name will be used.

DefaultExamine
The default examine message given when a player examines the item. If blank, a “You notice nothing special
about the x” will be generated.

Weight
Whole number representing the weight of the item.

ContainedWeight
The total weight of items inside this item if it is a container (including containers within those containers).

Size
Whole number representing the size of the item.

ContainedSize
The total size of items inside this item if it is a container.

IsLightSource
True if this object can be lit or extinguished.

IsLit
True if this object is providing light.

IsWearable
True if this item can be worn.

IsWorn
True if this item is worn by the player carrying it.

Invisible
True if this item is invisible. Invisible items are not displayed in location descriptions, however they can
be manipulated like normal items.

IsContainer
True if this item can contain other items.

Page 32IAGE Developer’s Guide

IsWeapon
True if this item can be used as a weapon.

IsFixed
True if this item cannot be moved from it’s starting location.

FixedMessage
The message to give if a player attempts to move this item from it’s starting location and it’s xed.

HasSurface
True if this item can hold items on top of it (eg: a table).

CanBeStoodOn
True if this item can be stood on by players.

CanBeSatOn
True if this item can be sat on by players.

CanBeLaidOn
True if this item can be laid on by players.

CanOpenClose
True if this item can be open or closed.

OpenCloseState
True if this item is open.

IsEdible
True if this item can be eaten.

EdibleHitPoints
The number of hit points awarded to a player for eating this item.

IsReadable
True if this item can be read.

ReadableText
The text to show when the item is read.

IsSubItem
True if this item belongs to another item (eg. is a component of. For example, a TV set has an on/off switch.
The switch would be a sub item of the TV).

SubItemOf
The ID of the item this is a subitem of

Page 33IAGE Developer’s Guide

DamageIndicator
The maximum amount of hit points this item can take if used as a weapon.

MovedFromOriginalLocation
True if this item has been moved by a player or NPC since the game started.

GetUserBoolean
Accepts a boolean name and returns true if this item has that user boolean attached.

Eg:

if (leaet.getuserboolean(treasure) = true) then

AddUserBoolean
Accepts a boolean name and adds it to the specied object.

Eg:

jeweledegg.adduserboolean(treasure)

RemoveUserBoolean
Accepts a boolean name and removes it from the specied object.

Eg:

jeweledegg.removeuserboolean(treasure)

SetValue
Accepts a parameter name and allows you to assign a named value to this item. If a value exists with that
name, it is updated, otherwise it is created.

Eg:

leaet.setvalue(doorcount) = 58

GetValue
Accepts a parameter name and returns the value for this named argument.

Eg:

currentplayer.print leaet.getvalue(doorcount)

if (leaet.getvalue(doorcount) = 58) then
 currentplayer.print “It’s 58!”
endif

Page 34IAGE Developer’s Guide

OnAction
The OnAction event res when this item is referenced by a player (ie. the item is named in player input).
If a player’s input contains references to multiple items, they will be executed in turn according to the
order the player entered them.

Initialise
The Initialise event is an inline event. You must dene a procedure with the name “initialise” which will be
called by IAGE when the game is rst started to allow you to perform any actions on the object. Note that
this event is only called once, and it is called before any players have entered the game.

Before_Display
The before_display event is an inline event for the OnAction event. You must dene a procedure with
the name “before_display” which will be called by IAGE to look up an alternative for the item’s name
at runtime.

Eg:

proc before_display
 returnvalue = Newname
 cancelevent
end

Before_DisplayInitial
This event is identical to the before_display event, except it acts on the item’s InitialDescription eld instead
of the name.

Before_Get
This syntax is identical to the before_display event. This event occurs when the IAGE take routine is red to
pick up an item. The returnvalue is the message to show instead of the usual “Taken.” message and if you do
not want the user to actually take the object, call CancelEvent.

Before_Drop
The syntax for this event is the same as the before_display event. This event occurs when the IAGE drop
routine is red to drop an item. The returnvalue is the message to show instead of the usual “Dropped.”
message and if you do not want the user to actually drop the object, call CancelEvent.

Before_Insert
The syntax for this event is the same as the before_display event. This event occurs when the IAGE put
routine is red to put this item in or on a container. The returnvalue is the message to show instead of the
usual “Done.” message and if you do not want the user to actually insert the object, call CancelEvent.

Before_Remove
The syntax for this event is the same as the before_display event. This event occurs when the IAGE remove
routine is red to remove this item from a container. The returnvalue is the message to show instead of the
usual “Done.” message and if you do not want the user to actually remove the object, call CancelEvent.

Page 35IAGE Developer’s Guide

After_Get, After_Drop, After_Insert, After_Remove
These inline events are red after an item is taken by the player, dropped, put in or on a container, or
removed from a container respectively. Because they occur afterwards, the normal messages and actions
are carried out rst.

Each_Turn
This event is red after every turn that every player makes in the game. These events always run and
they are red straight after the AfterInputImmediate event. This, together with get and set value are very
useful for writing daemons.

Page 36IAGE Developer’s Guide

Location Object (Multi-Instance)
The location object collection contains information about all the locations in a game.

Properties Methods Events
Count GetValue OnInput
ID SetValue OnDisplay
Name CodeClear
ImagePath FireInlineEvent Inline(OnDisplay)
Description CodeAddLine
IsDark Before_Display
Compass Directions
 Inline(OnInput)

 Each_Turn
 Initialise

Count
Returns the number of locations in the game.

ID
The unique identier of this location.

Name
The location name. This is also output before the description.

ImagePath
The absolute path to an image associated with this location. You may specify a relative path if you set the
prex in the Game.Mediabase property.

Description
The text of the location description.

IsDark
True if the current location has no lightsource of it’s own.

Compass Directions (N, S, E, W, U, D, NE, NW, SE, SW)
Gets/sets a location ID of the location the player will get to by entering that direction.

SetValue
Accepts a parameter name and allows you to assign a named value to this item. If a value exists with that
name, it is updated, otherwise it is created.

Page 37IAGE Developer’s Guide

Eg:

path.setvalue(doorcount) = 58

GetValue
Accepts a parameter name and returns the value for this named argument.

Eg:

currentplayer.print path.getvalue(doorcount)

if (path.getvalue(doorcount) = 58) then
 currentplayer.print “It’s 58!”
endif

OnInput
The OnInput event runs after a player enters something in this location.

OnDisplay
The OnDisplay event runs when this location’s description is displayed to a player and before any objects,
npcs and other players are listed. This event is useful for “one off” remarks in locations.

Before_Display
The before_display event is an inline event for the OnDisplay event. You must dene a procedure with
the name “before_display” which will be called by IAGE to look up an alternative for the item’s name
at runtime.

Eg:

proc before_display
 returnvalue = Newname
 cancelevent
end

Initialise
The Initialise event is an inline event. You must dene a procedure with the name “initialise” which will be
called by IAGE when the game is rst started to allow you to perform any actions on the object. Note that
this event is only called once, and it is called before any players have entered the game.

Each_Turn
This event is red after every turn that every player makes in the game. These events always run and
they are red straight after the AfterInputImmediate event. This, together with get and set value are very
useful for writing daemons.

Page 38IAGE Developer’s Guide

Message Object (Multi-Instance)
The message object collection contains information about all the messages in a game.

Properties Methods
Count Show
ID ShowOthers
Text ShowAllIn

Count
Returns the total number of messages in the game.

ID
The unique identier of this message.

Text
The text of this message.

Show
Shows this message to the current player.

ShowOthers
Shows this message to everyone but the current player.

ShowAllIn
Accepts an expression which evaluates to a location ID. Shows this message to everyone in that location
except the current player.

Eg:

message(53).showallin westofhouse.id

