
Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-1

MUSICAL MOSAICING

Aymeric Zils, François Pachet

Sony Computer Science Laboratory, Paris
{ z i l s , pachet } @csl . sony. f r

ABSTRACT

This work addresses the issue of retrieving efficiently sound
samples in large databases, in the context of digital music
composition. We propose a sequence generation mechanism called
musical mosaicing, which enables to generate automatically
sequences of sound samples by specifying only high-level
properties of the sequence to generate. The properties of the
sequence specified by the user are translated automatically into
constraints holding on descriptors of the samples. The system we
propose is able to scale up on databases containing more than
100.000 samples, using a local search method based on constraint
solving. In this paper, we describe the method for retrieving and
sequencing audio samples, and illustrate it with rhythmic and
melodic musical sequences.

1. I NTRODUCTI ON

There is a natural tendency among modern musicians to compose
music by assembling pieces of existing material (sounds samples)
rather than entirely from scratch. This tendency is particularly
strong in the community of Techno or Dance music, but is also
becoming commonplace in other musical genres, in which
musicians make extensive use of computers, through the use of
software such as sequencers (e.g. Cubase) or sound production
systems (e.g. ProTools).

Composing music by assembling samples manually raises
difficult problems when database get very large, which are not
adressed by traditional software. First, it is difficult to find
individual samples in large libraries, because samples are difficult
to label and classify. Typically, the user manually selects the
sounds he/she wants to use or reuse, and locates them in the music
sequence he/she is building. Moreover, the size of sample
databases is such that it is hardly possible to know all the sounds it
contains and therefore to retrieve by hand the correct samples.
Secondly, samples are usually not treated in isolation, and must
satisfy various properties and constraints between each other, to fit
into the sequence. For instance, a composer may want to ensure
some timbral continuity or discontinuity between successive
samples, or may want to produce a given melody, etc. These
constraints have to be enforced manually by the composer.

We propose a mechanism which allows to handle both
problems (sample retrieval and sequence generation) at the same
time in a computer-assisted way.
The general problem of classifying and retrieving audio samples is
the subject matter of the Mpeg7 standardization effort. This
problem relies on the extraction of relevant low-level features out

of music samples, which has been addressed by many researchers,
such as Wold [1]. The general idea of combining retrieval and
sequence generation was introduced by Pachet [2], in the context
of music titles sequencing. In addition, the retrieval system used
complete search methods which do not scale-up to very large
databases. The notion of constraints on sounds was addressed by
Schwarz [3], who proposed a system which handles continuity
constraints on samples. Our music composition system offers more
constraints than continuity. As we will see, many other types of
constraints on sounds may be useful when composing, such as
difference, cardinality, distribution, etc.

The mechanism we propose is called musaicing (for musical

mosaicing), by analogy with image mosaicing, which consists in
building an image by assembling a large number of small images
(see Robert Silvers’ Photomosaics [4]). This approach exploits our
capacity to synthesize a perception at a macro level of an image or
a melody, from the cumulated perception of items at the micro
levels such as pixels or samples. Similarly to image mosaicing,
musaicing allows to build a musical sequence by specifying global
properties of the sequence, and letting the system select and
sequence automatically the sound samples.
Musaicing can be used to compose sequences with arbitrary high-
level properties, as we will see below, but can also be used to
produce imitations of target sound sequences, as in image
mosaicing. For example, a musical mosaic can be made from a
song of the Beatles, recomposed from small extracts of the most
famous rock titles of the 60ies. This approach provides two levels
of listening: a distant listening which “ sounds like” the original
Beatles song, and a closer listening which reveals the different
extracts of the 60’ s titles that make up the mosaic.
This principle of composing music by sequencing samples has
been exploited e.g. by composer John Oswald [5], who manually
copied and pastes the samples. The musaicing system we propose
here is a generalization of this approach to handle arbitrary sample
characteristics and sequence properties.

2. THE M USAICING M ECHANISM

In this section, we present how the system produces sound
sequences, which we call musaics, out of large databases of
samples. As explained above, musaics are made up of individual
segments, where each segment is a sound sample from a given
database. The generation problem is seen as a constraint problem
on the properties of the whole sequence, as well as the properties
of each segment that constitutes it. By selecting the right samples,
we assign values to the segments so that all the constraints
specified by the user are optimally satisfied. In a nutshell, the
generation problem is defined by a set of variables (the segments

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-2

of the musaic), a set of constraints weighted along their
importance, with their associated cost functions which aggregate
the constraints costs on variables, and a global cost function to
minimize.

2.1. Definition of the sequence proper ties

Any wished property of the sequence can be translated into a
specific constraint. There are two types of constraints: segment
constraints and sequence constraints.

A segment constraint is a local constraint on one specific segment
of the sequence, related to one specific descriptor. The segments
are described using a set of descriptors, such as:
- their mean pitch (calculated using Zero Crossing Rate),
- their loudness (calculated using energy),
- their percussivity (calculated using amplitude variations),
- their global timbre (calculated using spectral distribution),...
A segment constraint imposes a target value for one descriptor, for
example a given pitch or a given percussivity.

A sequence constraint controls a property of the global sequence.
These constraints can apply any set of segments, which can be the
whole sequence. We have defined several such constraints:
- distribution constraints are the most important constraints
for sequencing problems: they control the location of different
samples in the sequence, according to their properties. For
instance, we can use them to impose regular rhythmic patters, by
specifying a distribution of percussive sounds along the sequence,
- parameters continuity constraints control the continuity of
segments according to a specific dimension or feature. For
example, the pitch continuity constraint reduces the difference
between pitches of consecutive samples, and the title continuity
constraint aims at choosing consecutive samples in the sequence
that are also consecutive in the original song from which they are
extracted. The system proposed by Schwarz [3] is based on
parameters continuity between successive elements.
- cardinality constraints deal with the number of different
samples in the sequence, allowing to control the uniformity or the
variety of the samples in the musaic according to specific
parameters. The most basic cardinality constraint is the ‘All-
Different’ constraint, but they can be as diverse as ‘ 80% of
percussive sounds’ , or ‘ pitches follow a distribution centered
around 440 Hz’ ,...
Contrarily to segment constraints, which are limited by the number
of descriptors of the segments, the sequence constraints can be of
any type, and any user can easily build up new ones.

Once all the constraints are defined, the system provides another
control on the sequence by associating weights to them. These
weights represents how important it is to satisfy the constraint
during the sequencing. For example, on a 0-100 scale, setting the
‘Pitch constraint’ weight to 100 and the ‘All-different’ weight to
50 means that it is twice as important to obtain correct pitches than
to have only unique samples. These weigths define the priority
when all the constraints can not be solved simultaneously, which is
the most frequent case.

There are two ways to generate the constraints. In manual
mode, the user selects all the constraints by hand, whereas in
imitation mode, the segment constraints are automatically specified
from a target song the user wants to rebuild: the musaic will be
made of samples with the same properties as the original title’s,
i.e. the same descriptors’ values. These local segment constraints
are sufficient to build a musaic, but there is no guarantee on the
global structure of the sequence. Therefore, to cope with this
problem, the user can specify additional sequence constraints, such
as continuity or distributions, etc…

2.2. Satisfaction of the sequence proper ties

The system aims at generating a musaic that satisfies all the
constraints defining the sequence properties. But most of the time,
the constraints cannot all be satisfied at the same time: we need to
introduce a measure of the distance between the musaic and the
desired sequence. Each constraint is therefore associated to cost
functions evaluating its satisfaction for each segment. Building the
musaic then consists in minimizing all the constraints cost
functions at the same time, to fit all of the properties
simultaneously.

2.2.1. Segment constraint cost function

In the case of a segment constraint, the cost function is the
difference between the segment descriptor’s value and the
specified target value, normalized between 0 and 1. For instance,
the cost of a ‘pitch’ constraint, imposed on the segment ‘ segment’
that contains the sample ‘ sample’ , is defined as follows:

))(_)((

)(_)(

)(_

)(
segmentPITCHTARGETsPITCHMAX

segmentPITCHTARGETsamplePITCH

segmentCOSTPITCH

segmentDOMAINs
−

−
=

∈

The normalization is done by dividing the pitch difference by the
maximum pitch difference between two samples.

2.2.2. Sequence constraint cost function

In the case of a sequence constraint applied on a set of segments,
we need to build up a cost function that evaluates the contribution
of each segment to the global satisfaction of the constraint, and
returns a normalized result between 0 and 1. For instance, the cost
of the ‘All different’ constraint, applied on the whole sequence
‘ sequence’ , is defined as follows for the segment ‘ segment’
containing the sample ‘sample’ :

)1)(/(),(

)(_

,

−

=

�
≠∈

sequencelengthssampleisequal

segmentCOSTALLDIFF

samplessequences

If all the samples in the sequence are the same as ‘sample’ , the ‘ all
diff’ cost is 1, the constraint is not satisfied at all. On the contrary,
when no other segment contains ‘segment_sample’ , the constraint
is satisfied, and the cost is 0.

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-3

For a distribution constraint, the cost takes the location of the
sample into account. Here is an example of ‘ percussive tempo’
constraint, which imposes regular percussive sounds along the
sequence. This constraint has 2 control parameters : the tempo,
between 50 and 180 bpm, which controls the period between 2
consecutive percussive sounds, and the phaseshift, between 0 and
2π, which controls the position of the first percussive sound in the
sequence. The constraint cost is defined as follows, for the
segment ‘ segment’ containing the sample ‘sample’ :

* the system first computes the location of the segments that
have to be percussive, using the tempo and the phaseshift, and
sets their tempo index to 1; the tempo indexes of the others
segments are set to 0.
* the cost is then computed as :

�
�
�

��
�

�

=

=
−

=

)0)((,0

)1)((,
)(

)()(

)(_

segmentindexif

segmentindexif
tyPercussiviMAX

sampleTYPERCUSSIVItyPercussiviMAX

segmentCOSTTEMPOPERCUSSIVE

samples

samples

The cost diminishes as the percussivity of the indexed segments
increases, and reaches 0 when all these indexed segments have the
highest possible percussivity. Note that the constraint does not take
the non-indexed segments into account, therefore they can take any
value without affecting the cost.

2.2.3. From constraint costs to segment cost

The constraint cost functions evaluate the satisfaction of one
specific constraint for each segment. The solving of the problem
requires also the definition of segment costs, which combine and
evaluate the satisfaction of all the constraints related to one
segment. These segment costs represent the contribution of the
segment to the global cost of the sequence, i.e. whether a segment
fits well the sequence properties. These segment costs take each
constraint into account according to the constraint weight that
represents the importance of the constraint satisfaction:

�=
sConstra

segmentCOSTCONSTRAINTConstraWEIGHTsegmentCOST
int

)(_*int)()(

These segment costs enable to detect the segments that least fit the
sequence, in order to replace them iteratively during the building of
the musaic.

2.2.4. From segment costs to global cost

Finally, we build a global cost function, which is an
aggregation of all the constraints costs, computed by summing all
the segment costs of the musaic segments. That global cost
function represents the distance between the current musaic and
the desired sequence:

�
∈

=
sequenceSegment

segmentCOSTsequenceCOSTGLOBAL)()(_

This is the criterium which evaluates the global satisfaction of all
the constraints, and which has to be minimized during the building
of the musaic.

2.3. Building the musaic

Building the musaic consists in finding a sequence out of a
database of samples that best satisfies all the sequence properties
defined by the constraints.
When dealing with very large databases of samples, a complete
search method is absolutely prohibited in order to obtain quick
results. So the constraint system is solved using a local search
algorithm called “ Adaptive search” [6][7], which was shown to be
well adapted for large-scale combinatorial problems for which
optimality is not required. Indeed, in the case of music, the
interesting point is that, if no exact solution exists, there are many
approximate solutions which can provide very different and
interesting results. For example, an application of this local search
method to music composition on symbolic values (pitches) is
investigated by Truchet [8], who has shown that the method
outperforms complete search methods using CSP techniques. The
“ Adaptive search” algorithm is defined as follows:
1. Random initialization
REPEAT
2. Compute all non-tabu variables costs
3. Select the highest-cost variable Vh
4. Search for the value v of Vh inducing the lowest global cost
5. If the global cost cannot be improved, mark Vh as ‘ tabu’
6. If all the variables are tabu, random reinitialization
UNTIL (global cost<e) or (max iterations reached)

In the case of musaicing, we have added a preliminary step to the
“ Adaptive search” that consists in defining the variables domains,
i.e. all the possible samples for each segment of the musaic. The
user controls the size of the domain by specifying it in the
sequence properties. For each segment, the domain is chosen by
setting a restriction on the values of the descriptors linked to the
segment constraints. The domain definition also takes the weights
of the segment constraints into account: the higher the weight, the
smaller the domain. Once the domains are defined, the “ Adaptive
search” algorithm applied to musaicing is:
1. Random initialization :

The sequencing starts with an initial sequence built up from a
set of samples taken randomly in the predefined domains,
evaluates all the constraint costs related to the current
sequence, and computes the global cost that has to be
minimized,

REPEAT
2. Compute all non-tabu variables costs:

i.e. the segments costs related to each sample of the sequence,
3. Select the highest-cost variable :

Selection of the ‘ worst’ segment that induces the highest
constraint cost, i.e. that is the most responsible for the
distance between the current musaic and the desired
sequence,

4. Search for the value inducing the lowest global cost:
Browse the database of samples in order to find whether
another sample that better fits the constraints could replace

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-4

the ‘ worst’ segment, and consequently diminish the
constraints costs and the distance from the desired sequence,

5. If the global cost cannot be improved, mark Vh as ‘ tabu’ :
If the sample can not be replaced to improve the sequencing,
this significates that the current configuration of the sequence
does not allow to obtain a better local result around this
segment, so the ‘ worst’ segment is marked as ‘ tabu’ . That
means that the segment can not be selected as the ‘ worst’
segment for a few iterations, during which the sequence
configuration can change,

6. If all the variables are tabu, random reinitialization:
If all segments are ‘ tabu’ , the sequence has reached a stable
local minimal cost configuration depending on the initial
random sequence, and no changes of the samples can improve
the sequencing: a new random initial samples sequence is
computed. Indeed, as the process is very quick, we can repeat
the “ adaptive search” algorithm several times, by taking at
each time a new random initial sequence,

UNTIL the global cost is lower than a predefined threshold, or
the maximum number of iterations is reached. The final musaic is
the best sequence of all these attempts, i.e. the sequence that has
the lowest final global cost.

Once the solution is found, the musaic quality can be improved
by a sequence refining, consisting in applying global
transformations on transitions, in order to smoothen possible rough
transitions between samples.

3. EXAMPLES

3.1. Basic example

First we present a basic example that clearly shows how the
algorithm works and takes the constraints and their associated
weights into account. The goal of this example is to build a musaic
imitating a synthesized target recording characterized by a pitch
that increases continuously from 0 to 1000Hz.
The database contains samples extracted from 50 pop and rock
songs, including a set of samples extracted from 1 synthesized
recording with the same characteristics as the target, except that
the pitch decreases continuously from 1000 to 0Hz.

3.1.1. Pitch constraint

First, we impose only one pitch constraint on all the segments,
imitating the increasing pitch of the target sequence. The constraint
weight is set to 50. Figure 1 shows the pitch analysis of the
musaic:

Figure 1: Pitch analysis of the musaic

First, as figure 1 shows, the pitch constraint is globally satisfied:
the pitch increases continuously, and is close to the target pitch.
Secondly, the imitation is good, in the sense that the samples
selected by the system are extracted from the pitch decreasing
synthesized recording, which has the closest characteristics from
the original target. This property is obvious on the figure 1, where
the little ‘pitch sawteeth’ show that the selected samples have all a
decreasing pitch.

3.1.2. Pitch and Continuity constraints, equal weights

We can complexify the previous example by adding a continuity
constraint on all the segments. That continuity constraint goes in
the way of the pitch constraint. Indeed, the pitch constraint
imposes an increasing pitch, whereas the continuity constraint
requires the use of longer extracts from the database, whose
pitches decrease. Figure 2 shows the pitch analysis of the musaic
when the weights of the two constraints are set to 50:

Figure 2: Pitch analysis of the musaic

The pitch constraint is globally satisfied: the pitch increases, but
not continuously anymore.
The continuity constraint is locally satisfied: the system tries to use
as much as possible contiguous samples from the database, and we
can see larger pitch decreasing parts. Indeed, since the two
constraints are conflicting, the system finds a balance between
them by building ‘ pitch sawteeth’ . The pitch globally increases,
but sometimes locally decreases.

3.1.3. Pitch constraint weight < Continuity constraint weight

Finally, we can experiment with the influence of the weights of the
constraints on the resulting musaic. The continuity constraint’ s
weight is now raised to 100, whereas the pitch constraint’s weight
stays at 50. Figure 3 shows the pitch analysis of the musaic:

Figure 3: Pitch analysis of the musaic

The pitch constraint is very slightly satisfied: the pitch only shows
a global long term increasing.
On contrary, the continuity constraint is very well satisfied: the
sequence has been divided in only 4 parts, represented by the
bigger ‘pitch sawteeth’ . Indeed, the system still finds a balance
between the two conflicting constraints by building ‘pitch
sawteeth’ . But the balance has been modified by applying a higher
weight to the continuity constraint. The satisfaction of the
continuity constraint is given priority over the satisfaction of the
pitch constraint, resulting in larger ‘decreasing pitch sawteeth’ .
Hence, the user can control the size of the “ teeth” with the relative
weights of the constraints.

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-5

This example first shows that, in the case of conflicting constraints,
the system takes both constraints into account, and finds a balance
between them. The second conclusion is that the user has a
complete control on that balance, by setting the relative weights of
the constraints.

3.2. Percussive tempo

As explained in 2.2.2., the percussive tempo is an example of
sequence constraint that combines features retrieval and samples
distribution modeling: the system uses the percussivity feature to
find the most percussive sounds and their location is controlled by
a distribution model. That constraint consists in specifying two
parameters : a tempo and a phaseshift, and intends to set
percussive samples in the musaic according to them.

Figure 4 shows an example of percussive tempo 80 with null
phaseshift:

Figure 4: Signal of the musaic

The constraint is clearly satisfied: we can see regular peaks on the
signal, corresponding to the percussions sounds., with an evaluated
tempo of 78. The difference between the specified tempo and the
musaic tempo is due to the length of the musaic samples.

We can also add a phaseshift to the constraint. Figure 5 shows an
example of percussive tempo 130 with phaseshift=π/2:

Figure 5: Signal of the musaic

The percussive tempo constraint is still clearly satisfied: we can
see regular percussion peaks on the signal, with an evaluated
tempo of 129. The phaseshift is also satisfied, as shown by the
timeshift at the beginning of the signal.
These examples show the influence of the two parameters on the
resulting musaic.

3.3. Combination of segment and sequence constr aints

Finally, a more powerful use of musaicing is shown below, by
combining different types of constraints.

3.3.1. Simultaneous Pitch and Percussive Tempo constraints

First, we impose simultaneously a pitch constraint and a
percussive tempo constraint. Here is an example of a percussive
tempo of 100 (with no phaseshift), with a constraint on the pitch
‘ increase and then decrease along the sequence’ . Figure 6 shows
the signal of the resulting musaic:

Figure 6: Signal of the musaic

Figure 6 shows that the percussive tempo constraint is well
satisfied: we can see regular percussion peaks on the signal, with
an evaluated tempo of 103.
To evaluate the satisfaction of the pitch constraint, we need a pitch
analysis of the signal, shown on figure 7:

Figure 7: Pitch analysis

Figure 7 shows that the pitch globally satisfies the constraint
‘ Increase then Decrease’ . The local irregularities are due to the
percussive sounds, whose pitches are not significant. However, the
fact that even the extremal pitch values ‘ increase then decrease‘
shows that the pitch constraint has also an influence on the
percussive samples. On contrary to pitch and continuity presented
in 3.1., the two constraints are not conflicting, and can be satisfied
at the same time.
This combination of constraints is interesting for a target song
imitation. Indeed, the pitch constraint is interesting for melody
imitation: with an efficient pitch analysis, the system is able to
build a musaic that follows the melody of the target song. The
additional percussive tempo constraint gives the possibility to link
a rhythmic structure to the musaic.

3.3.2. Pitch and 2 Simultaneous Percussive Tempo constraints

We can obtain even more precise control on the musaic by
combining several constraints of the same type, but with different
parameters. For instance, we can have a more precise percussive
rhythm by controlling separately the different types of drum
sounds. Indeed, the percussive sounds can be classified into bass-
drum-like and snare-drum-like sounds using their zero-crossing
rate (ZCR), as shown in [9]. An interesting rhythmic control
consists in building two percussive tempo constraints, one applied
on bass-drum sounds, whose ZCR is low (LF), and the other
applied on snare-drum sounds, whose ZCR is high (HF). These
two constraints are specified simultaneously with different
parameters. For example, we can build a high-level rhythmic
structure, with bass-drum sounds following a fast tempo (132), and
snare-drum sounds following a slower tempo (2/3 of the previous
tempo = 88), so that snare-drum sounds occur regularly every 1.5
bass-drum sound. In order to avoid imultaneous sounds conflicts,
we introduce a slight delay (phaseshift =π/2) for the snare-drum
sounds. In addition, we added the pitch constraint ‘ Increase then
Decrease’ . Figure 8 shows the resulting musaic:

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-6

Figure 8: Signal of the musaic

The signal is now too complex to show explicit properties of the
musaic, we need to use filters to observe its different components.

Figure 9 shows the low-pass filtered part of the signal:

Figure 9: Low Pass Filtered

Figure 9 shows regular percussion peaks on the signal, with an
evaluated tempo of 131. These low-frequency peaks correspond to
the bass-drum percussion sounds, showing that the percussive
tempo constraint on LF is satisfied.

Figure 10 shows the high-pass filtered part of the signal:

Figure 10: High Pass Filtered

Figure 10 shows regular percussion peaks (that are less visible in
the middle part of the signal), with an evaluated tempo of 87.
Similarly to figure 9, these high-frequency peaks correspond to the
snare-drum percussions, showing that the percussive tempo
constraint on HF is also satisfied.

In addition, the pitch analysis on figure 11 shows that the pitch
still globally satisfies the constraint ‘ Increase then Decrease’ :

Figure 11: Pitch analysis

The combination of these 2 percussive tempo constraints provide a
complex rhythmic structure, using a (B)ass / (S)nare sequence
following the drum track : [BS__B__SB___]. That rhythmic
structure can easily be controlled by changing the tempo and
phaseshift of the constraints.

These examples show how combinations of constraints provide
efficient controls on the sequencing. These controls can be very
useful for musical composition, which can either be done from
scratch or be based on the imitation musaic of an preexisting
musical recording. The examples shown in the paper can be heard
at: http://www.csl.sony.fr/Music.

4. CONCLUSION

We have introduced a method for retrieving and sequencing
samples out of a large database. This method spares to the user the
task of selecting and locating individual samples. Instead, the user
specifies high level properties of the targeted sequence. These
properties are interpreted by a constraint solver. The examples
show the power and flexibility of the approach. The expressive
power of musaicing is determined by the nature of the available
constraints, but the algorithm presented here makes it very easy to
define new constraint classes.
Current work consists in coupling the system with a more refined
segmentation of source and target music titles into samples,
including the detection of stable notes, percussions and singing
voice. Secondly, a more robust analysis of the features of the
samples is under development, including more accurate pitch
tracking as well as instruments and voice characterization. These
improvements open the door for new kinds of audio
transformation, such as reinstrumentation, e.g. replacing guitar by
organ, drums by congas, etc. Finally, thanks to the efficiency of the
constraint solver, we envisage the use the system in a real time
context. This will allow users to change the parameters of
musaicing (adding, removing constraints, changing the various
weights) in real time, while listening to the result. Such a real time
musaicing would allow to further reduce the gap between
composition and listening, and therefore make composition
accessible to a larger audience.

5. REFERENCES

[1] Wold, E., Blum, T., Keislar, D., Wheaton, J. “ Content-based
classification, search, and retrieval of audio” , IEEE
Multimedia 3(3), 27-36, Fall 1996.

[2] Pachet, F., Roy, P., Cazaly, D. “ A Combinatorial Approach to
Content-based Music Selection” , IEEE Int. Conf. on
Multimedia Computing and Systems, Firenze(It), 1999.

[3] Schwarz, D. “ A system for data-driven concatenative sound
synthesis” , DAFX00 Proceedings, Verona (It) Dec. 2000.

[4] Robert Silver “ Photomosaics” , http://www.photomosaics.com
[5] John Oswald “ Plunderphonics” , Fony,

http://www.plunderphonics.com
[6] Codognet, P. “ Adaptive search, preliminary results” ,

proceedings ERCIM / CompulogNet Workshop on
Constraints, Venise, Italy, June 2000.

[7] Codognet, P., Diaz, D. “ Yet another search method for
constraint solving” , AAAI Symposium, North Falmouth,
Massachusetts, November 2001.

[8] Truchet, C., Agon, C., Assayag, G. “ CAO et contraintes” ,
Proceedings of 8th Journées d’ Informatique Musicale,
Bourges (France), GMEB, 2001.

[9] Gouyon F., Pachet F., Delerue O. “ On the use of zero-crossing
rate for the classification of percussive sounds in polyphonic
signals” , DAFX00 Proceedings, Verona (It) Dec. 2000.

