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ABSTRACT 

The basis for a low-level melodic segmentation model and 
its discrete implementation is presented. The model is based on 
the discrete approximation of the one-dimensional convective 
transport mechanism. In this way, a physically plausible 
mechanism for achieving multi-scale representation is obtained. 
Some aspects of edge detection theory thought to be relevant for 
solving similar problems in auditory perception are briefly 
introduced. Two examples presenting the dynamic behaviour of 
the model are shown. 

1. INTRODUCTION 

The problem of the detection of intensity changes in 
early visual processing has been computationally 
investigated through various methods ever since Marr’s 
influential work in that area [1, 2, 3]. While both 
theoretical and experimental research in melodic 
perception recognise that the processing of the auditory 
signal takes place over multiple time scales (which 
corresponds to different spatial resolution in the low-level 
vision theory), a similar approach has not been widely 
adopted in computational modelling of melodic perception. 
In particular, the current computational models of melodic 
segmentation rely on an exclusive set of discrete rules 
applied to notated melodies. In this paper we first discuss 
some aspects of edge detection theory which are believed 
to be important for auditory processing. Secondly, the basis 
for a dynamic model of melodic segmentation and its 
discrete implementation is presented. 

2. THE DETECTION OF THE INTENSITY 
CHANGES 

Edge detection theory1 proposes three stages for 
detecting intensity changes in images. The first stage 
incorporates techniques for smoothing the image, the 
second addresses methods for differentiating such 
smoothed image intensities. In the third stage, extraction of 
features essential for describing image structure (for 

instance peaks, or zero-crossings) from the smoothed and 
differentiated images is addressed. This comes as a 
consequence of two fundamental properties of images;       
a) the detection of changes in an image can be obscured by 
the effect of noise and b) significant changes in an image 
frequently occur at different resolutions. In order to reduce 
the noise and to enable changes at different resolutions to 
come through the following steps are taken. The image is 
first smoothed, for instance by convoluting image 
intensities with a smoothing operator of different scales. 
The intensities of such smoothed image are differentiated 
through the application of the 1st and 2nd derivation 
operators, to extract the significant changes. One possible 
choice for the smoothing operator is the Gaussian filter   
(2-dimensional Gaussian function is described in equation 
1), shown in figure 1, together with its first and second 
derivatives. 
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Figure 1. Gaussian function (σ=0.2) and its  derivatives. 
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where: 
r  is the radius (polar coordinates). 
σ is the space-constant. 

The changes in the function give rise to peaks in the 
first derivative and zero-crossings in the second at the 
points r =-0.2 and r = 0.2. 

The detection of the peaks or zero-crossings in the 
smoothed and differentiated images together with peak’s 
position, sharpness and height, result in the primal sketch 
representation. This is believed to approximate the first 
stage in the human vision processing and accepted as such 
in machine vision [4]. 

3. MODELLING THE AUDITORY SIGNAL 
PROPAGATION DYNAMICS 

The combination of the Gaussian filter and its second 
derivative (Laplacian operator) has several properties that 
make it a ‘favourite’ linear filter choice in edge detection 
theory and applications. It is considered to be an optimal 
edge-detection operator [3], as well as the only operator 
that exhibits ‘nice’ behaviour in the scale-space 
representation [5]. Also, both the Gaussian filter behaviour 
and that of its derivatives have been found to be 
remarkably similar to the response of some cells in human 
visual pathways [6]. Here, we are interested in the temporal 
domain filtering, i.e. in the smoothing that emerges when 
propagating the signal through an echoic memory neural 
map.  

One possible mechanism for performing the multi-
scale analysis of temporal signals was introduced in [7], 

along with a number of issues important for the 
development of auditory signal representations similar to 
the primal sketch.2 Todd proposed a temporal 
approximation of the Gaussian, and implemented this in the 
form of a low-pass filter bank model of the echoic store. 
According to Todd, the resulting multi-scale mechanism 
(rhythmogram) can be understood as a model of auditory 
sensory memory as well as of a number of other important 
auditory phenomena.  

However, Todd does not discuss the underlying 
dynamics of the signal propagation through the echoic store 
modelled by the proposed Gaussian filter temporal 
approximation. The close relationship between the 
Gaussian filter concept and diffusion mechanism [8, 9], 
indicates a possible analogy between the multi-scale 
mechanism proposed in [7] and the diffusion - e.g. one-
dimensional heat conduction according to equation 2. 

 

2

2 ),(),(
x

txk
t

tx
∂

∂=
∂

∂ ϑϑ         (2) 

 
where: 
ϑ (x,t) is the temperature at point x, moment t.  
k is the constant related to the physical properties of 
the material. 

Under specific initial and boundary conditions the 
function ϑ(x,tk), i.e. the solution to equation 1, at the time 
instant tk, takes a form of the Gaussian curve shown in 
figure 1. 

 
 
 
 
 
 
 
 
 
 

Figure 2. Simplified signal propagation model based on the Gaussian filter approximation. 

 
 
 
 
 
 

Figure 3. The leaky integrators cascade. 
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By use of the control volume approach the approximate 
model of one-dimensional heat conduction can be 
expressed by the set of n ordinary differential equations. 
Apart from the boundary volumes equations, the 
equations are of the following form: 
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The structure approximating the equations 3 is shown 

in figure 2. The basic element of the structure is the first 
order system with a time constant, often referred to as 
leaky integrator. Since the leaky integrator is known as 
one possible model of neural signal transmission, the fact 
that the signal passes in both directions in the above 
propagation model implies backward connections in the 
neural map i.e. its bi-directional conductivity. 

Considering the physical and neuro-anatomical 
constraints, we have chosen a pure cascade of leaky 
integrators (figure 3) for modelling signal propagation 
through the neural map instead of the diffusion model. 

Similarly to the interpretation of the Gaussian-based 
model through the heat conduction dynamics, the leaky 
integrators cascade can be interpreted as a spatially 
discrete approximation of the one-dimensional convective 
transport mechanism (see equation 4). 
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where: 
y(x,t)      is the signal at point x, time t. 
w is the signal carrier velocity. 

Apart from exhibiting the characteristic smoothing 
behaviour of the sensory transduction, the leaky 
integrators cascade model (figure 3) enables a relatively 
straightforward implementation of the appropriate 
derivative estimator that is important for a fully 
developed melodic segmentation model. 

4. DISCRETE REALISATION OF THE LEAKY 
INTEGRATORS CASCADE    

Finally, the question of the computational 
implementation of the above proposed model is 
addressed, taking into account the fact that the leaky 
integrator inherently belongs to the class of continuous 
systems, and that the model inputs are temporally 
discrete. A linear first order system with a time constant 
(i.e. linear leaky integrator) is described as: 

 

xy
dt
dyT =+⋅        (5) 

where: 
T  is the time constant. 

Assuming the linearity of the signal propagation 
dynamics, equation 5 can be rewritten for the jth leaky 
integrator in an analogue cascade: 
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where: 
j  is the leaky integrator index. 
The leaky integrator was digitally implemented in the 
form of the first order ARMA (autoregressive moving 
average) filter, defined here in index notation:  
 

kjkjkj yayay ,11,, )1( −− ⋅−+⋅=     (7) 
 
where: 
k is the current moment index. 
yj,k  is the current output of the jth integrator. 
yj,k-1 is the previous output of the jth integrator. 
yj-1,k is the current input to the jth integrator. 
a is the ARMA constant. 

The connection between the integrator described by 
the equation 6 and its discrete realisation (equation 7) can 
be elaborated as follows. For the discrete form of the 
derivation as a function of time: 
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where: 
h  is the time step (tk-tk-1). 
k is the current moment index. 
k-1  is the previous moment index. 

By incorporating equation 8 into equation 6, we 
obtain the discrete form of the leaky integrator equation: 
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From equation 9, yj,k can then be expressed 

explicitly: 
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Equation 10 is the discrete approximation of equation 

6. The approximation improves as the time step h 
decreases. The condition for identity of equation 10 and 
equation 7 is easily obtained from the two equations: 
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Equation 11 represents the relation between the time 

constant of the leaky integrator (T), and the coefficient of 
the ARMA filter (a). 

5. EXAMPLES 

The input to the described segmentation model 
consists of the melodic descriptors extracted directly from 
a recorded melody [10]. The descriptors are pitch, 
loudness and one aspect of timbre - centroid frequency 
descriptor. In figure 4, we show the dynamic behaviour of 
the proposed cascade, through the model’s response to a 
synthesized pitch input consisting of the notes of the 
major scale (roof change) and a tritone in the same scale 
(2 abrupt changes). The cascade has 15 filters, and all 15 
responses are shown.  

 
Figure 4. Smoothing properties of the proposed model 

for the scale and tritone input. 

Observe that by the time the signal reaches the last of 
the filters, higher ‘change frequencies’ (scale steps) have 
been filtered out leaving the ramp shape, while the 
stronger abrupt changes (tritone) are correctly 
reproduced.  

 
Figure 5. Smoothing properties of the proposed model, 

scale and tritone input. 

The dynamic behaviour of the model representing a 
form of memory, can best be observed in 3D view (figure 
5). The model shows the same properties (smoothing and 
remembering) in the case of the loudness indicator. For 
instance, the “Tennessee air” phrase input propagation is 
shown in figure 6. 

 
Figure 6. The propagation of the “Tennessee air” 

phrase input. 

6. FUTURE WORK 

Based on the extensive classification of the Western 
Tonal Music - melodic shapes, provided in Narmour’s 
work [11] we can speculate that the two most common 
changes in any melodic descriptor are an abrupt (step) 
change and a roof (ramp) change. Detection of these two 
change types requires a mechanism sensitive to the 
changes in a melodic descriptor (first derivation) and to 
the changes in the descriptor’s gradient (second 
derivation).      

Such a mechanism has indeed been designed and 
integrated into the proposed model structure and is 
currently being evaluated. The first and the second 
differences obtained for the same input as in figure 4, are 
shown in figure 7. As is the case with the spatial structure, 
the information obtained from different channels (filters) 
must be combined in such a way to obtain meaningful 
entities across different scales. This is the next phase in 
this research. 
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Figure 7. Pitch Input from figure 4 with its first and 

second derivations. 
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1 Edge detection is a commonly used if somewhat 
misleading term. What is actually detected are changes in 
intensity and other properties of images that are thought to 
enable recognition of edges in the real world. 
2 The multi-scale mechanism proposed by Todd is more or 
less specific to the auditory rhythm perception. 
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