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ABSTRACT

The goal of this paper is to introduce a complete
analysis/resynthesis method for the stationary part of
voiced-sounds. The method is based on a new class of
wavelets, the Harmonic-Band Wavelets (HBWT).
Wavelets have been widely employed in signal processing
[1, 2]. In the context of sound processing they provided
very interesting results in their first harmonic version: the
Pitch Synchronous Wavelets Transform (PSWT) [3]. We
introduced the Harmonic-Band Wavelets in a previous
edition of the DAFx [4]. The HBWT, with respect to the
PSWT allows one to manipulate the analysis coefficients of
each harmonic independently. Furthermore one is able to
group the analysis coefficients according to a finer
subdivision of the spectrum of each harmonic, due to the
multiresolution analysis of the wavelets. This allows one to
separate the deterministic components of voiced sounds,
corresponding to the harmonic peaks, from the
noisy/stochastic components. A first result was the
development of a parametric representation of the HBWT
analysis coefficients corresponding to the stochastic
components [5, 7]. In this paper we present the results
concerning a parametric representation of the HBWT
analysis coefficients of the deterministic components. The
method recalls the sinusoidal models, where one models
time-varying amplitudes and time varying phases [8, 9].
This method provides a new interesting technique for
sound synthesis and sound processing, integrating a
parametric representation of both the deterministic and the
stochastic components of sounds. At the same time it can
be seen as a tool for a parametric representation of sound
and data compression.

1. INTRODUCTION

In a previous DAFx paper we defined the HBWT
orthogonal and complete set of functions and the pseudo-
periodic 1/f-like spectral model for voiced sounds [4]. This
model allows one to deal with the deterministic and the

stochastic components of sound separately. Subsequently
we developed a method for the resynthesis of the stochastic
components of voiced sounds based on a parametric
representation of the analysis HBWT coefficients
corresponding to these components [5, 7]. The resynthesis
parameters control the time varying variance of white noise
coefficients and their spectral shaping.
In this paper we present some new results concerning the
parametric representation of the HBWT analysis
coefficients corresponding to the deterministic components
of voiced sounds.
An intuitive preview of the method is given in figure 1,
where we show the spectral partition performed by the
HBWT analysis. The scale index n corresponds to the
harmonic-band wavelet coefficients, while the "scale
residue" corresponds to the harmonic-band scale
coefficients. The first ones are related to the stochastic
components of sound and the second ones to the
deterministic components of sound. The new method we are
going to introduce in section 3 is for the representation of
the deterministic components, i.e., for the harmonic-band
scale coefficients. Our model is reminiscent of sinusoidal
models. However, being based on the MDCT transform,
what we model is not the set of partials of the sound itself
but a complex version of its harmonic-band scale analysis
coefficients.

2. THE PSEUDO-PERIODIC 1/F-LIKE SPECTRAL
MODEL. A REVIEW

The main idea of the pseudo-periodic 1/f-like spectral
model is to represent voiced sound spectra as bandshifted
approximately 1/f spectral segments. The 1/f-like sidebands
(right and left) of each harmonic take into account not only
the harmonic peak but also the information relative to the
noise contained in the spectrum band of the harmonic. This
noise is due to both microfluctuations with respect to a pure
harmonic behavior and to the noise of the physical
excitation. The well-suited mathematical tool to manipulate
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this model is provided by the Harmonic-Band Wavelet
Transform HBWT [4, 7].

a)

b)

c)

Figure 1. a) Real-life violin spectrum. The first harmonics.
b) Magnitude Fourier transforms of the HBWT basis set.
c) Magnitude Fourier transforms of the HBWT subband

decomposition of a single harmonic. Left and right
sidebands.

Figure 2 and figure 3 represents the implementation of a
HBWT analysis and synthesis scheme, respectively. In
figure 2 one can see first a P-channels filter bank, realized
by means of the set of filters gp,0. These filters implement a
cosine-modulated filter-bank and are given by:
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where ( )W l is a 2P-length window satisfying some
technical constraints [7]. The number of channels P is tuned
to the average pitch of the analyzed sound. The filters

separate the P sidebands of the 
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 harmonics

represented in the digital spectrum of the sound (see figure
1). Each sideband is then subdivided into N spectral
subbands by means of a downsampling of order P and an
ordinary wavelet analysis.
The N subbands are in a dyadic relationship. In this way we
obtain a natural subdivision of the sideband with a higher
frequency resolution in the range where the spectrum varies
rapidly and a lower resolution where the spectrum tends to
be flat (see Fig. 1a and b). This has a positive effect in
terms of coding as well as in terms of perceptual
significance.
In a following paper [6] we also presented a refined version
of the model by introducing the Harmonic-Band Frequency-
Warped Wavelet Transform (HBFWWT). The HBFWWT
allows a more flexible subdivision of the sidebands. In this
refinement the subbands are not any more related to each
other by a dyadic law. One can individually select the
bandwidth of each subband. This allows us to optimize in
an arbitrary way the spectral subband subdivision of each
sideband.
Figure 2 also shows the extraction of the parameters
describing the behavior of the HBWT analysis coefficients.
In previous papers [4, 7] we showed that the coefficients,
coming from the output of the filters kn,0(l) of figure 2, can
be efficiently modeled in terms of energy scaled and filtered
white noise coefficients. This is the main result concerning
the stochastic part of our model.
From the short-time energy analysis of the analysis
coefficients we extract an amplitude envelope for each
subband by means of a simple polynomial interpolation.
The unitary variance white noise resynthesis coefficients are
energy-scaled by means of these envelopes.
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Figure  2. Harmonic-Band Wavelet (HBWT) analysis
scheme and resynthesis parameter estimation. The gp,0(l)
represent the impulse responses of the filters implementing
a MDCT. The hn,0(l) and kn,0(l)  represent the impulse
responses of  pairs of QMF filters implementing a wavelet
transform.

Figure 3 Harmonic-Band Wavelet (HBWT) resynthesis
scheme

As a second step we model the little but not zero
autocorrelation of the HBWT analysis coefficients. This
autocorrelation is important from a perceptual point of
view. In order to reproduce it we perform an LPC analysis
of the HBWT analysis coefficients of each subband of all
the harmonic sidebands (for each subband n of al the P
channels). The resulting AR filters are employed to shape
the spectra of the white noise resynthesis coefficients. The
resynthesis coefficients are then given by energy scaled
white noise samples, whose spectra are shaped by AR filters
derived by LPC-analysis (see figure 3).

What we still need is to provide a model for the output of
the last filter hN,0(l) for each channel p, i.e., to define a
model for the HBWT analysis coefficients corresponding to
the deterministic harmonic part of sounds.

3. SINUSOIDAL MODEL OF THE HARMONIC-BAND
SCALE COEFFICIENTS

In order to model the Harmonic-Band (HB) scale
coefficients we resort to a complexification of pairs of
adjacent channels, corresponding to the scale residue of two
sidebands of one harmonic (see fig. 1). In other words, we
consider the set of coefficients:

,2 1 ,2[ ] [ ] [ ]r N r N rA m a m ja m−= +   (3)

where the ,2 1[ ]N ra m−  and the ,2 [ ]N ra m  are the HB scale-N
coefficients of the left and right sideband of the r=(p+1)/2th

harmonic, respectively, i.e., the output of the hN,0(l)  filters
of the pth and the (p+1)th channels, respectively, with p=2r-1
(see scheme of figure 2).
We write [ ]rA m  in polar form:
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The experimental results (see figure 4) show that the HB
scale coefficients form smooth and slowly oscillating
curves. As a consequence we can efficiently approximate
the amplitude [ ]rA m  and the phase
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splines. The results in the case of a violin are shown in
figure 5 and 6, respectively. We considered a two-level
HBWT analysis of a violin sound of length 201064 and
pitch P=150, corresponding to 344 HB scale coefficients.
We employed splines of order 2 with 9 knots as
interpolating functions for the amplitudes and with 11 knots
for the phases. The amplitudes of the A[m] are nothing but
the time envelopes of the harmonic partial downsampled by
a factor P2N. The phases represent the slow quasi-sinusoidal
variation of the coefficients due to the difference between
the central frequencies of the harmonic scale filters and the
corresponding harmonics themselves. The resynthesis
coefficients modeled by means of spline-interpolation
provide high quality results from an acoustical point of
view. Differences between the original and the synthetic
sounds are hardly perceivable.
The transients are perfectly reconstructed from the original
analysis coefficients.
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Figure 4. HB scale analysis coefficients of a violin sound at 294
Hz, 3 harmonics, i.e., 6 analysis channels.
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Figure  5. First 4 harmonics complex coefficient amplitude
interpolation

Figure 6 First 4 harmonics complex coefficient phase
interpolation

Figure 7  Second derivative of the harmonic band coefficient
phase

A very interesting byproduct of the analysis of the
harmonic-band scale coefficients is that the second
derivatives of the [ ]r mφ  provide a very efficient transient
detector (see figure 7). Where the sound is stationary, the
absolute value of second derivative is less than 1. This
becomes more than three times larger where the transients
occur. We employed this result in order to define
automatically the borders of the attack and decay transients.
Beside the case of the violin, very good experimental results
were obtained with other musical instruments: a bassoon, a
clarinet, a trumpet, an oboe and a cello. All of them gave
equally satisfying results.
As further developments of our work we need a definition
of a model for the transients. A good starting point could be
the work of Verma and Meng [10], to be integrated with our
wavelets techniques.
Also a pitch synchrounous version is already at work. The
goal is to maintain a PR structure, being able to follow the
slight pitch deviation or the vibrato of a single musical tone.
This means to build a P-channel filterbank where one can
change the number of channels P at each period.
More generally our model is still missing a sufficient
flexibility in the design of the P-channel filterbank. In other
words it lacks the possibility of subdividing the whole
frequency range in an arbitrary way, in order to deal with
non-harmonic or polyphonic sounds. This could be obtained
by giving up the PR constraints of the whole system or by
means of some generalized technique of frequency warping,
at the expense of an increased computational complexity.
We would then still exploit the wavelet spectral tiling in
order to model the noise and the peaks of the partials. The
latter approach is already at study by one of the authors.
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4. CONCLUSIONS

We defined a method for sound synthesis, which allows us
to control and reproduce with high fidelity the stationary
part of real life voiced sounds by means of a restricted
number of parameters.
This method is a sort of additive synthesis where one
synthesizes and adds deterministic components and
stochastic components separately.
This method can be seen as is a part of a wider system for a
complete Structured Audio Representation. Different kinds
of musical applications can be devised.
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