
Recording and cross-referencing document properties∗

The LATEX Project†

January 25, 2026

Abstract
This code implements command to record and (expandably) reference document

properties. It extends the standard \label/\ref/\pageref commands.

Contents
1 Introduction 2

2 Design discussion 2

3 Handling unknown labels and properties 2

4 Rerun messages 3

5 Open points 3

6 Code interfaces 3

7 Auxiliary file interfaces 5

8 LATEX 2ε interface 5

9 Pre-declared properties 6

10 The Implementation 7
10.1 Reference commands . 9
10.2 Tests and warnings . 11
10.3 Predeclared properties . 14
10.4 Messages . 15

∗This module has version v1.0l dated 2026-01-16, © The LATEX Project.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

1 Introduction
The module allows to record the “current state” of various document properties (typically
the content of macros and values of counters) and to access them in other places through
a label. The list of properties that can be recorded and retrieved are not fix and can be
extended by the user. The values of the properties are recorded in the .aux file and can
be retrieved at the second compilation.

The module uses the ideas of properties and labels. A label is a document reference
point: a name for the user. An property is something that LATEX can track, such as
a page number, section number or name. The names of labels and properties may be
arbitrary. Note that there is a single namespace for each.

2 Design discussion
The design here largely follows ideas from zref. In particular, there are two independent
concepts: properties that can be recorded between runs, and labels which consist of lists
of these properties. The reason for the split is that individual labels will want to record
some but not all properties. For examples, a label concerned with position would track
the x and y coordinates of the current point, but not for example the page number.

In the current implementation, properties share a single namespace. This allows
multiple lists to re-use the same properties, for example page number, absolute page
number, etc. This does mean that changing a standard property is an issue. However,
some properties have complex definitions (again, see zref at present): having them in a
single shared space avoids the need to copy code.

Labels could be implemented as prop data. That is not done at present as there is
no obvious need to map to or copy the data. As such, faster performance is available
using a hash table approach as in a “classical” set up. Data written to the .aux file uses
simple paired balanced text not keyvals: this avoids any restrictions on names and again
offers increased performance.

The expl3 versions of the label command do not use \@bsphack/\@esphack to avoid
double spaces, but the LATEX 2ε command does as it lives at the document command
level.

The reference commands are expandable.
Currently the code has nearly no impact on the main \label and \ref commands as

too many external packages rely on the concrete implementation. There is one exception:
the label names share the same namespace. That means that if both \label{ABC} and
\RecordProperties{ABC}{page} are used there is a warning Label ‘ABC’ multiply
defined.

3 Handling unknown labels and properties
With the standard \label/\ref commands the requested label is either in the .aux-file
(and so known) or not. In the first case the stored value can be used, in the second case
the reference commands print two question marks.

With flexible property lists a reference commands asks for the value of a specific
property stored under a label name and we have to consider more variants:

• If the requested property is unknown (not declared) the system is not correctly set
up and an error is issued.

2

• If the label is unknown, the default of the property is used.

• If the label is known, but doesn’t provide a value for the property then again the
default of the property is used.

• The command \property_ref:nnn allows to give a local default which is used
instead of the property default in the two cases before.

4 Rerun messages
As the reference commands are expandable they can neither issue a message that the label
or the label-property combination is unknown, nor can they trigger the rerun message at
the end of the LATEX run.

Where needed such messages must therefore be triggered manually. For this
two commands are provided: \property_ref_undefined_warn: and \property_ref_-
undefined_warn:nn. See below for a description.

5 Open points
• The xpos and ypos properties require that the position is stored first but there is

no (public) engine independent interface yet. Code must use \tex_savepos:D.

6 Code interfaces

\property_new:nnnn {⟨property⟩} {⟨setpoint⟩} {⟨default⟩} {⟨code⟩}
\property_gset:nnnn {⟨property⟩} {⟨setpoint⟩} {⟨default⟩} {⟨code⟩}
LATEX 2ε-interface: see \NewProperty, \SetProperty.
Sets the ⟨property⟩ to have the ⟨default⟩ specified, and at the ⟨setpoint⟩ (either now
or shipout) to write the result of the ⟨code⟩ as part of a label. The ⟨code⟩ should be
expandable. The expansion of ⟨code⟩ (the value of the property) is written to the .aux
file and read back from there at the next compilation. Values should assume that the
standard LATEX catcode régime with @ a letter is active then.

If the property is declared within a package it is suggested that its name is build
from letters, hyphens and slashes, and is always structured as follows:
⟨package-name⟩/⟨property-name⟩.

\property_new:nnnn
\property_gset:nnnn

\property_record:nN {⟨label⟩} ⟨clist var⟩
\property_record:nn {⟨label⟩} {⟨clist⟩}
LATEX 2ε-interface: see \RecordProperties.
Writes the list of properties given by the ⟨clist⟩ to the .aux file with the ⟨label⟩
specified.

\property_record:nN
\property_record:nn
\property_record:(nV|ee)

\property_ref:nn {⟨label⟩} {⟨property⟩}

LATEX 2ε-interface: see \RefProperty.
Expands to the value of the ⟨property⟩ for the ⟨label⟩, if available, and the de-
fault value of the property otherwise. If ⟨property⟩ has not been declared with
\property_new:nnnn an error is issued. The command raises an internal, expandable,
local flag if the reference can not be resolved.

\property_ref:nn ⋆
\property_ref:ee ⋆

3

\property_item:nn {⟨label⟩} {⟨property⟩}

Retrieves the value of the ⟨property⟩ for the ⟨label⟩ like \property_ref:nn but
the result is returned within the \unexpanded primitive (\exp_not:n), which means that
the ⟨value⟩ does not expand further when appearing in an e-type or x-type argument
expansion. This allows for example to handle values containing user commands which
are not safe in an expansion context.

\property_item:nn ⋆
\property_item:ee ⋆

New: 2025-11-20

\property_ref:nnn {⟨label⟩} {⟨property⟩} {⟨local default⟩}

LATEX 2ε-interface: see \RefProperty.
Expands to the value of the ⟨property⟩ for the ⟨label⟩, if available, and to ⟨local
default⟩ otherwise. If ⟨property⟩ has not been declared with \property_new:nnnn an
error is issued. The command raises an internal, expandable local flag if the reference
can not be resolved.

\property_ref:nnn ⋆
\property_ref:een ⋆

\property_ref_undefined_warn:\property_ref_undefined_warn:

LATEX 2ε-interface: not provided.
Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if there was a recent \property_ref:nn or \property_-
ref:nnn which couldn’t be resolved and so raised the flag. “Recent” means in the same
group or in some outer group!

\property_ref_undefined_warn:n {⟨label⟩}\property_ref_undefined_warn:n
\property_ref_undefined_warn:e

LATEX 2ε-interface: not provided.
Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if ⟨label⟩ is not known. At the point where it is called it
also issues the warning

Reference ‘⟨label⟩’ on page ⟨page⟩ undefined.

\property_ref_undefined_warn:nn {⟨label⟩} {⟨property⟩}\property_ref_undefined_warn:nn
\property_ref_undefined_warn:ee

LATEX 2ε-interface: see \RefUndefinedWarn.
Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if the reference can not be resolved. At the point where it is
called it also issues the warning

Reference ‘⟨label⟩’ on page ⟨page⟩ undefined
if the label is unknown, or the more specific

Property ‘⟨property⟩’ undefined for reference ‘⟨label⟩’ on page ⟨page⟩
if the label is known but doesn’t provide a value for the requested property.

\property_if_exist_p:n {⟨property⟩}
\property_if_exist:nTF {⟨property⟩} {⟨true code⟩} {⟨false code⟩}
LATEX 2ε-interface: \IfPropertyExistsTF.
Tests if the ⟨property⟩ has been declared.

\property_if_exist_p:n ⋆
\property_if_exist_p:e ⋆
\property_if_exist:nTF ⋆
\property_if_exist:eTF ⋆

4

\property_if_recorded_p:n {⟨label⟩}
\property_if_recorded:nTF {⟨label⟩} {⟨true code⟩} {⟨false code⟩}

\property_if_recorded_p:n ⋆
\property_if_recorded_p:e ⋆
\property_if_recorded:nTF ⋆
\property_if_recorded:eTF ⋆

LATEX 2ε-interface: \IfLabelExistsTF
Tests if the ⟨label⟩ is known. This is also true if the label has been set with the standard
\label command.

\property_if_recorded_p:nn {⟨label⟩} {⟨property⟩}
\property_if_recorded:nnTF {⟨label⟩} {⟨property⟩} {⟨true code⟩} {⟨false code⟩}

\property_if_recorded_p:nn ⋆
\property_if_recorded_p:ee ⋆
\property_if_recorded:nnTF ⋆
\property_if_recorded:eeTF ⋆

LATEX 2ε-interface: \IfPropertyRecordedTF.
Tests if the label ⟨label⟩ is known and if it provides a value of the ⟨property⟩.

7 Auxiliary file interfaces

\new@label@record {⟨label⟩} {⟨data⟩}

This is a command only for use in the .aux file. It loads the key–value list of ⟨data⟩ to
be available for the ⟨label⟩.

\new@label@record

8 LATEX 2ε interface
The LaTeXe interfaces always expand label and property arguments. This means that
one must be careful when using active chars or commands in the names. UTF8-chars are
protected and should be safe, similar most babel shorthands.

\NewProperty {⟨property⟩} {⟨setpoint⟩} {⟨default⟩} {⟨code⟩}
\SetProperty {⟨property⟩} {⟨setpoint⟩} {⟨default⟩} {⟨code⟩}

Sets the ⟨property⟩ to have the ⟨default⟩ specified, and at the ⟨setpoint⟩ (either now
or shipout) to write the result of the ⟨code⟩ as part of a label. The ⟨code⟩ should
be expandable. The expansion of ⟨code⟩ (the value of the property) is written to the
.aux file and read back from there at the next compilation (at which point normally the
standard LATEX catcode régime with @ a letter is active).

\NewProperty
\SetProperty

\RecordProperties {⟨label⟩} {⟨clist⟩}

Writes the list of properties given by the ⟨clist⟩ to the .aux file with the ⟨label⟩
specified. Similar to the standard \label command the arguments are expanded. So
⟨clist⟩ can be a macro containing a list of properties. Also similar to the standard
\label command, the command is surrounded by an \@bsphack/\@esphack pair to
preserve spacing.

\RecordProperties

\RefProperty [⟨local default⟩] {⟨label⟩} {⟨property⟩}

Expands to the value of the ⟨property⟩ for the ⟨label⟩, if available, and the default
value of the property or – if given – to ⟨local default⟩ otherwise. If {⟨property⟩} has
not been declared an error is issued.

\RefProperty ⋆

5

\IfPropertyExistsTF {⟨property⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨property⟩ has been declared.
\IfPropertyExistsTF
\IfPropertyExistsT
\IfPropertyExistsF

\IfLabelExistsTF {⟨label⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨label⟩ has been recorded. This is also true if a label has been set with the
standard \label command.

\IfLabelExistsTF
\IfLabelExistsT
\IfLabelExistsF

\IfPropertyRecordedTF {⟨label⟩} {⟨property⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the label and a value of the ⟨property⟩ for the ⟨label⟩ are both known.
\IfPropertyRecordedTF
\IfPropertyRecordedT
\IfPropertyRecordedF

\RefUndefinedWarn {⟨label⟩} {⟨property⟩}

Triggers the standard warning
LaTeX Warning: There were undefined references.

at the end of the document if the reference for ⟨label⟩ and ⟨property⟩ can not be
resolved. At the point where it is called it also issues the warning

Reference ‘⟨label⟩’ on page ⟨page⟩ undefined
if the label is unknown, or the more specific

Property ‘⟨property⟩’ undefined for reference ‘⟨label⟩’ on page ⟨page⟩ if
the label is known but doesn’t provide a value for the requested property.

\RefUndefinedWarn

9 Pre-declared properties

(shipout) The absolute value of the current page: starts at 1 and increases monotonically
at each shipout.

abspage

(shipout) The current page as given by \thepage: this may or may not be a numerical
value, depending on the current style. Contrast with \abspage. You get this value also
with the standard \label/\pageref.

page

(shipout) The current page as arabic number. This is suitable for integer operations and
comparisons.

pagenum

(now) The content of \@currentlabel. This is the value that you get also with the
standard \label/\ref.

label

(now) The content of \@currentlabelname. This command is filled beside others by the
nameref package and some classes (e.g. memoir).

title

6

(now) The content of \@currentHref. This command is normally filled by for example
hyperref and gives the name of the last destination it created.

target

(shipout) The content of \@currentHpage. This command is filled for example by a
recent version of hyperref and then gives the name of the last page destination it created.

pagetarget

(now) The content of \@currentcounter. This command contains after a \refstepcounter
the name of the counter.

counter

(shipout) This stores the x and y coordinates of a point previously stored with
\pdfsavepos/\savepos. E.g. (if bidi is used it can be necessary to save the position
before and after the label):

\tex_savepos:D
\property_record:nn{myposition}{xpos,ypos}
\tex_savepos:D

xpos
ypos

10 The Implementation
1 ⟨∗2ekernel | latexrelease⟩

2 \ExplSyntaxOn

3 ⟨@@=property⟩

4 ⟨latexrelease⟩\NewModuleRelease{2023/11/01}{ltproperties}
5 ⟨latexrelease⟩ {Cross-referencing~properties}

The approach here is based closely on that from zref; separate out lists of properties
and the properties themselves, so the latter can be used multiple times and in varying
combinations. However, not everything is a straight copy. Firstly, we treat lists of
properties as simple comma lists: that allows us to have either saved or dynamic lists
and to avoid another data structure. The cost is that errors are detected at point-of-use,
but in any real case that should be true anyway (and is true for \zref@labelbyprop
already). Secondly, we allow properties to have arbitrary names, as the code does not
require them to tokenize as control sequences.

\property_new:nnnn
\property_gset:nnnn

__property_gset:nnnn

As properties can be reset, they are not constants. But they also have various pieces
of required data. So we use the same approach as color and make them declarations.
Data-wise, we need the detail of the implementation, the default and a flag to show if
the code works now or at shipout. This last entry is done using text so needs a check.
We could use a set of prop here, but as we never need to map or copy the lists, we can
gain performance using the hash table approach.

6 \cs_new_protected:Npn \property_new:nnnn #1#2#3#4
7 {
8 \cs_if_free:cTF { __property_code_ #1 : }
9 {

10 \exp_args:Nx __property_gset:nnnn { \tl_to_str:n {#1} }

7

11 {#2} {#3} {#4}
12 }
13 {
14 \msg_error:nn { property }{ exists }{#1}
15 }
16 }
17 \cs_new_protected:Npn \property_gset:nnnn #1#2#3#4
18 {
19 __property_gset:ennn { \tl_to_str:n {#1} }
20 {#2} {#3} {#4}
21 }
22 \cs_new_protected:Npn __property_gset:nnnn #1#2#3#4
23 {
24 \cs_gset:cpn { __property_code_ #1 : } {#4}
25 \tl_gclear_new:c { g__property_default_ #1 _tl }
26 \tl_gset:cn { g__property_default_ #1 _tl } {#3}
27 \bool_if_exist:cF { g__property_shipout_ #1 _bool }
28 { \bool_new:c { g__property_shipout_ #1 _bool } }
29 \str_case:nnF {#2}
30 {
31 { now } { { \bool_gset_false:c { g__property_shipout_ #1 _bool } } }
32 { shipout }
33 { \bool_gset_true:c { g__property_shipout_ #1 _bool } }
34 }
35 { \msg_error:nnnn { property } { unknown-setpoint } {#1} {#2} }
36 }
37 \cs_generate_variant:Nn __property_gset:nnnn {ennn}

(End of definition for \property_new:nnnn , \property_gset:nnnn , and __property_gset:nnnn. These
functions are documented on page 3.)

\NewProperty
\SetProperty

For consistency we expand the property name, but this doesn’t warant a variant of the
L3-commands.

38 \cs_new_protected:Npn \NewProperty #1#2#3#4
39 {
40 \protected@edef\reserved@a{#1}
41 \exp_args:No \property_new:nnnn {\reserved@a} {#2}{#3}{#4}
42 }
43 \cs_new_protected:Npn \SetProperty #1#2#3#4
44 {
45 \protected@edef\reserved@a{#1}
46 \exp_args:No \property_gset:nnnn {\reserved@a} {#2}{#3}{#4}
47 }

(End of definition for \NewProperty and \SetProperty. These functions are documented on page 5.)

\property_record:nN
\property_record:nn
\property_record:nV
\property_record:ee
\property_record:oo

__property_record:nn
__property_record:en

__property_record_value:n
__property_record_value_aux:n
__property_record_value_aux:e

Writing data when it is labelled means expanding at this stage and possibly later too.
That is all pretty easy using expl3: we accept a stray comma at the end of the list as
that is easier to deal with than trying to tidy up, and there is no real downside.

48 \cs_new_protected:Npn \property_record:nN #1#2
49 { \property_record:nV {#1} #2 }
50 \cs_new_protected:Npn \property_record:nn #1#2
51 { __property_record:en { \tl_to_str:n {#1} } {#2} }
52 \cs_generate_variant:Nn \property_record:nn { nV , ee, oo }

8

53 \cs_new_protected:Npn __property_record:nn #1#2
54 {
55 \protected@write \@auxout {}
56 {
57 \token_to_str:N \new@label@record
58 {#1}
59 { \clist_map_function:nN {#2} __property_record_value:n }
60 }
61 }
62 \cs_generate_variant:Nn __property_record:nn { e }
63 \cs_new:Npn __property_record_value:n #1
64 { __property_record_value_aux:e { \tl_to_str:n {#1} } }
65 \cs_new:Npn __property_record_value_aux:n #1
66 {
67 \cs_if_exist:cTF { __property_code_ #1 : }
68 {
69 {#1}
70 {
71 \bool_if:cTF { g__property_shipout_ #1 _bool }
72 { \exp_not:c }
73 { \use:c }
74 { __property_code_ #1 : }
75 }
76 }
77 { \msg_expandable_error:nnn { property } { not-declared } {#1} }
78 }
79 \cs_generate_variant:Nn __property_record_value_aux:n { e }

(End of definition for \property_record:nN and others. These functions are documented on page 3.)

\RecordProperties

80 \NewDocumentCommand\RecordProperties { m m }
81 {
82 \@bsphack
83 \protected@edef\reserved@a{#1}
84 \protected@edef\reserved@b{#2}
85 \property_record:oo {\reserved@a}{\reserved@b}
86 \@esphack
87 }

(End of definition for \RecordProperties. This function is documented on page 5.)

10.1 Reference commands
l__property_ref_flag A flag that is set if a reference couldn’t be resolved.

88 \flag_new:n { l__property_ref_flag }

(End of definition for l__property_ref_flag.)

\property_ref:nn
\property_ref:ee

Search for the label/property combination, and if not found fall back to the default of
the property.

89 \cs_new:Npn \property_ref:nn #1#2
90 {
91 __property_ref:een

9

92 { \tl_to_str:n {#1} }
93 { \tl_to_str:n {#2} }
94 { \tl_use:c { g__property_default_ #2 _tl } }
95 }
96 \cs_generate_variant:Nn \property_ref:nn {ee}

(End of definition for \property_ref:nn. This function is documented on page 3.)

\property_ref:nnn
\property_ref:een

__property_ref:nnn
__property_ref:een

This allows to set a local default value which overrides the default value of the property.
97 \cs_new:Npn \property_ref:nnn #1#2#3
98 {
99 __property_ref:een

100 { \tl_to_str:n {#1} }
101 { \tl_to_str:n {#2} }
102 {#3}
103 }
104 \cs_new:Npn __property_ref:nnn #1#2#3
105 {
106 \tl_if_exist:cTF { g__property_label_ #1 _ #2 _tl }
107 { \tl_use:c { g__property_label_ #1 _ #2 _tl } }
108 {
109 \flag_if_raised:nF
110 { l__property_ref_flag } { \flag_raise:n { l__property_ref_flag } }

We test for the default of the property only to check if the property has been declared.
111 \tl_if_exist:cTF { g__property_default_ #2 _tl }
112 { #3 }
113 { \msg_expandable_error:nnn { property } { not-declared } {#2} }
114 }
115 }
116 \cs_generate_variant:Nn __property_ref:nnn { ee }
117 \cs_generate_variant:Nn \property_ref:nnn {een}

(End of definition for \property_ref:nnn and __property_ref:nnn. This function is documented on
page 4.)

\property_item:nn
\property_item:ee

Retrieve the value but wrap it into an \exp_not:n to avoid further expansion.
118 \cs_new:Npn \property_item:nn #1#2
119 {
120 \tl_if_exist:cTF { g__property_label_ \tl_to_str:n {#1} _ \tl_to_str:n {#2} _tl }
121 {
122 \exp_not:v { g__property_label_ \tl_to_str:n {#1} _ \tl_to_str:n {#2} _tl }
123 }
124 { \tl_use:c { g__property_default_ \tl_to_str:n {#2} _tl } }
125 }
126 \cs_generate_variant:Nn\property_item:nn{ee}

(End of definition for \property_item:nn. This function is documented on page 4.)

\RefProperty Search for the label/property combination, and if not found fall back to the default of
the property or the given default.
127 \NewExpandableDocumentCommand \RefProperty { o m m }
128 {
129 \IfNoValueTF {#1}
130 {

10

131 \property_ref:ee {#2}{#3}
132 }
133 {
134 \property_ref:een {#2}{#3}{#1}
135 }
136 }

(End of definition for \RefProperty. This function is documented on page 5.)

\new@label@record
__property_data:nnn

A standard recursion loop.
137 \cs_new_protected:Npn \new@label@record #1#2
138 {
139 \tl_if_exist:cTF { r@#1 }
140 {
141 \gdef \@multiplelabels
142 { \@latex@warning@no@line { There~were~multiply-defined~labels } }
143 \@latex@warning@no@line { Label~‘#1’~multiply~defined }
144 }
145 {
146 \tl_new:c { r@#1 }
147 \tl_gset:cn { r@#1 }{#2}
148 }
149 __property_data:nnn {#1} #2 { \q_recursion_tail } { ? } \q_recursion_stop
150 }
151 \cs_new_protected:Npn __property_data:nnn #1#2#3
152 {
153 \quark_if_recursion_tail_stop:n {#2}
154 \tl_gclear_new:c { g__property_label_ \tl_to_str:n {#1} _ \tl_to_str:n {#2} _tl }
155 \tl_gset:cn { g__property_label_ \tl_to_str:n {#1} _ \tl_to_str:n {#2} _tl } {#3}
156 __property_data:nnn {#1}
157 }

This command is used in \enddocument to test if some label values have changed.
158 \cs_new_protected:Npn \@kernel@new@label@record@testdef #1 #2
159 {
160 \tl_if_eq:cnF { r@#1 } {#2}
161 { \@tempswatrue }
162 }

(End of definition for \new@label@record and __property_data:nnn. This function is documented on
page 5.)

10.2 Tests and warnings
\property_if_exist_p:n
\property_if_exist:nTF

Tests if property has been declared.
163 \prg_new_conditional:Npnn \property_if_exist:n #1 { p , T , F, TF }
164 % #1 property
165 {
166 \cs_if_exist:cTF { __property_code_ #1 : }
167 {
168 \prg_return_true:
169 }
170 {
171 \prg_return_false:
172 }

11

173 }
174 \prg_generate_conditional_variant:Nnn \property_if_exist:n {e} { p , T , F, TF }

(End of definition for \property_if_exist:nTF. This function is documented on page 4.)

\IfPropertyExistsTF
\IfPropertyExistsT
\IfPropertyExistsF

175 \cs_new_eq:NN \IfPropertyExistsTF \property_if_exist:eTF
176 \cs_new:Npn \IfPropertyExistsT #1#2 {\property_if_exist:eTF {#1}{#2}{} }
177 \cs_new:Npn \IfPropertyExistsF #1 {\property_if_exist:eTF {#1}{} }

(End of definition for \IfPropertyExistsTF , \IfPropertyExistsT , and \IfPropertyExistsF. These
functions are documented on page 6.)

\property_if_recorded_p:n
\property_if_recorded:nTF

Tests if the label has been set. This can then be used to setup e.g. rerun messages.
178 \prg_new_conditional:Npnn \property_if_recorded:n #1 { p , T , F, TF }
179 % #1 label
180 {
181 \tl_if_exist:cTF { r@#1 }
182 {
183 \prg_return_true:
184 }
185 {
186 \prg_return_false:
187 }
188 }
189 \prg_generate_conditional_variant:Nnn \property_if_recorded:n {e} { p , T , F, TF }

(End of definition for \property_if_recorded:nTF. This function is documented on page 5.)

\IfLabelExistsTF
\IfLabelExistsT
\IfLabelExistsF

190 \cs_new_eq:NN \IfLabelExistsTF \property_if_recorded:eTF
191 \cs_new:Npn \IfLabelExistsT #1#2 {\property_if_recorded:eTF {#1}{#2}{} }
192 \cs_new:Npn \IfLabelExistsF #1 {\property_if_recorded:eTF {#1}{} }

(End of definition for \IfLabelExistsTF , \IfLabelExistsT , and \IfLabelExistsF. These functions are
documented on page 6.)

\property_if_recorded_p:nn
\property_if_recorded:nnTF

tests if the label/property combination has been set This can then be used to setup
e.g. rerun messages.
193 \prg_new_conditional:Npnn \property_if_recorded:nn #1#2 { p , T , F, TF }
194 % #1 label #2 property
195 {
196 \tl_if_exist:cTF { g__property_label_ \tl_to_str:n {#1} _ \tl_to_str:n {#2} _tl }
197 {
198 \prg_return_true:
199 }
200 {
201 \prg_return_false:
202 }
203 }
204 \prg_generate_conditional_variant:Nnn \property_if_recorded:nn {ee} { p , T , F, TF }

(End of definition for \property_if_recorded:nnTF. This function is documented on page 5.)

12

\IfPropertyRecordedTF
\IfPropertyRecordedT
\IfPropertyRecordedF

205 \cs_new_eq:NN \IfPropertyRecordedTF \property_if_recorded:eeTF
206 \cs_new:Npn \IfPropertyRecordedT #1#2#3 { \property_if_recorded:eeTF {#1}{#2}{#3}{} }
207 \cs_new:Npn \IfPropertyRecordedF #1#2#3 { \property_if_recorded:eeTF {#1}{#2}{}{#3} }

(End of definition for \IfPropertyRecordedTF , \IfPropertyRecordedT , and \IfPropertyRecordedF.
These functions are documented on page 6.)

\property_ref_undefined_warn: \G@refundefinedtrue is defined in ltxref and redefines a warning message.
208 \cs_new_protected:Npn \property_ref_undefined_warn:
209 {
210 \flag_if_raised:nT { l__property_ref_flag }
211 {
212 \G@refundefinedtrue
213 }
214 }

(End of definition for \property_ref_undefined_warn:. This function is documented on page 4.)

\property_ref_undefined_warn:n
\property_ref_undefined_warn:e 215 \cs_new_protected:Npn \property_ref_undefined_warn:n #1 %#1 label

216 {
217 \property_if_recorded:nF {#1}
218 {
219 \G@refundefinedtrue
220 \@latex@warning{Reference~‘#1’~on~page~\thepage\space undefined}%
221 }
222 }
223 \cs_generate_variant:Nn \property_ref_undefined_warn:n {e}

(End of definition for \property_ref_undefined_warn:n. This function is documented on page 4.)

\property_ref_undefined_warn:nn
\property_ref_undefined_warn:ee

\RefUndefinedWarn
224 \cs_new_protected:Npn \property_ref_undefined_warn:nn #1#2 %#1 label, #2 property
225 {
226 \property_if_recorded:nTF {#1}
227 {
228 \property_if_recorded:nnF {#1}{#2}
229 {
230 \G@refundefinedtrue
231 \@latex@warning
232 { Property~‘#2’~undefined~for~reference~‘#1’~on~page~\thepage }
233 }
234 }
235 {
236 \G@refundefinedtrue
237 \@latex@warning { Reference~‘#1’~on~page~\thepage\space undefined }%
238 }
239 }
240 \cs_generate_variant:Nn \property_ref_undefined_warn:nn {ee}
241 \cs_set_eq:NN \RefUndefinedWarn \property_ref_undefined_warn:ee

(End of definition for \property_ref_undefined_warn:nn and \RefUndefinedWarn. These functions are
documented on page 4.)

13

10.3 Predeclared properties
abspage

242 \property_new:nnnn { abspage } { shipout }
243 { 0 } { \int_use:N \g_shipout_readonly_int }

(End of definition for abspage. This variable is documented on page 6.)

page

244 \property_new:nnnn { page } { shipout } { 0 } { \thepage }

(End of definition for page. This variable is documented on page 6.)

pagenum

245 \property_new:nnnn { pagenum } { shipout } { 0 } { \the \value { page } }

(End of definition for pagenum. This variable is documented on page 6.)

label

246 \property_new:nnnn { label } { now } { ?? } { \@currentlabel }

(End of definition for label. This variable is documented on page 6.)

title

247 \property_new:nnnn { title } { now }
248 { \exp_not:n { \textbf { ?? } } } { \@currentlabelname }

(End of definition for title. This variable is documented on page 6.)

target

249 \property_new:nnnn { target } { now } { } { \@currentHref }

(End of definition for target. This variable is documented on page 7.)

pagetarget

250 \newcommand\@currentHpage{}
251 \property_new:nnnn { pagetarget } { shipout } { } { \@currentHpage }

(End of definition for pagetarget. This variable is documented on page 7.)

counter

252 \property_new:nnnn { counter } { now } { } { \@currentcounter }

(End of definition for counter. This variable is documented on page 7.)

xpos
ypos 253 \property_new:nnnn { xpos } { shipout } { 0} { \int_use:N \tex_lastxpos:D }

254 \property_new:nnnn { ypos } { shipout } { 0} { \int_use:N \tex_lastypos:D }

(End of definition for xpos and ypos. These variables are documented on page 7.)

14

10.4 Messages
255 \msg_new:nnnn { property } { exists }
256 { Property~’#1’~ has~ already~ been~ declared. }
257 { There~ already~ exists~ a~ property~ declaration~ with~ this~
258 name.\\
259 Please~ use~ a~ different~ name~ for~ your~ property.}
260

261 \msg_new:nnnn { property } { not-declared }
262 { Property~’#1’~not~declared. }
263 {
264 LaTeX~has~been~asked~to~use~property~’#1’,~but~this~
265 name~has~not~been~declared.
266 }
267 \msg_new:nnnn { property } { unknown-setpoint }
268 { Unknown~keyword~’#2’~for~setting~property~’#1’. }
269 {
270 LaTeX~has~been~asked~to~set~the~property~’#1’,~but~the~keyword~
271 ’#2’~is~not~one~of~the~two~known~values:~’now’~or~’shipout’.
272 }

273 %
274 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}{ltproperties}
275 ⟨latexrelease⟩ {cross-referencing~properties~(undo)}%
276 ⟨latexrelease⟩
277 ⟨latexrelease⟩\let \NewProperty \@undefined
278 ⟨latexrelease⟩\let \SetProperty \@undefined
279 ⟨latexrelease⟩
280 ⟨latexrelease⟩\let \RecordProperties \@undefined
281 ⟨latexrelease⟩\let \RefProperty \@undefined
282 ⟨latexrelease⟩\let \RefUndefinedWarn \@undefined
283 ⟨latexrelease⟩
284 ⟨latexrelease⟩\let \IfPropertyExistsTF \@undefined
285 ⟨latexrelease⟩\let \IfLabelExistsTF \@undefined
286 ⟨latexrelease⟩\let \IfPropertyRecordedTF \@undefined
287 ⟨latexrelease⟩
288 ⟨latexrelease⟩\let\new@label@record \@undefined
289 ⟨latexrelease⟩\let\@kernel@new@label@record@testdef\@undefined
290 ⟨latexrelease⟩\EndModuleRelease

291 \ExplSyntaxOff

292 ⟨/2ekernel | latexrelease⟩

Reset module prefix:
293 ⟨@@=⟩

15

	Contents
	1 Introduction
	2 Design discussion
	3 Handling unknown labels and properties
	4 Rerun messages
	5 Open points
	6 Code interfaces
	7 Auxiliary file interfaces
	8 LaTeX2ε interface
	9 Pre-declared properties
	10 The Implementation
	10.1 Reference commands
	10.2 Tests and warnings
	10.3 Predeclared properties
	10.4 Messages

