
LATEX’s hook management for files∗

Frank Mittelbach, Phelype Oleinik, LATEX Project Team

January 25, 2026

Contents
1 Introduction 2

1.1 Provided hooks . 2
1.2 General hooks for file reading . 2
1.3 Hooks for package and class files . 3
1.4 Hooks for \include files . 4
1.5 High-level interfaces for LATEX . 5
1.6 Kernel, class, and package interfaces for LATEX 6
1.7 A sample package for structuring the log output 6

2 The Implementation 7
2.1 Document and package-level commands 7
2.2 expl3 helpers . 8
2.3 Declaring the file-related hooks . 11
2.4 Patching LATEX’s \InputIfFileExists command 11
2.5 Declaring a file substitution . 13
2.6 Selecting a file (\set@curr@file) . 15
2.7 Replacing a file and detecting loops . 18

2.7.1 The Tortoise and Hare algorithm 19
2.8 Preventing a package from loading . 21
2.9 High-level interfaces for LATEX . 22
2.10 Internal commands needed elsewhere . 22

3 A sample package for structuring the log output 23

4 Package emulations 24
4.1 Package atveryend emulation . 24

Index 25
∗This code has version v1.0o dated 2026-01-23, © LATEX Project.

1

1 Introduction
1.1 Provided hooks
The code offers a number of hooks into which packages (or the user) can add code to
support different use cases. Many hooks are offered as pairs (i.e., the second hook is
reversed. Also important to know is that these pairs are properly nested with respect to
other pairs of hooks.

There are hooks that are executed for all files of a certain type (if they contain code),
e.g., for all “include files” or all “packages”, and there are also hooks that are specific to
a single file, e.g., do something after the package foo.sty has been loaded.

1.2 General hooks for file reading
There are four hooks that are called for each file that is read using document-level com-
mands such as \input, \include, \usepackage, etc. They are not called for files read
using internal low-level methods, such as \@input or \openin.

These are:

file/before, file/⟨file-name⟩/before These hooks are executed in that order just
before the file is loaded for reading. The code of the first hook is used with every file,
while the second is executed only for the file with matching ⟨file-name⟩ allowing
you to specify code that only applies to one file.

file/⟨file-name⟩/after, file/after These hooks are executed after the file with
name ⟨file-name⟩ has been fully consumed. The order is swapped (the specific
one comes first) so that the /before and /after hooks nest properly, which is im-
portant if any of them involve grouping (e.g., contain environments, for example).
Furthermore both hooks are reversed hooks to support correct nesting of different
packages adding code to both /before and /after hooks.

file/before
file/.../before
file/.../after
file/after

So the overall sequence of hook processing for any file read through the user interface
commands of LATEX is:

\UseHook{file/before}
\UseHook{file/⟨file name⟩/before}

⟨file contents⟩
\UseHook{file/⟨file name⟩/after}
\UseHook{file/after}

The file hooks only refer to the file by its name and extension, so the ⟨file name⟩
should be the file name as it is on the filesystem with extension (if any) and without paths.
Different from \input and similar commands, the .tex extension is not assumed in hook
⟨file name⟩, so .tex files must be specified with their extension to be recognized. Files
within subfolders should also be addressed by their name and extension only.

Extensionless files also work, and should then be given without extension. Note
however that TEX prioritizes .tex files, so if two files foo and foo.tex exist in the
search path, only the latter will be seen.

When a file is input, the ⟨file name⟩ is available in \CurrentFile, which is then
used when accessing the file/⟨file name⟩/before and file/⟨file name⟩/after.

2

The name of the file about to be read (or just finished) is available to the hooks through
\CurrentFile (there is no expl3 name for it for now). The file is always provided with
its extension, i.e., how it appears on your hard drive, but without any specified path
to it. For example, \input{sample} and \input{app/sample.tex} would both have
\CurrentFile being sample.tex.

\CurrentFile

The path to the current file (complement to \CurrentFile) is available in \CurrentFilePath
if needed. The paths returned in \CurrentFilePath are only user paths, given through
\input@path (or expl3’s equivalent \l_file_search_path_seq) or by directly typing in
the path in the \input command or equivalent. Files located by kpsewhich get the path
added internally by the TEX implementation, so at the macro level it looks as if the file
were in the current folder, so the path in \CurrentFilePath is empty in these cases
(package and class files, mostly).

\CurrentFilePath

In normal circumstances these are identical to \CurrentFile and \CurrentFilePath.
They will differ when a file substitution has occurred for \CurrentFile. In that case,
\CurrentFileUsed and \CurrentFilePathUsed will hold the actual file name and path
loaded by LATEX, while \CurrentFile and \CurrentFilePath will hold the names that
were asked for. Unless doing very specific work on the file being read, \CurrentFile and
\CurrentFilePath should be enough.

\CurrentFileUsed
\CurrentFilePathUsed

1.3 Hooks for package and class files
Commands to load package and class files (e.g., \usepackage, \RequirePackage,
\LoadPackageWithOptions, etc.) offer the hooks from section 1.2 when they are used to
load a package or class file, e.g., file/array.sty/after would be called after the array
package got loaded. But as packages and classes form as special group of files, there are
some additional hooks available that only apply when a package or class is loaded.

These are:

package/before, package/after These hooks are called for each package being loaded.

package/⟨name⟩/before, package/⟨name⟩/after These hooks are additionally called if
the package name is ⟨name⟩ (without extension).

class/before, class/after These hooks are called for each class being loaded.

class/⟨name⟩/before, class/⟨name⟩/after These hooks are additionally called if the
class name is ⟨name⟩ (without extension).

All /after hooks are implemented as reversed hooks.

package/before
package/after
package/.../before
package/.../after
class/before
class/after
class/.../before
class/.../after

The overall sequence of execution for \usepackage and friends is:

\UseHook{package/before}
\UseOneTimeHook{package/⟨package name⟩/before}

3

\UseHook{file/before}
\UseHook{file/⟨package name⟩.sty/before}

⟨package contents⟩
\UseHook{file/⟨package name⟩.sty/after}
\UseHook{file/after}

code from \AtEndOfPackage if used inside the package
\UseOneTimeHook{package/⟨package name⟩/after}
\UseHook{package/after}

and similar for class file loading, except that package/ is replaced by class/ and
\AtEndOfPackage by \AtEndOfClass.

If a package or class is not loaded none of the hooks are executed!
All class or package hooks involving the name of the class or package are implemented

as one-time hooks, whereas all other such hooks are normal hooks. This allows for the
following use case

\AddToHook{package/varioref/after}
{ ... apply my customizations if the package gets

loaded (or was loaded already) ... }

without the need to first test if the package is already loaded.

1.4 Hooks for \include files
To manage \include files, LATEX issues a \clearpage before and after loading such a
file. Depending on the use case one may want to execute code before or after these
\clearpages especially for the one that is issued at the end.

Executing code before the final \clearpage, means that the code is processed while
the last page of the included material is still under construction. Executing code after
it means that all floats from inside the include file are placed (which might have added
further pages) and the final page has finished.

Because of these different scenarios we offer hooks in three places.1 None of the hooks
are executed when an \include file is bypassed because of an \includeonly declaration.
They are, however, all executed if LATEX makes an attempt to load the \include file
(even if it doesn’t exist and all that happens is “No file ⟨filename⟩.tex”).

1If you want to execute code before the first \clearpage there is no need to use a hook—you can
write it directly in front of the \include.

4

These are:

include/before, include/⟨name⟩/before These hooks are executed (in that order) af-
ter the initial \clearpage and after .aux file is changed to use ⟨name⟩.aux, but
before the ⟨name⟩.tex file is loaded. In other words they are executed at the very
beginning of the first page of the \include file.

include/⟨name⟩/end, include/end These hooks are executed (in that order) after
LATEX has stopped reading from the \include file, but before it has issued a
\clearpage to output any deferred floats.

include/⟨name⟩/after, include/after These hooks are executed (in that order) after
LATEX has issued the \clearpage but before is has switched back writing to the
main .aux file. Thus technically we are still inside the \include and if the hooks
generate any further typeset material including anything that writes to the .aux
file, then it would be considered part of the included material and bypassed if it is
not loaded because of some \includeonly statement.2

include/excluded, include/⟨name⟩/excluded The above hooks for \include files are
only executed when the file is loaded (or more exactly the load is attempted).
If, however, the \include file is explicitly excluded (through an \includeonly
statement) the above hooks are bypassed and instead the include/excluded hook
followed by the include/⟨name⟩/excluded hook are executed. This happens after
LATEX has loaded the .aux file for this include file, i.e., after LATEX has updated its
counters to pretend that the file was seen.

include/before
include/.../before
include/end
include/.../end
include/after
include/.../after

All include hooks involving the name of the included file are implemented as one-
time hooks (whereas all other such hooks are normal hooks).

If you want to execute code that is run for every \include regardless of whether or
not it is excluded, use the cmd/include/before or cmd/include/after hooks.

1.5 High-level interfaces for LATEX
We do not provide any additional wrappers around the hooks (like filehook or scrlfile
do) because we believe that for package writers the high-level commands from the hook
management, e.g., \AddToHook, etc. are sufficient and in fact easier to work with, given
that the hooks have consistent naming conventions.

2For that reason another \clearpage is executed after these hooks which normally does nothing, but
starts a new page if further material got added this way.

5

1.6 Kernel, class, and package interfaces for LATEX

\declare@file@substitution {⟨file⟩} {⟨replacement-file⟩}
\undeclare@file@substitution {⟨file⟩}

\declare@file@substitution
\undeclare@file@substitution

If ⟨file⟩ is requested for loading replace it with ⟨replacement-file⟩. \CurrentFile
remains pointing to ⟨file⟩ but \CurrentFileUsed will show the file actually loaded.

The main use case for this declaration is to provide a corrected version of a package
that can’t be changed (due to its license) but no longer functions because of LATEX kernel
changes, for example, or to provide a version that makes use of new kernel functionality
while the original package remains available for use with older releases. As such it is
mainly meant for use in the LATEX kernel but other use cases are conceivable.

The \undeclare@file@substitution declaration undoes a substitution made ear-
lier.

Please do not misuse this functionality and replace a file with another un-
less if really needed and only if the new version is implementing the same
functionality as the original one!

\disable@package@load {⟨package⟩} {⟨alternate-code⟩}
\reenable@package@load {⟨package⟩}

If ⟨package⟩ is requested, do not load it but instead run ⟨alternate-code⟩ which could
issue a warning, error or any other code.

The main use case is for classes that want to restrict the set of supported packages
or contain code that make the use of some packages impossible. So rather than waiting
until the document breaks they can set up informative messages why certain packages
are not available.

The function is only implemented for packages not for arbitrary files and again it
should only be applied if there are good reasons for doing this.3

\disable@package@load
\reenable@package@load

1.7 A sample package for structuring the log output
As an application we provide the package structuredlog that adds lines to the .log when
a file is opened and closed for reading keeping track of nesting level es well. For example,
for the current document it adds the lines

= (LEVEL 1 START) t1lmr.fd
= (LEVEL 1 STOP) t1lmr.fd
= (LEVEL 1 START) supp-pdf.mkii
= (LEVEL 1 STOP) supp-pdf.mkii
= (LEVEL 1 START) nameref.sty
== (LEVEL 2 START) refcount.sty
== (LEVEL 2 STOP) refcount.sty
== (LEVEL 2 START) gettitlestring.sty
== (LEVEL 2 STOP) gettitlestring.sty
= (LEVEL 1 STOP) nameref.sty
= (LEVEL 1 START) ltfilehook-doc.out

3Just to be sure: “I don’t like this package by somebody else” is not a good one :-)

6

= (LEVEL 1 STOP) ltfilehook-doc.out
= (LEVEL 1 START) ltfilehook-doc.out
= (LEVEL 1 STOP) ltfilehook-doc.out
= (LEVEL 1 START) ltfilehook-doc.hd
= (LEVEL 1 STOP) ltfilehook-doc.hd
= (LEVEL 1 START) ltfilehook.dtx
== (LEVEL 2 START) ot1lmr.fd
== (LEVEL 2 STOP) ot1lmr.fd
== (LEVEL 2 START) omllmm.fd
== (LEVEL 2 STOP) omllmm.fd
== (LEVEL 2 START) omslmsy.fd
== (LEVEL 2 STOP) omslmsy.fd
== (LEVEL 2 START) omxlmex.fd
== (LEVEL 2 STOP) omxlmex.fd
== (LEVEL 2 START) umsa.fd
== (LEVEL 2 STOP) umsa.fd
== (LEVEL 2 START) umsb.fd
== (LEVEL 2 STOP) umsb.fd
== (LEVEL 2 START) ts1lmr.fd
== (LEVEL 2 STOP) ts1lmr.fd
== (LEVEL 2 START) t1lmss.fd
== (LEVEL 2 STOP) t1lmss.fd
= (LEVEL 1 STOP) ltfilehook.dtx

Thus if you inspect an issue in the .log it is easy to figure out in which file it occurred,
simply by searching back for LEVEL and if it is a STOP then remove 1 from the level value
and search further for LEVEL with that value which should then be the START level of the
file you are in.

2 The Implementation
1 ⟨∗2ekernel⟩

2 ⟨@@=filehook⟩

2.1 Document and package-level commands
\CurrentFile

\CurrentFilePath
\CurrentFileUsed

\CurrentFilePathUsed

User-level macros that hold the current file name and file path. These are used internally
as well because the code takes care to protect against a possible redefinition of these
macros in the loaded file (it’s necessary anyway to make hooks work with nested \input).
The versions \...Used hold the actual file name and path that is loaded by LATEX,
whereas the other two hold the name as requested. They will differ in case there’s a file
substitution.

3 ⟨/2ekernel⟩
4 ⟨∗2ekernel | latexrelease⟩
5 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
6 ⟨latexrelease⟩ {\CurrentFile}{Hook management file}%
7 \ExplSyntaxOn
8 \tl_new:N \CurrentFile
9 \tl_new:N \CurrentFilePath

10 \tl_new:N \CurrentFileUsed
11 \tl_new:N \CurrentFilePathUsed

7

12 \ExplSyntaxOff
13 ⟨/2ekernel | latexrelease⟩
14 ⟨latexrelease⟩\EndIncludeInRelease

15 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}%
16 ⟨latexrelease⟩ {\CurrentFile}{Hook management file}%
17 ⟨latexrelease⟩
18 ⟨latexrelease⟩\let \CurrentFile \@undefined
19 ⟨latexrelease⟩\let \CurrentFilePath \@undefined
20 ⟨latexrelease⟩\let \CurrentFileUsed \@undefined
21 ⟨latexrelease⟩\let \CurrentFilePathUsed \@undefined
22 ⟨latexrelease⟩
23 ⟨latexrelease⟩\EndIncludeInRelease
24 ⟨∗2ekernel⟩

(End of definition for \CurrentFile and others. These functions are documented on page 3.)

2.2 expl3 helpers
25 ⟨/2ekernel⟩
26 ⟨∗2ekernel | latexrelease⟩
27 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
28 ⟨latexrelease⟩ {__filehook_file_parse_full_name:nN}{File helpers}%
29 \ExplSyntaxOn

__filehook_file_parse_full_name:nN
__filehook_full_name:nn

A utility macro to trigger expl3’s file-parsing and lookup, and return a normalized repre-
sentation of the file name. If the queried file doesn’t exist, no normalization takes place.
The output of __filehook_file_parse_full_name:nN is passed on to the #2—a 3-
argument macro that takes the ⟨path⟩, ⟨base⟩, and ⟨ext⟩ parts of the file name.

30 \cs_new:Npn __filehook_file_parse_full_name:nN #1
31 {
32 \exp_args:Nf \file_parse_full_name_apply:nN
33 {
34 \exp_args:Nf __filehook_full_name:nn
35 { \file_full_name:n {#1} } {#1}
36 }
37 }
38 \cs_new:Npn __filehook_full_name:nn #1 #2
39 {
40 \tl_if_empty:nTF {#1}
41 { \tl_trim_spaces:n {#2} }
42 { \tl_trim_spaces:n {#1} }
43 }

(End of definition for __filehook_file_parse_full_name:nN and __filehook_full_name:nn.)

__filehook_if_no_extension:nTF
__filehook_drop_extension:N

Some actions depend on whether the file extension was explicitly given, and sometimes
the extension has to be removed. The macros below use __filehook_file_parse_-
full_name:nN to split up the file name and either check if ⟨ext⟩ (#3) is empty, or
discard it.

44 \cs_new:Npn __filehook_if_no_extension:nTF #1
45 {
46 \exp_args:Ne \tl_if_empty:nTF
47 { \file_parse_full_name_apply:nN {#1} \use_iii:nnn }
48 }

8

49 \cs_new_protected:Npn __filehook_drop_extension:N #1
50 {
51 \tl_gset:Nx #1
52 {
53 \exp_args:NV __filehook_file_parse_full_name:nN #1
54 __filehook_drop_extension_aux:nnn
55 }
56 }
57 \cs_new:Npn __filehook_drop_extension_aux:nnn #1 #2 #3
58 { \tl_if_empty:nF {#1} { #1 / } #2 }

(End of definition for __filehook_if_no_extension:nTF and __filehook_drop_extension:N.)

\g__filehook_input_file_seq
\l__filehook_internal_tl
__filehook_file_push:
__filehook_file_pop:
__filehook_file_pop_assign:nnnn

Yet another stack, to keep track of \CurrentFile and \CurrentFilePath with nested
\inputs. At the beginning of \InputIfFileExists, the current value of \CurrentFilePath
and \CurrentFile is pushed to \g__filehook_input_file_seq, and at the end, it is
popped and the value reassigned. Some other places don’t use \InputIfFileExists di-
rectly (\include) or need \CurrentFile earlier (\@onefilewithoptions), so these are
manually used elsewhere as well.

59 \tl_new:N \l__filehook_internal_tl
60 \seq_if_exist:NF \g__filehook_input_file_seq
61 { \seq_new:N \g__filehook_input_file_seq }
62 \cs_new_protected:Npn __filehook_file_push:
63 {
64 \seq_gpush:Nx \g__filehook_input_file_seq
65 {
66 { \CurrentFilePathUsed } { \CurrentFileUsed }
67 { \CurrentFilePath } { \CurrentFile }
68 }
69 }
70 \cs_new_protected:Npn __filehook_file_pop:
71 {
72 \seq_gpop:NNTF \g__filehook_input_file_seq \l__filehook_internal_tl
73 { \exp_after:wN __filehook_file_pop_assign:nnnn \l__filehook_internal_tl }
74 {
75 \msg_error:nnn { latex2e } { should-not-happen }
76 { Tried~to~pop~from~an~empty~file~name~stack. }
77 }
78 }
79 \cs_new_protected:Npn __filehook_file_pop_assign:nnnn #1 #2 #3 #4
80 {
81 \tl_set:Nn \CurrentFilePathUsed {#1}
82 \tl_set:Nn \CurrentFileUsed {#2}
83 \tl_set:Nn \CurrentFilePath {#3}
84 \tl_set:Nn \CurrentFile {#4}
85 }
86 \ExplSyntaxOff

(End of definition for \g__filehook_input_file_seq and others.)

87 ⟨/2ekernel | latexrelease⟩
88 ⟨latexrelease⟩\EndIncludeInRelease

When rolling forward the following expl3 functions may not be defined. If we roll
back the code does nothing.

9

89 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
90 ⟨latexrelease⟩ {\file_parse_full_name_apply:nN}{Roll forward help}%
91 ⟨latexrelease⟩
92 ⟨latexrelease⟩\ExplSyntaxOn
93 ⟨latexrelease⟩\cs_if_exist:NF\file_parse_full_name_apply:nN
94 ⟨latexrelease⟩{
95 ⟨latexrelease⟩\cs_new:Npn \file_parse_full_name_apply:nN #1
96 ⟨latexrelease⟩ {
97 ⟨latexrelease⟩ \exp_args:Ne __file_parse_full_name_auxi:nN
98 ⟨latexrelease⟩ { __kernel_file_name_sanitize:n {#1} }
99 ⟨latexrelease⟩ }

100 ⟨latexrelease⟩\cs_new:Npn __file_parse_full_name_auxi:nN #1
101 ⟨latexrelease⟩ {
102 ⟨latexrelease⟩ __file_parse_full_name_area:nw { } #1
103 ⟨latexrelease⟩ / \s__file_stop
104 ⟨latexrelease⟩ }
105 ⟨latexrelease⟩\cs_new:Npn __file_parse_full_name_area:nw #1 #2 / #3 \s__file_stop
106 ⟨latexrelease⟩ {
107 ⟨latexrelease⟩ \tl_if_empty:nTF {#3}
108 ⟨latexrelease⟩ { __file_parse_full_name_base:nw { } #2 . \s__file_stop {#1} }
109 ⟨latexrelease⟩ { __file_parse_full_name_area:nw { #1 / #2 }
110 ⟨latexrelease⟩ #3 \s__file_stop }
111 ⟨latexrelease⟩ }
112 ⟨latexrelease⟩\cs_new:Npn __file_parse_full_name_base:nw #1 #2 . #3 \s__file_stop
113 ⟨latexrelease⟩ {
114 ⟨latexrelease⟩ \tl_if_empty:nTF {#3}
115 ⟨latexrelease⟩ {
116 ⟨latexrelease⟩ \tl_if_empty:nTF {#1}
117 ⟨latexrelease⟩ {
118 ⟨latexrelease⟩ \tl_if_empty:nTF {#2}
119 ⟨latexrelease⟩ { __file_parse_full_name_tidy:nnnN { } { } }
120 ⟨latexrelease⟩ { __file_parse_full_name_tidy:nnnN { .#2 } { } }
121 ⟨latexrelease⟩ }
122 ⟨latexrelease⟩ { __file_parse_full_name_tidy:nnnN {#1} { .#2 } }
123 ⟨latexrelease⟩ }
124 ⟨latexrelease⟩ { __file_parse_full_name_base:nw { #1 . #2 }
125 ⟨latexrelease⟩ #3 \s__file_stop }
126 ⟨latexrelease⟩ }
127 ⟨latexrelease⟩\cs_new:Npn __file_parse_full_name_tidy:nnnN #1 #2 #3 #4
128 ⟨latexrelease⟩ {
129 ⟨latexrelease⟩ \exp_args:Nee #4
130 ⟨latexrelease⟩ {
131 ⟨latexrelease⟩ \str_if_eq:nnF {#3} { / } { \use_none:n }
132 ⟨latexrelease⟩ #3 \prg_do_nothing:
133 ⟨latexrelease⟩ }
134 ⟨latexrelease⟩ { \use_none:n #1 \prg_do_nothing: }
135 ⟨latexrelease⟩ {#2}
136 ⟨latexrelease⟩ }
137 ⟨latexrelease⟩}
138 ⟨latexrelease⟩\ExplSyntaxOff
139 ⟨latexrelease⟩
140 ⟨latexrelease⟩\EndIncludeInRelease
141 ⟨∗2ekernel⟩

142 ⟨@@=⟩

10

2.3 Declaring the file-related hooks
These hooks have names with three-parts that start with file/, include/, class/ or
package/ and end with /before or /after (or /end in the case of include/). They are
all generic hooks so will be declared only if code is added to them; this declaration is
done for you automatically and, indeed, they should not be declared explicitly.

Those named .../after and include/.../end are, when code is added, declared
as reversed hooks.

2.4 Patching LATEX’s \InputIfFileExists command
Most of what we have to do is adding \UseHook into several LATEX 2ε core commands,
because of some circular dependencies in the kernel we do this only now and not in
ltfiles.

\InputIfFileExists
\@input@file@exists@with@hooks

\unqu@tefilef@und

\InputIfFileExists loads any file if it is available so we have to add the hooks
file/before and file/after in the right places. If the file doesn’t exist no hooks
should be executed.
143 ⟨/2ekernel⟩
144 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
145 ⟨latexrelease⟩ {\InputIfFileExists}{Hook management (files)}%
146 ⟨∗2ekernel | latexrelease⟩

147 \let\InputIfFileExists\@undefined
148 \DeclareRobustCommand \InputIfFileExists[2]{%
149 \IfFileExists{#1}%
150 {%
151 \@expl@@@filehook@file@push@@
152 \@filehook@set@CurrentFile

We pre-expand \@filef@und so that in case another file is loaded in the true branch of
\InputIfFileExists, these don’t change their value meanwhile. This isn’t a worry with
\CurrentFile... because they are kept in a stack.
153 \expandafter\@swaptwoargs\expandafter
154 {\expandafter\@input@file@exists@with@hooks
155 \expandafter{\@filef@und}}%
156 {#2}%
157 \@expl@@@filehook@file@pop@@
158 }%
159 }
160 \def\@input@file@exists@with@hooks#1{%

If the file exists then \CurrentFile holds its name. But we can’t rely on that still being
true after the file has been processed. Thus for using the name in the file hooks we need
to preserve the name and then restore it for the file/.../after hook.

The hook always refers to the file requested by the user. The hook is always loaded
for \CurrentFile which usually is the same as \CurrentFileUsed. In the case of a file
replacement, the \CurrentFileUsed holds the actual file loaded. In any case the file
names are normalized so that the hooks work on the real file name, rather than what the
user typed in.

expl3’s \file_full_name:n normalizes the file name (to factor out differences in the
.tex extension), and then does a file lookup to take into account a possible path from
\l_file_search_path_seq and \input@path. However only the file name and extension

11

are returned so that file hooks can refer to the file by their name only. The path to the
file is returned in \CurrentFilePath.
161 \edef\reserved@a{%
162 \@expl@@@filehook@file@pop@assign@@nnnn
163 {\CurrentFilePathUsed}%
164 {\CurrentFileUsed}%
165 {\CurrentFilePath}%
166 {\CurrentFile}}%
167 \expandafter\@swaptwoargs\expandafter{\reserved@a}%

Before adding to the file list we need to make all (letter) characters catcode 11,
because several packages use constructions like

\filename@parse{<filename>}
\ifx\filename@ext\@clsextension

...
\fi

and that doesn’t work if \filename@ext is \detokenized. Making \@clsextension a
string doesn’t help much because some packages define their own \<prefix>@someextension
with normal catcodes. This is not entirely correct because packages loaded (somehow)
with catcode 12 alphabetic tokens (say, as the result of a \string or \detokenize com-
mand, or from a TEX string like \jobname) will have these character tokens incorrectly
turned into letter tokens. This however is rare, so we’ll go for the all-letters approach
(grepping the packages in TEX Live didn’t bring up any obvious candidate for breaking
with this catcode change).
168 {\edef\reserved@a{\unqu@tefilef@und#1\@nil}%
169 \@addtofilelist{\string@makeletter\reserved@a}%
170 \UseHook{file/before}%

The current file name is available in \CurrentFile so we use that in the specific hook.
171 \UseHook{file/\CurrentFile/before}%
172 \@@input #1% <- trailing space comes from \@filef@und
173 }%

And here, \CurrentFile is restored (by \@expl@@@filehook@file@pop@assign@@nnnn)
so we can use it once more.
174 \UseHook{file/\CurrentFile/after}%
175 \UseHook{file/after}}
176 \def\unqu@tefilef@und"#1" \@nil{#1}

Now declare the non-generic file hooks used above:
177 \NewHook{file/before}
178 \NewReversedHook{file/after}
179 ⟨latexrelease⟩\EndIncludeInRelease
180 ⟨/2ekernel | latexrelease⟩

Now define \InputIfFileExists to input #1 if it seems to exist. Immediately prior
to the input, #2 is executed. If the file #1 does not exist, execute ‘#3’.
181 ⟨latexrelease⟩\IncludeInRelease{2019/10/01}%
182 ⟨latexrelease⟩ {\InputIfFileExists}{Hook management (files)}%
183 ⟨latexrelease⟩
184 ⟨latexrelease⟩\DeclareRobustCommand \InputIfFileExists[2]{%
185 ⟨latexrelease⟩ \IfFileExists{#1}%
186 ⟨latexrelease⟩ {%

12

187 ⟨latexrelease⟩ \expandafter\@swaptwoargs\expandafter
188 ⟨latexrelease⟩ {\@filef@und}{#2\@addtofilelist{#1}\@@input}}}
189 ⟨latexrelease⟩\let\@input@file@exists@with@hooks\@undefined
190 ⟨latexrelease⟩\let\unqu@tefilef@und\@undefined
191 ⟨latexrelease⟩\EndIncludeInRelease

192 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}%
193 ⟨latexrelease⟩ {\InputIfFileExists}{Hook management (files)}%
194 ⟨latexrelease⟩\long\def \InputIfFileExists#1#2{%
195 ⟨latexrelease⟩ \IfFileExists{#1}%
196 ⟨latexrelease⟩ {#2\@addtofilelist{#1}\@@input \@filef@und}}

Also undo the internal command as some packages unfortunately test for their exis-
tence instead of using \IfFormatAtLeastTF.
197 ⟨latexrelease⟩\expandafter\let\csname InputIfFileExists \endcsname\@undefined

198 ⟨latexrelease⟩\let\@input@file@exists@with@hooks\@undefined
199 ⟨latexrelease⟩\let\unqu@tefilef@und\@undefined
200 ⟨latexrelease⟩\EndIncludeInRelease
201 ⟨∗2ekernel⟩

(End of definition for \InputIfFileExists , \@input@file@exists@with@hooks , and \unqu@tefilef@und.)

2.5 Declaring a file substitution
202 ⟨@@=filehook⟩

203 ⟨/2ekernel⟩
204 ⟨∗2ekernel | latexrelease⟩
205 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
206 ⟨latexrelease⟩ {__filehook_subst_add:nn}{Declaring file substitution}%
207 \ExplSyntaxOn

__filehook_subst_add:nn
__filehook_subst_remove:n

__filehook_subst_file_normalize:Nn
__filehook_subst_empty_name_chk:NN

__filehook_subst_add:nn declares a file substitution by doing a (global) definition
of the form \def\@file-subst@⟨file⟩{⟨replacement⟩}. The file names are properly
sanitised, and normalized with the same treatment done for the file hooks. That is, a
file replacement is declared by using the file name (and extension, if any) only, and the
file path should not be given. If a file name is empty it is replaced by .tex (the empty
csname is used to check that).
208 \cs_new_protected:Npn __filehook_subst_add:nn #1 #2
209 {
210 \group_begin:
211 \cs_set:cpx { } { \exp_not:o { \cs:w\cs_end: } }
212 \int_set:Nn \tex_escapechar:D { -1 }
213 \cs_gset:cpx
214 {
215 @file-subst@
216 __filehook_subst_file_normalize:Nn \use_ii_iii:nnn {#1}
217 }
218 { __filehook_subst_file_normalize:Nn __filehook_file_name_compose:nnn
219 {#2} }
220 \group_end:
221 }
222 \cs_new_protected:Npn __filehook_subst_remove:n #1
223 {
224 \group_begin:

13

225 \cs_set:cpx { } { \exp_not:o { \cs:w\cs_end: } }
226 \int_set:Nn \tex_escapechar:D { -1 }
227 \cs_undefine:c
228 {
229 @file-subst@
230 __filehook_subst_file_normalize:Nn \use_ii_iii:nnn {#1}
231 }
232 \group_end:
233 }
234 \cs_new:Npn __filehook_subst_file_normalize:Nn #1 #2
235 {
236 \exp_after:wN __filehook_subst_empty_name_chk:NN
237 \cs:w \exp_after:wN \cs_end:
238 \cs:w __filehook_file_parse_full_name:nN {#2} #1 \cs_end:
239 }
240 \cs_new:Npn __filehook_subst_empty_name_chk:NN #1 #2
241 { \if_meaning:w #1 #2 .tex \else: \token_to_str:N #2 \fi: }

(End of definition for __filehook_subst_add:nn and others.)

\use_ii_iii:nnn A variant of \use_... to discard the first of three arguments.

Todo: this should move to expl3

242 \cs_gset:Npn \use_ii_iii:nnn #1 #2 #3 {#2 #3}

(End of definition for \use_ii_iii:nnn.)

243 \ExplSyntaxOff
244 ⟨/2ekernel | latexrelease⟩
245 ⟨latexrelease⟩\EndIncludeInRelease
246 ⟨∗2ekernel⟩

\declare@file@substitution
\undeclare@file@substitution

For two internals we provide LATEX 2ε names so that we can use them elsewhere in the
kernel (and so that they can be used in packages if really needed, e.g., scrlfile).
247 ⟨/2ekernel⟩
248 ⟨∗2ekernel | latexrelease⟩
249 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
250 ⟨latexrelease⟩ {\declare@file@substitution}{File substitution}%
251 \ExplSyntaxOn
252 \cs_new_eq:NN \declare@file@substitution __filehook_subst_add:nn
253 \cs_new_eq:NN \undeclare@file@substitution __filehook_subst_remove:n
254 \ExplSyntaxOff
255 ⟨/2ekernel | latexrelease⟩
256 ⟨latexrelease⟩\EndIncludeInRelease

We are not fully rolling back the file substitutions in case a rollback encounters a
package that contains them, but is itself not setup for rollback. So we just bypass them
and hope for the best.
257 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}%
258 ⟨latexrelease⟩ {\declare@file@substitution}{File substitution}%
259 ⟨latexrelease⟩
260 ⟨latexrelease⟩\let \declare@file@substitution \@gobbletwo
261 ⟨latexrelease⟩\let \undeclare@file@substitution \@gobble
262 ⟨latexrelease⟩
263 ⟨latexrelease⟩\EndIncludeInRelease
264 ⟨∗2ekernel⟩

14

(End of definition for \declare@file@substitution and \undeclare@file@substitution. These func-
tions are documented on page 6.)

265 ⟨@@=⟩

2.6 Selecting a file (\set@curr@file)
\set@curr@file

\set@curr@file@nosearch
\@curr@file

\@curr@file@reqd

Now we hook into \set@curr@file to resolve a possible file substitution, and add
\@expl@@@filehook@set@curr@file@@nNN at the end, after \@curr@file is set.

A file name is built using \expandafter\string\csname⟨filename⟩\endcsname to
avoid expanding utf8 active characters. The \csname expands the normalization machin-
ery and the routine to resolve a file substitution, returning a control sequence with the
same name as the file.

It happens that when ⟨filename⟩ is empty, the generated control sequence is
\csname\endcsname, and doing \string on that results in the file csnameendcsname.tex.
To guard against that we \ifx-compare the generated control sequence with the empty
csname. To do so, \csname\endcsname has to be defined, otherwise it would be equal to
\relax and we would have false positives. Here we define \csname\endcsname to expand
to itself to avoid it matching the definition of some other control sequence.
266 ⟨/2ekernel⟩
267 ⟨∗2ekernel | latexrelease⟩
268 ⟨latexrelease⟩\IncludeInRelease{2022/06/01}%
269 ⟨latexrelease⟩ {\set@curr@file}{Setting current file name}%
270 \def\set@curr@file{%
271 \begingroup
272 \set@curr@file@aux}
273 \edef\set@curr@file@nosearch{%
274 \begingroup
275 \let\noexpand\input@path\noexpand\@empty
276 \csname seq_clear:N\endcsname
277 \expandafter\noexpand\csname l_file_search_path_seq\endcsname
278 \noexpand\set@curr@file@aux}
279 \def\set@curr@file@aux#1{%
280 \escapechar\m@ne
281 \let\protect\string
282 \edef~{\string~}%
283 \expandafter\def\csname\expandafter\endcsname
284 \expandafter{\csname\endcsname}%

Two file names are set here: \@curr@file@reqd which is the file requested by the user,
and \@curr@file which should be the same, except when we have a file substitution,
in which case it holds the actual loaded file. \@curr@file is resolved first, to check
if a substitution happens. If it doesn’t, \@expl@@@filehook@if@file@replaced@@TF
short-cuts and just copies \@curr@file, otherwise the full normalization procedure is
executed.

At this stage the file name is parsed and normalized, but if the input doesn’t
have an extension, the default .tex is not added to \@curr@file because for appli-
cations other than \input (graphics, for example) the default extension may not be
.tex. First check if the input has an extension, then if the input had no extension, call
\@expl@@@filehook@drop@extension@@N. In case of a file substitution, \@curr@file
will have an extension.
285 \@expl@@@filehook@if@no@extension@@nTF{#1}%
286 {\@tempswatrue}{\@tempswafalse}%

15

287 \@kernel@make@file@csname\@curr@file
288 \@expl@@@filehook@resolve@file@subst@@w {#1}%
289 \@expl@@@filehook@if@file@replaced@@TF
290 {\@kernel@make@file@csname\@curr@file@reqd
291 \@expl@@@filehook@normalize@file@name@@w{#1}%
292 \if@tempswa \@expl@@@filehook@drop@extension@@N\@curr@file@reqd \fi}%
293 {\if@tempswa \@expl@@@filehook@drop@extension@@N\@curr@file \fi
294 \global\let\@curr@file@reqd\@curr@file}%
295 \@expl@@@filehook@clear@replacement@flag@@
296 \endgroup}
297 ⟨/2ekernel | latexrelease⟩
298 ⟨latexrelease⟩\EndIncludeInRelease

299 ⟨latexrelease⟩\IncludeInRelease{2021/06/01}%
300 ⟨latexrelease⟩ {\set@curr@file}{Setting current file name}%
301 ⟨latexrelease⟩\def\set@curr@file#1{%
302 ⟨latexrelease⟩ \begingroup
303 ⟨latexrelease⟩ \escapechar\m@ne
304 ⟨latexrelease⟩ \let\protect\string
305 ⟨latexrelease⟩ \edef~{\string~}%
306 ⟨latexrelease⟩ \expandafter\def\csname\expandafter\endcsname
307 ⟨latexrelease⟩ \expandafter{\csname\endcsname}%
308 ⟨latexrelease⟩ \@expl@@@filehook@if@no@extension@@nTF{#1}%
309 ⟨latexrelease⟩ {\@tempswatrue}{\@tempswafalse}%
310 ⟨latexrelease⟩ \@kernel@make@file@csname\@curr@file
311 ⟨latexrelease⟩ \@expl@@@filehook@resolve@file@subst@@w {#1}%
312 ⟨latexrelease⟩ \@expl@@@filehook@if@file@replaced@@TF
313 ⟨latexrelease⟩ {\@kernel@make@file@csname\@curr@file@reqd
314 ⟨latexrelease⟩ \@expl@@@filehook@normalize@file@name@@w{#1}%
315 ⟨latexrelease⟩ \if@tempswa \@expl@@@filehook@drop@extension@@N\@curr@file@reqd \fi}%
316 ⟨latexrelease⟩ {\if@tempswa \@expl@@@filehook@drop@extension@@N\@curr@file \fi
317 ⟨latexrelease⟩ \global\let\@curr@file@reqd\@curr@file}%
318 ⟨latexrelease⟩ \@expl@@@filehook@clear@replacement@flag@@
319 ⟨latexrelease⟩ \endgroup}
320 ⟨latexrelease⟩\let\set@curr@file@nosearch\@undefined
321 ⟨latexrelease⟩\EndIncludeInRelease

322 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
323 ⟨latexrelease⟩ {\set@curr@file}{Setting current file name}%
324 ⟨latexrelease⟩\def\set@curr@file#1{%
325 ⟨latexrelease⟩ \begingroup
326 ⟨latexrelease⟩ \escapechar\m@ne
327 ⟨latexrelease⟩ \expandafter\def\csname\expandafter\endcsname
328 ⟨latexrelease⟩ \expandafter{\csname\endcsname}%
329 ⟨latexrelease⟩ \@expl@@@filehook@if@no@extension@@nTF{#1}%
330 ⟨latexrelease⟩ {\@tempswatrue}{\@tempswafalse}%
331 ⟨latexrelease⟩ \@kernel@make@file@csname\@curr@file
332 ⟨latexrelease⟩ \@expl@@@filehook@resolve@file@subst@@w {#1}%
333 ⟨latexrelease⟩ \@expl@@@filehook@if@file@replaced@@TF
334 ⟨latexrelease⟩ {\@kernel@make@file@csname\@curr@file@reqd
335 ⟨latexrelease⟩ \@expl@@@filehook@normalize@file@name@@w{#1}%
336 ⟨latexrelease⟩ \if@tempswa \@expl@@@filehook@drop@extension@@N\@curr@file@reqd \fi}%
337 ⟨latexrelease⟩ {\if@tempswa \@expl@@@filehook@drop@extension@@N\@curr@file \fi
338 ⟨latexrelease⟩ \global\let\@curr@file@reqd\@curr@file}%
339 ⟨latexrelease⟩ \@expl@@@filehook@clear@replacement@flag@@

16

340 ⟨latexrelease⟩ \endgroup}
341 ⟨latexrelease⟩\let\set@curr@file@nosearch\@undefined
342 ⟨latexrelease⟩\EndIncludeInRelease

343 ⟨latexrelease⟩\IncludeInRelease{2019/10/01}%
344 ⟨latexrelease⟩ {\set@curr@file}{Setting current file name}%
345 ⟨latexrelease⟩\def\set@curr@file#1{%
346 ⟨latexrelease⟩ \begingroup
347 ⟨latexrelease⟩ \escapechar\m@ne
348 ⟨latexrelease⟩ \xdef\@curr@file{%
349 ⟨latexrelease⟩ \expandafter\expandafter\expandafter\unquote@name
350 ⟨latexrelease⟩ \expandafter\expandafter\expandafter{%
351 ⟨latexrelease⟩ \expandafter\string
352 ⟨latexrelease⟩ \csname\@firstofone#1\@empty\endcsname}}%
353 ⟨latexrelease⟩ \endgroup
354 ⟨latexrelease⟩}
355 ⟨latexrelease⟩\let\set@curr@file@nosearch\@undefined
356 ⟨latexrelease⟩\EndIncludeInRelease

357 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}%
358 ⟨latexrelease⟩ {\set@curr@file}{Setting current file name}%
359 ⟨latexrelease⟩\let\set@curr@file\@undefined
360 ⟨latexrelease⟩\let\set@curr@file@nosearch\@undefined
361 ⟨latexrelease⟩\EndIncludeInRelease
362 ⟨∗2ekernel⟩

(End of definition for \set@curr@file and others.)

\@filehook@set@CurrentFile
\@kernel@make@file@csname

\@set@curr@file@aux

Todo: This should get internalized using @expl@ names
363 ⟨/2ekernel⟩
364 ⟨∗2ekernel | latexrelease⟩
365 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
366 ⟨latexrelease⟩ {\@kernel@make@file@csname}{Make file csname}%

367 \def\@kernel@make@file@csname#1#2#3{%
368 \xdef#1{\expandafter\@set@curr@file@aux
369 \csname\expandafter#2\@firstofone#3\@nil\endcsname}}

This auxiliary compares \⟨filename⟩ with \csname\endcsname to check if the empty
.tex file was requested.
370 \long\def\@set@curr@file@aux#1{%
371 \expandafter\ifx\csname\endcsname#1%
372 .tex\else\string#1\fi}

Then we call \@expl@@@filehook@set@curr@file@@nNN once for \@curr@file
to set \CurrentFile(Path)Used and once for \@curr@file@reqd to set
\CurrentFile(Path). Here too the slower route is only used if a substitution
happened, but here \@expl@@@filehook@if@file@replaced@@TF can’t be used be-
cause the flag is reset at the \endgroup above, so we check if \@curr@file and
\@curr@file@reqd differ. This macro is issued separate from \set@curr@file because
it changes \CurrentFile, and side-effects would quickly get out of control.
373 \def\@filehook@set@CurrentFile{%
374 \@expl@@@filehook@set@curr@file@@nNN{\@curr@file}%
375 \CurrentFileUsed\CurrentFilePathUsed
376 \ifx\@curr@file@reqd\@curr@file
377 \let\CurrentFile\CurrentFileUsed

17

378 \let\CurrentFilePath\CurrentFilePathUsed
379 \else
380 \@expl@@@filehook@set@curr@file@@nNN{\@curr@file@reqd}%
381 \CurrentFile\CurrentFilePath
382 \fi}
383 ⟨/2ekernel | latexrelease⟩
384 ⟨latexrelease⟩\EndIncludeInRelease
385 ⟨∗2ekernel⟩

(End of definition for \@filehook@set@CurrentFile , \@kernel@make@file@csname , and \@set@curr@file@aux.)

386 ⟨@@=filehook⟩

__filehook_set_curr_file:nNN
__filehook_set_curr_file_assign:nnnNN

When inputting a file, \set@curr@file does a file lookup (in \input@path and
\l_file_search_path_seq) and returns the actual file name (⟨base⟩ plus ⟨ext⟩)
in \CurrentFileUsed, and in case there’s a file substitution, the requested file in
\CurrentFile (otherwise both are the same). Only the base and extension are returned,
regardless of the input (both path/to/file.tex and file.tex end up as file.tex in
\CurrentFile). The path is returned in \CurrentFilePath, in case it’s needed.
387 ⟨/2ekernel⟩
388 ⟨∗2ekernel | latexrelease⟩
389 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
390 ⟨latexrelease⟩ {__filehook_set_curr_file:nNN}{Set curr file}%
391 \ExplSyntaxOn
392 \cs_new_protected:Npn __filehook_set_curr_file:nNN #1
393 {
394 \exp_args:Nf __filehook_file_parse_full_name:nN {#1}
395 __filehook_set_curr_file_assign:nnnNN
396 }
397 \cs_new_protected:Npn __filehook_set_curr_file_assign:nnnNN #1 #2 #3 #4 #5
398 {
399 \str_set:Nn #5 {#1}
400 \str_set:Nn #4 {#2#3}
401 }
402 \ExplSyntaxOff
403 ⟨/2ekernel | latexrelease⟩
404 ⟨latexrelease⟩\EndIncludeInRelease
405 ⟨∗2ekernel⟩

(End of definition for __filehook_set_curr_file:nNN and __filehook_set_curr_file_assign:nnnNN.)

2.7 Replacing a file and detecting loops
__filehook_resolve_file_subst:w

__filehook_normalize_file_name:w
__filehook_file_name_compose:nnn

Start by sanitizing the file with __filehook_file_parse_full_name:nN then do
__filehook_file_subst_begin:nnn{⟨path⟩}{⟨name⟩}{⟨ext⟩}.
406 ⟨/2ekernel⟩
407 ⟨∗2ekernel | latexrelease⟩
408 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
409 ⟨latexrelease⟩ {__filehook_resolve_file_subst:w}{Replace files detect loops}%
410 \ExplSyntaxOn
411 \cs_new:Npn __filehook_resolve_file_subst:w #1 \@nil
412 { __filehook_file_parse_full_name:nN {#1} __filehook_file_subst_begin:nnn }
413 \cs_new:Npn __filehook_normalize_file_name:w #1 \@nil
414 { __filehook_file_parse_full_name:nN {#1} __filehook_file_name_compose:nnn }

18

415 \cs_new:Npn __filehook_file_name_compose:nnn #1 #2 #3
416 { \tl_if_empty:nF {#1} { #1 / } #2#3 }

__filehook_file_replaced
__filehook_if_file_replaced:TF

__filehook_clear_replacement_flag:

Since the file replacement is done expandably in a \csname, use a flag to remember if
a substitution happened. We use this in \set@curr@file to short-circuit some of it in
case no substitution happened (by far the most common case, so it’s worth optimizing).
The flag raised during the file substitution algorithm must be explicitly cleared after the
__filehook_if_file_replaced:TF conditional is no longer needed, otherwise further
uses of __filehook_if_file_replaced:TF will wrongly return true.
417 \flag_new:n { __filehook_file_replaced }
418 \cs_new:Npn __filehook_if_file_replaced:TF #1 #2
419 { \flag_if_raised:nTF { __filehook_file_replaced } {#1} {#2} }
420 \cs_new_protected:Npn __filehook_clear_replacement_flag:
421 { \flag_clear:n { __filehook_file_replaced } }

__filehook_file_subst_begin:nnn
First off, start by checking if the current file (⟨name⟩+⟨ext⟩) has a declared substitution.
If not, then just put that as the name (including a possible ⟨path⟩ in this case): this
is the default case with no substitutions, so it’s the first to be checked. The auxiliary
__filehook_file_subst_tortoise_hare:nn sees that there’s no replacement for #2#3
and does nothing else.
422 \cs_new:Npn __filehook_file_subst_begin:nnn #1 #2 #3
423 {
424 __filehook_file_subst_tortoise_hare:nn { #2#3 } { #2#3 }
425 { __filehook_file_name_compose:nnn {#1} {#2} {#3} }
426 }
427 \ExplSyntaxOff
428 ⟨/2ekernel | latexrelease⟩
429 ⟨latexrelease⟩\EndIncludeInRelease
430 ⟨∗2ekernel⟩

2.7.1 The Tortoise and Hare algorithm

__filehook_file_subst_tortoise_hare:nn
__filehook_file_subst_loop:NN
__filehook_file_subst_loop:cc

If there is a substitution (⟨true⟩ in the first \cs_if_exist:cTF below), then first check
if there is no substitution down the line: this should be the second most common case,
of one file replaced by another. In that case just leave the substitution there and the
job is done. If any substitution happens, then the \flag __filehook_file_replaced
is raised (conditionally, because checking if a flag is raised is much faster than raising it
over and over again).

If, however there are more substitutions, then we need to check for a possible loop in
the substitutions, which would otherwise put TEX in an infinite loop if just an exhaustive
expansion was used.

To detect a loop, the Tortoise and Hare algorithm is used. The name of the al-
gorithm is an analogy to Aesop’s fable, in which the Hare outruns a Tortoise. The
two pointers here are the csnames which contains each file replacement, both of which
start at the position zero, which is the file requested. In the inner part of the macro
below, __filehook_file_subst_loop:cc is called with \@file-subst@⟨file⟩ and
\@file-subst@\@file-subst@⟨file⟩; that is, the substitution of ⟨file⟩ and the sub-
stitution of that substitution: the Tortoise walks one step while the Hare walks two.

Within __filehook_file_subst_loop:NN the two substitutions are compared, and
if they lead to the same file it means that there is a loop in the substitutions. If there’s
no loop, __filehook_file_subst_tortoise_hare:nn is called again with the Tortoise

19

at position 1 and the hare at 2. Again, the substitutions are checked ahead of the Hare
pointer to check that it won’t run too far; in case there is no loop in the declarations,
eventually one of the \cs_if_exist:cTF below will go ⟨false⟩ and the algorithm will
end; otherwise it will run until the Hare reaches the same spot as the tortoise and a loop
is detected.
431 ⟨/2ekernel⟩
432 ⟨∗2ekernel | latexrelease⟩
433 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
434 ⟨latexrelease⟩ {__filehook_file_subst_tortoise_hare:nn}{Tortoise and Hare}%
435 \ExplSyntaxOn
436 \cs_new:Npn __filehook_file_subst_tortoise_hare:nn #1 #2 #3
437 {
438 \cs_if_exist:cTF { @file-subst@ #2 }
439 {
440 \flag_if_raised:nF { __filehook_file_replaced }
441 { \flag_raise:n { __filehook_file_replaced } }
442 \cs_if_exist:cTF { @file-subst@ \use:c { @file-subst@ #2 } }
443 {
444 __filehook_file_subst_loop:cc
445 { @file-subst@ #1 }
446 { @file-subst@ \use:c { @file-subst@ #2 } }
447 }
448 { \use:c { @file-subst@ #2 } }
449 }
450 { #3 }
451 }

This is just an auxiliary to check if a loop was found, and continue the algorithm other-
wise. If a loop is found, the .tex file is used as fallback and __filehook_file_subst_-
cycle_error:cN is called to report the error.
452 \cs_new:Npn __filehook_file_subst_loop:NN #1 #2
453 {
454 \token_if_eq_meaning:NNTF #1 #2
455 {
456 .tex
457 __filehook_file_subst_cycle_error:cN { @file-subst@ #1 } #1
458 }
459 { __filehook_file_subst_tortoise_hare:nn {#1} {#2} {#2} }
460 }
461 \cs_generate_variant:Nn __filehook_file_subst_loop:NN { cc }

__filehook_file_subst_cycle_error:NN
__filehook_file_subst_cycle_error:cN

Showing this type of error expandably is tricky, as we have a very limited amount of
characters to show and a potentially large list. As a work around, several errors are
printed, each showing one step of the loop, until all the error messages combined show
the loop.
462 \cs_new:Npn __filehook_file_subst_cycle_error:NN #1 #2
463 {
464 \msg_expandable_error:nnff { latex2e } { file-cycle }
465 {#1} { \use:c { @file-subst@ #1 } }
466 \token_if_eq_meaning:NNF #1 #2
467 { __filehook_file_subst_cycle_error:cN { @file-subst@ #1 } #2 }
468 }
469 \cs_generate_variant:Nn __filehook_file_subst_cycle_error:NN { c }

20

And the error message:
470 \msg_new:nnn { latex2e } { file-cycle }
471 { File~loop!~#1~replaced~by~#2... }

(End of definition for __filehook_resolve_file_subst:w and others.)

472 \ExplSyntaxOff
473 ⟨/2ekernel | latexrelease⟩
474 ⟨latexrelease⟩\EndIncludeInRelease
475 ⟨∗2ekernel⟩
476 ⟨@@=⟩

2.8 Preventing a package from loading
We support the use case of preventing a package from loading but not any other type of
files (e.g., classes).

\disable@package@load
\reenable@package@load

\@disable@packageload@do

\disable@package@load defines \@pkg-disable@⟨package⟩ to expand to some code #2
instead of loading the package.
477 ⟨/2ekernel⟩
478 ⟨∗2ekernel | latexrelease⟩
479 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
480 ⟨latexrelease⟩ {\disable@package@load}{Disable packages}%
481 \def\disable@package@load#1#2{%
482 \global\@namedef{@pkg-disable@#1.\@pkgextension}{#2}}

Here we check if a control sequence named \@pkg-disable@⟨name⟩.sty is de-
fined, and if so don’t use the package loading code #2, but use the replacement
code stored in that control sequence, write something to the log, and then pre-
vent \@onefilewithoptions from sanity-checking the requested package date (the
\expandafter here triggers one in \@onefilewithoptions that ends a conditional there,
and the \@gobbletwo removes the date checking code from the input stream).
483 \def\@disable@packageload@do#1#2{%
484 \@ifundefined{@pkg-disable@#1}%
485 {#2}%
486 {\@nameuse{@pkg-disable@#1}%
487 \@latex@info{Package ’#1’ has been disabled.%
488 \MessageBreak Load request ignored}%
489 \expandafter\@gobbletwo}}

\reenable@package@load undefines \@pkg-disable@⟨package⟩ to reallow loading
a package.
490 \def\reenable@package@load#1{%
491 \global\expandafter\let
492 \csname @pkg-disable@#1.\@pkgextension \endcsname \@undefined}

493 ⟨/2ekernel | latexrelease⟩
494 ⟨latexrelease⟩\EndIncludeInRelease
495 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}%
496 ⟨latexrelease⟩ {\disable@package@load}{Disable packages}%
497 ⟨latexrelease⟩
498 ⟨latexrelease⟩\let\disable@package@load \@undefined
499 ⟨latexrelease⟩\let\@disable@packageload@do\@undefined
500 ⟨latexrelease⟩\let\reenable@package@load \@undefined
501 ⟨latexrelease⟩\EndIncludeInRelease
502 ⟨∗2ekernel⟩

21

(End of definition for \disable@package@load , \reenable@package@load , and \@disable@packageload@do.
These functions are documented on page 6.)

2.9 High-level interfaces for LATEX
None so far and the general feeling for now is that the hooks are enough. Packages like
filehook, etc., may use them to set up their interfaces (samples are given below) but for
the now the kernel will not provide any.

2.10 Internal commands needed elsewhere
Here we set up a few horrible (but consistent) LATEX 2ε names to allow for internal
commands to be used outside this module (and in parts that still use LATEX 2ε syntax.
We have to unset the @@ since we want double “at” sign in place of double underscores.
503 ⟨@@=⟩

504 ⟨/2ekernel⟩
505 ⟨∗2ekernel | latexrelease⟩
506 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}%
507 ⟨latexrelease⟩ {\@expl@@@filehook@if@no@extension@@nTF}{2e tmp interfaces}%
508 \ExplSyntaxOn

509 \cs_new_eq:NN \@expl@@@filehook@if@no@extension@@nTF
510 __filehook_if_no_extension:nTF

511 \cs_new_eq:NN \@expl@@@filehook@set@curr@file@@nNN
512 __filehook_set_curr_file:nNN

513 \cs_new_eq:NN \@expl@@@filehook@resolve@file@subst@@w
514 __filehook_resolve_file_subst:w

515 \cs_new_eq:NN \@expl@@@filehook@normalize@file@name@@w
516 __filehook_normalize_file_name:w

517 \cs_new_eq:NN \@expl@@@filehook@if@file@replaced@@TF
518 __filehook_if_file_replaced:TF

519 \cs_new_eq:NN \@expl@@@filehook@clear@replacement@flag@@
520 __filehook_clear_replacement_flag:

521 \cs_new_eq:NN \@expl@@@filehook@drop@extension@@N
522 __filehook_drop_extension:N

523 \cs_new_eq:NN \@expl@@@filehook@file@push@@
524 __filehook_file_push:

525 \cs_new_eq:NN \@expl@@@filehook@file@pop@@
526 __filehook_file_pop:

527 \cs_new_eq:NN \@expl@@@filehook@file@pop@assign@@nnnn
528 __filehook_file_pop_assign:nnnn

529 \ExplSyntaxOff

This one specifically has to be undefined because it is left over in the input stream
from \InputIfFileExists and executed when latexrelease is loaded. It cannot be \let
to \@undefined otherwise it would error as well, so it is \let to \relax to be silently
ignored when loading \latexrelease.
530 ⟨/2ekernel | latexrelease⟩
531 ⟨latexrelease⟩\EndIncludeInRelease

22

532 ⟨latexrelease⟩
533 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}%
534 ⟨latexrelease⟩ {\@expl@@@filehook@if@no@extension@@nTF}{2e tmp interfaces}%
535 ⟨latexrelease⟩\let\@expl@@@filehook@file@pop@@\relax
536 ⟨latexrelease⟩\EndIncludeInRelease
537 ⟨∗2ekernel⟩

This ends the kernel code in this file.
538 ⟨/2ekernel⟩

3 A sample package for structuring the log output
539 ⟨∗structuredlog⟩
540 ⟨@@=filehook⟩

541 \ProvidesExplPackage
542 {structuredlog}{\ltfilehookdate}{\ltfilehookversion}
543 {Structuring the TeX transcript file}

\g__filehook_nesting_level_int Stores the current package nesting level.
544 \int_new:N \g__filehook_nesting_level_int

Initialise the counter with the number of files in the \@currnamestack (the number of
items divided by 3) minus one, because this package is skipped when printing to the log.
545 \int_gset:Nn \g__filehook_nesting_level_int
546 { (\tl_count:N \@currnamestack) / 3 - 1 }

(End of definition for \g__filehook_nesting_level_int.)

__filehook_log_file_record:n This macro is responsible for increasing and decreasing the file nesting level, as well as
printing to the log. The argument is either STOPTART or STOP and the action it takes on
the nesting integer depends on that.
547 \cs_new_protected:Npn __filehook_log_file_record:n #1
548 {
549 \str_if_eq:nnT {#1} {START} { \int_gincr:N \g__filehook_nesting_level_int }
550 \iow_term:x
551 {
552 \prg_replicate:nn { \g__filehook_nesting_level_int } { = } ~
553 (LEVEL ~ \int_use:N \g__filehook_nesting_level_int \c_space_tl #1) ~
554 \CurrentFileUsed

If there was a file replacement, show that as well:
555 \str_if_eq:NNF \CurrentFileUsed \CurrentFile
556 { ~ (\CurrentFile \c_space_tl requested) }
557 \iow_newline:
558 }
559 \str_if_eq:nnT {#1} {STOP} { \int_gdecr:N \g__filehook_nesting_level_int }
560 }

Now just hook the macro above in the generic file/before. . .
561 \AddToHook{file/before}{ __filehook_log_file_record:n { START } }

23

. . . and file/after hooks. We don’t want to install the file/after hook immediately,
because that would mean it is the first time executed when the package finishes. We
therefore put the declaration inside \AddToHookNext so that it gets only installed when
we have left this package.
562 \AddToHookNext{file/after}
563 { \AddToHook{file/after}{ __filehook_log_file_record:n { STOP } } }

(End of definition for __filehook_log_file_record:n.)

564 ⟨@@=⟩
565 ⟨/structuredlog⟩

4 Package emulations
4.1 Package atveryend emulation
With the new hook management and the hooks in \enddocument all of atveryend is
taken care of. We can make an emulation only here after the substitution functionality
is available:
566 ⟨∗2ekernel⟩
567 \declare@file@substitution{atveryend.sty}{atveryend-ltx.sty}
568 ⟨/2ekernel⟩

Here is the package file we point to:
569 ⟨∗atveryend-ltx⟩
570 \ProvidesPackage{atveryend-ltx}
571 [2020/08/19 v1.0a
572 Emulation of the original atveryend package^^Jwith kernel methods]

Here are new definitions for its interfaces now pointing to the hooks in \enddocument
573 \newcommand\AfterLastShipout {\AddToHook{enddocument/afterlastpage}}
574 \newcommand\AtVeryEndDocument {\AddToHook{enddocument/afteraux}}

Next one is a bit of a fake, but the result should normally be as expected. If not, one
needs to add a rule to sort the code chunks in enddocument/info.
575 \newcommand\AtEndAfterFileList{\AddToHook{enddocument/info}}

576 \newcommand\AtVeryVeryEnd {\AddToHook{enddocument/end}}

\BeforeClearDocument This one is the only one we don’t implement or rather don’t have a dedicated hook in
the code.
577 \ExplSyntaxOn
578 \newcommand\BeforeClearDocument[1]
579 { \AtEndDocument{#1}
580 \atveryend@DEPRECATED{BeforeClearDocument \tl_to_str:n{#1}}
581 }

582 \cs_new:Npn\atveryend@DEPRECATED #1
583 {\iow_term:x{======~DEPRECATED~USAGE~#1~==========}}
584 \ExplSyntaxOff

(End of definition for \BeforeClearDocument.)

585 ⟨/atveryend-ltx⟩

24

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
.../after (hook) 11
/after (hook) 2, 2, 11, 3
/before (hook) 2, 2, 11
/end (hook) . 11
\⟨filename⟩ . 17

A
\AddToHook . 561, 563, 573, 574, 575, 576, 5
\AddToHookNext 562, 24
\AfterLastShipout 573
\AtEndAfterFileList 575
\AtEndDocument 579
\AtEndOfClass . 4
\AtEndOfPackage 4
\AtVeryEndDocument 574
\AtVeryVeryEnd 576

B
\BeforeClearDocument 577
\begingroup 271, 274, 302, 325, 346

C
class/ (hook) 11, 4
class/.../after 3
class/.../before 3
class/⟨name⟩/after (hook) 3
class/⟨name⟩/before (hook) 3
class/after (hook) 3
class/after . 3
class/before (hook) 3
class/before . 3
\clearpage . 5
cmd/include/after (hook) 5
cmd/include/before (hook) 5
cs commands:

\cs:w 211, 225, 237, 238
\cs_end: 211, 225, 237, 238
\cs_generate_variant:Nn 461, 469
\cs_gset:Npn 242
\cs_gset:Npx 213
\cs_if_exist:NTF 93, 438, 442, 19
\cs_new:Npn 30, 38, 44, 57, 95,

100, 105, 112, 127, 234, 240, 411,
413, 415, 418, 422, 436, 452, 462, 582

\cs_new_eq:NN . . 252, 253, 509, 511,
513, 515, 517, 519, 521, 523, 525, 527

\cs_new_protected:Npn 49,
62, 70, 79, 208, 222, 392, 397, 420, 547

\cs_set:Npx 211, 225
\cs_undefine:N 227

\csname . . 197, 276, 277, 283, 284, 306,
307, 327, 328, 352, 369, 371, 492, 19

\csname\endcsname 17
\CurrentFile 3, 67, 84,

166, 171, 174, 377, 381, 555, 556, 3
\CurrentFilePath 3, 67, 83, 165, 378, 381, 3
\CurrentFilePathUsed

. 3, 66, 81, 163, 375, 378, 3
\CurrentFileUsed

. . 3, 66, 82, 164, 375, 377, 554, 555, 6

D
\DeclareRobustCommand 148, 184
\def . 160, 176,

194, 270, 279, 283, 301, 306, 324,
327, 345, 367, 370, 373, 481, 483, 490

\detokenize . 12

E
\edef 161, 168, 273, 282, 305
\else . 372, 379
else commands:

\else: . 241
\endcsname 197, 276, 277, 283, 284, 306,

307, 327, 328, 352, 369, 371, 492, 25
\enddocument . 24
enddocument/info (hook) 24
\endgroup 296, 319, 340, 353, 17
\EndIncludeInRelease 14,

23, 88, 140, 179, 191, 200, 245,
256, 263, 298, 321, 342, 356, 361,
384, 404, 429, 474, 494, 501, 531, 536

\escapechar 280, 303, 326, 347
exp commands:

\exp_after:wN 73, 236, 237
\exp_args:Ne 46, 97
\exp_args:Nee 129
\exp_args:Nf 32, 34, 394
\exp_args:NV 53
\exp_not:n 211, 225

\expandafter .
. 153, 154, 155, 167, 187, 197, 277,
283, 284, 306, 307, 327, 328, 349,
350, 351, 368, 369, 371, 489, 491, 15

\ExplSyntaxOff 12, 86,
138, 243, 254, 402, 427, 472, 529, 584

25

\ExplSyntaxOn 7,
29, 92, 207, 251, 391, 410, 435, 508, 577

F
\fi . . 292, 293, 315, 316, 336, 337, 372, 382
fi commands:

\fi: . 241
file commands:

\file_full_name:n 35, 11
\file_parse_full_name_apply:nN . .

. 32, 47, 90, 93, 95
\l_file_search_path_seq 3

file internal commands:
__file_parse_full_name_area:nw .

. 102, 105, 109
__file_parse_full_name_auxi:nN .

. 97, 100
__file_parse_full_name_base:nw .

. 108, 112, 124
__file_parse_full_name_tidy:nnnN

. 119, 120, 122, 127
file/ (hook) . 11
file/.../after (hook) 11
file/.../after 2
file/.../before 2
file/⟨file name⟩/after (hook) 2, 2
file/⟨file name⟩/before (hook) 2, 2
file/⟨file-name⟩/after (hook) 2
file/⟨file-name⟩/before (hook) 2
file/⟨package name⟩.sty/after (hook) . 4
file/⟨package name⟩.sty/before (hook) 4
file/after (hook) 2, 2, 11, 4, 24
file/after . 2
file/array.sty/after (hook) 3
file/before (hook) 2, 11, 4, 2
file/before . 2
filehook internal commands:

__filehook_clear_replacement_-
flag: 417, 420, 520

__filehook_drop_extension:N . . .
. 44, 49, 522

__filehook_drop_extension_-
aux:nnn 54, 57

__filehook_file_name_compose:nnn
. 218, 406, 414, 415, 425

__filehook_file_parse_full_-
name:nN 28,
30, 30, 53, 238, 394, 412, 414, 8

__filehook_file_pop: . . . 59, 70, 526
__filehook_file_pop_assign:nnnn

. 59, 73, 79, 528
__filehook_file_push: . . . 59, 62, 524
__filehook_file_replaced 417

__filehook_file_subst_begin:nnn
. 412, 422, 422, 18

__filehook_file_subst_cycle_-
error:NN 457, 462, 462, 467, 469, 20

__filehook_file_subst_loop:NN . .
. 431, 444, 452, 461, 19

__filehook_file_subst_tortoise_-
hare:nn . 424, 431, 434, 436, 459, 19

__filehook_full_name:nn . . 30, 34, 38
__filehook_if_file_replaced:TF .

. 417, 418, 518, 19
__filehook_if_no_extension:nTF .

. 44, 44, 510
\g__filehook_input_file_seq . . 59, 9
\l__filehook_internal_tl 59
__filehook_log_file_record:n . . .

. 547, 547, 561, 563
\g__filehook_nesting_level_int . .

. 544, 549, 552, 553, 559
__filehook_normalize_file_-

name:w 406, 413, 516
__filehook_resolve_file_subst:w

. 406, 409, 411, 514
__filehook_set_curr_file:nNN . . .

. 387, 390, 392, 512
__filehook_set_curr_file_-

assign:nnnNN 387, 395, 397
__filehook_subst_add:nn

. 206, 208, 208, 252, 13
__filehook_subst_empty_name_-

chk:NN 208, 236, 240
__filehook_subst_file_normalize:Nn

. 208, 216, 218, 230, 234
__filehook_subst_remove:n

. 208, 222, 253
flag internal commands:

\flag␣__filehook_file_replaced . . 19
flag commands:

\flag_clear:n 421
\flag_if_raised:nTF 419, 440
\flag_new:n 417
\flag_raise:n 441

G
\global 294, 317, 338, 482, 491
group commands:

\group_begin: 210, 224
\group_end: 220, 232

H
Hooks:

.../after . 11
/after 2, 2, 11, 3
/before 2, 2, 11

26

/end . 11
class/ . 11, 4
class/⟨name⟩/after 3
class/⟨name⟩/before 3
class/after 3
class/before 3
cmd/include/after 5
cmd/include/before 5
enddocument/info 24
file/ . 11
file/.../after 11
file/⟨file name⟩/after 2, 2
file/⟨file name⟩/before 2, 2
file/⟨file-name⟩/after 2
file/⟨file-name⟩/before 2
file/⟨package name⟩.sty/after 4
file/⟨package name⟩.sty/before . . . 4
file/after 2, 2, 11, 4, 24
file/array.sty/after 3
file/before 2, 11, 4, 2
include . 5
include/ 11, 11
include/.../end 11
include/⟨name⟩/after 5
include/⟨name⟩/before 5
include/⟨name⟩/end 5
include/⟨name⟩/excluded 5, 5
include/after 5
include/before 5
include/end 5
include/excluded 5, 5
package/ 11, 4
package/⟨name⟩/after 3
package/⟨name⟩/before 3
package/⟨package name⟩/after 4
package/⟨package name⟩/before 3
package/after 3, 4
package/before 3, 3

I
if commands:

\if_meaning:w 241
\IfFileExists 149, 185, 195
\IfFormatAtLeastTF 13
\ifx . 371, 376, 15
include (hook) . 5
\include . 5
include/ (hook) 11, 11
include/.../after 5
include/.../before 5
include/.../end (hook) 11
include/.../end 5
include/⟨name⟩/after (hook) 5
include/⟨name⟩/before (hook) 5

include/⟨name⟩/end (hook) 5
include/⟨name⟩/excluded (hook) 5, 5
include/after (hook) 5
include/after . 5
include/before (hook) 5
include/before 5
include/end (hook) 5
include/end . 5
include/excluded (hook) 5, 5
\IncludeInRelease

. 5, 15, 27, 89, 144, 181, 192, 205,
249, 257, 268, 299, 322, 343, 357,
365, 389, 408, 433, 479, 495, 506, 533

\includeonly . 4
\input . 3
\InputIfFileExists 143, 11
int commands:

\int_gdecr:N 559
\int_gincr:N 549
\int_gset:Nn 545
\int_new:N 544
\int_set:Nn 212, 226
\int_use:N 553

iow commands:
\iow_newline: 557
\iow_term:n 550, 583

J
\jobname . 12

K
kernel internal commands:

__kernel_file_name_sanitize:n . . 98

L
\latexrelease 22
\let . 18,

19, 20, 21, 147, 189, 190, 197, 198,
199, 260, 261, 275, 281, 294, 304,
317, 320, 338, 341, 355, 359, 360,
377, 378, 491, 498, 499, 500, 535, 22

\LoadPackageWithOptions 3
\long . 194, 370
\ltfilehookdate 542
\ltfilehookversion 542

M
\MessageBreak 488
msg commands:

\msg_error:nnn 75
\msg_expandable_error:nnnn 464
\msg_new:nnn 470

N
\newcommand 573, 574, 575, 576, 578

27

\NewHook . 177
\NewReversedHook 178
\noexpand 275, 277, 278

O
\openin . 2

P
package/ (hook) 11, 4
package/.../after 3
package/.../before 3
package/⟨name⟩/after (hook) 3
package/⟨name⟩/before (hook) 3
package/⟨package name⟩/after (hook) . . 4
package/⟨package name⟩/before (hook) . 3
package/after (hook) 3, 4
package/after . 3
package/before (hook) 3, 3
package/before 3
prg commands:

\prg_do_nothing: 132, 134
\prg_replicate:nn 552

\protect 281, 304
\ProvidesExplPackage 541
\ProvidesPackage 570

R
\relax . 535, 22
\RequirePackage 3

S
scan internal commands:

\s__file_stop
. 103, 105, 108, 110, 112, 125

seq commands:
\seq_gpop:NNTF 72
\seq_gpush:Nn 64
\seq_if_exist:NTF 60
\seq_new:N 61

str commands:
\str_if_eq:NNTF 555
\str_if_eq:nnTF 131, 549, 559
\str_set:Nn 399, 400

\string . . . 281, 282, 304, 305, 351, 372, 15

T
TEX and LATEX 2ε commands:

\@@input 172, 188, 196
\@addtofilelist 169, 188, 196
\@clsextension 12
\@curr@file 266, 374, 376, 15
\@curr@file@reqd . . . 266, 376, 380, 17
\@currnamestack 546, 23
\@disable@packageload@do 477
\@empty 275, 352

\@expl@@@filehook@clear@replacement@flag@@
. 295, 318, 339, 519

\@expl@@@filehook@drop@extension@@N
. 292, 293, 315, 316, 336, 337, 521, 15

\@expl@@@filehook@file@pop@@ . . .
. 157, 525, 535

\@expl@@@filehook@file@pop@assign@@nnnn
. 162, 527, 12

\@expl@@@filehook@file@push@@ . . .
. 151, 523

\@expl@@@filehook@if@file@replaced@@TF
. 289, 312, 333, 517, 17

\@expl@@@filehook@if@no@extension@@nTF
. 285, 308, 329, 507, 509, 534

\@expl@@@filehook@normalize@file@name@@w
. 291, 314, 335, 515

\@expl@@@filehook@resolve@file@subst@@w
. 288, 311, 332, 513

\@expl@@@filehook@set@curr@file@@nNN
. 374, 380, 511, 17

\@file-subst@⟨file⟩ 13
\@filef@und 155, 172, 188, 196, 11
\@filehook@set@CurrentFile . 152, 363
\@firstofone 352, 369
\@gobble 261
\@gobbletwo 260, 489, 21
\@ifundefined 484
\@input . 2
\@input@file@exists@with@hooks . 143
\@kernel@make@file@csname

. . . . 287, 290, 310, 313, 331, 334, 363
\@latex@info 487
\@namedef 482
\@nameuse 486
\@nil 168, 176, 369, 411, 413
\@onefilewithoptions 9
\@pkgextension 482, 492
\@set@curr@file@aux 363
\@swaptwoargs 153, 167, 187
\@tempswafalse 286, 309, 330
\@tempswatrue 286, 309, 330
\@undefined . . . 18, 19, 20, 21, 147,

189, 190, 197, 198, 199, 320, 341,
355, 359, 360, 492, 498, 499, 500, 22

\atveryend@DEPRECATED 580, 582
\declare@file@substitution

. 247, 567, 6
\disable@package@load 477, 21
\expandafter 21
\filename@ext 12
\if@tempswa 292, 293, 315, 316, 336, 337
\input@path 275, 18
\m@ne 280, 303, 326, 347
\reenable@package@load 477, 6

28

\reserved@a 161, 167, 168, 169
\set@curr@file 266, 19
\set@curr@file@aux 272, 278, 279
\set@curr@file@nosearch 266
\string@makeletter 169
\undeclare@file@substitution 247, 6
\unqu@tefilef@und 143
\unquote@name 349

tex commands:
\tex_escapechar:D 212, 226

tl commands:
\c_space_tl 553, 556
\tl_count:N 546
\tl_gset:Nn 51
\tl_if_empty:nTF

. . . 40, 46, 58, 107, 114, 116, 118, 416
\tl_new:N 8, 9, 10, 11, 59
\tl_set:Nn 81, 82, 83, 84

\tl_to_str:n 580
\tl_trim_spaces:n 41, 42

token commands:
\token_if_eq_meaning:NNTF . . 454, 466
\token_to_str:N 241

U
use commands:

\use:N 442, 446, 448, 465
\use_ii_iii:nnn . . . 216, 230, 242, 242
\use_iii:nnn 47
\use_none:n 131, 134

\UseHook 170, 171, 174, 175, 4
\UseOneTimeHook 4
\usepackage . 3

X
\xdef . 348, 368

29

	Contents
	1 Introduction
	1.1 Provided hooks
	1.2 General hooks for file reading
	1.3 Hooks for package and class files
	1.4 Hooks for \include files
	1.5 High-level interfaces for LaTeX
	1.6 Kernel, class, and package interfaces for LaTeX
	1.7 A sample package for structuring the log output

	2 The Implementation
	2.1 Document and package-level commands
	2.2 expl3 helpers
	2.3 Declaring the file-related hooks
	2.4 Patching LaTeX's \InputIfFileExists command
	2.5 Declaring a file substitution
	2.6 Selecting a file (\set@curr@file)
	2.7 Replacing a file and detecting loops
	2.7.1 The Tortoise and Hare algorithm

	2.8 Preventing a package from loading
	2.9 High-level interfaces for LaTeX
	2.10 Internal commands needed elsewhere

	3 A sample package for structuring the log output
	4 Package emulations
	4.1 Package atveryend emulation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	X

