patch-2.3.16 linux/arch/ppc/math-emu/op-common.h

Next file: linux/arch/ppc/math-emu/sfp-machine.h
Previous file: linux/arch/ppc/math-emu/op-4.h
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.3.15/linux/arch/ppc/math-emu/op-common.h linux/arch/ppc/math-emu/op-common.h
@@ -0,0 +1,690 @@
+
+#define _FP_DECL(wc, X)			\
+  _FP_I_TYPE X##_c, X##_s, X##_e;	\
+  _FP_FRAC_DECL_##wc(X)
+
+/*
+ * Finish truely unpacking a native fp value by classifying the kind
+ * of fp value and normalizing both the exponent and the fraction.
+ */
+
+#define _FP_UNPACK_CANONICAL(fs, wc, X)					\
+do {									\
+  switch (X##_e)							\
+  {									\
+  default:								\
+    _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs;				\
+    _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\
+    X##_e -= _FP_EXPBIAS_##fs;						\
+    X##_c = FP_CLS_NORMAL;						\
+    break;								\
+									\
+  case 0:								\
+    if (_FP_FRAC_ZEROP_##wc(X))						\
+      X##_c = FP_CLS_ZERO;						\
+    else								\
+      {									\
+	/* a denormalized number */					\
+	_FP_I_TYPE _shift;						\
+	_FP_FRAC_CLZ_##wc(_shift, X);					\
+	_shift -= _FP_FRACXBITS_##fs;					\
+	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\
+	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\
+	X##_c = FP_CLS_NORMAL;						\
+      }									\
+    break;								\
+									\
+  case _FP_EXPMAX_##fs:							\
+    if (_FP_FRAC_ZEROP_##wc(X))						\
+      X##_c = FP_CLS_INF;						\
+    else								\
+      /* we don't differentiate between signaling and quiet nans */	\
+      X##_c = FP_CLS_NAN;						\
+    break;								\
+  }									\
+} while (0)
+
+
+/*
+ * Before packing the bits back into the native fp result, take care
+ * of such mundane things as rounding and overflow.  Also, for some
+ * kinds of fp values, the original parts may not have been fully
+ * extracted -- but that is ok, we can regenerate them now.
+ */
+
+#define _FP_PACK_CANONICAL(fs, wc, X)				\
+({int __ret = 0;						\
+  switch (X##_c)						\
+  {								\
+  case FP_CLS_NORMAL:						\
+    X##_e += _FP_EXPBIAS_##fs;					\
+    if (X##_e > 0)						\
+      {								\
+	__ret |= _FP_ROUND(wc, X);				\
+	if (_FP_FRAC_OVERP_##wc(fs, X))				\
+	  {							\
+	    _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1));		\
+	    X##_e++;						\
+	  }							\
+	else							\
+	  _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\
+	if (X##_e >= _FP_EXPMAX_##fs)				\
+	  {							\
+	    /* overflow to infinity */				\
+	    X##_e = _FP_EXPMAX_##fs;				\
+	    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);		\
+            __ret |= EFLAG_OVERFLOW;				\
+	  }							\
+      }								\
+    else							\
+      {								\
+	/* we've got a denormalized number */			\
+	X##_e = -X##_e + 1;					\
+	if (X##_e <= _FP_WFRACBITS_##fs)			\
+	  {							\
+	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\
+	    __ret |= _FP_ROUND(wc, X);				\
+	    _FP_FRAC_SLL_##wc(X, 1);				\
+	    if (_FP_FRAC_OVERP_##wc(fs, X))			\
+	      {							\
+	        X##_e = 1;					\
+	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
+	      }							\
+	    else						\
+	      {							\
+		X##_e = 0;					\
+		_FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1);		\
+                __ret |= EFLAG_UNDERFLOW;			\
+	      }							\
+	  }							\
+	else							\
+	  {							\
+	    /* underflow to zero */				\
+	    X##_e = 0;						\
+	    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);		\
+            __ret |= EFLAG_UNDERFLOW;				\
+	  }							\
+      }								\
+    break;							\
+								\
+  case FP_CLS_ZERO:						\
+    X##_e = 0;							\
+    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
+    break;							\
+								\
+  case FP_CLS_INF:						\
+    X##_e = _FP_EXPMAX_##fs;					\
+    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
+    break;							\
+								\
+  case FP_CLS_NAN:						\
+    X##_e = _FP_EXPMAX_##fs;					\
+    if (!_FP_KEEPNANFRACP)					\
+      {								\
+	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\
+	X##_s = 0;						\
+      }								\
+    else							\
+      _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs;		\
+    break;							\
+  }								\
+  __ret;							\
+})
+
+
+/*
+ * Main addition routine.  The input values should be cooked.
+ */
+
+#define _FP_ADD(fs, wc, R, X, Y)					     \
+do {									     \
+  switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \
+  {									     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \
+    {									     \
+      /* shift the smaller number so that its exponent matches the larger */ \
+      _FP_I_TYPE diff = X##_e - Y##_e;					     \
+									     \
+      if (diff < 0)							     \
+	{								     \
+	  diff = -diff;							     \
+	  if (diff <= _FP_WFRACBITS_##fs)				     \
+	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \
+	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \
+	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \
+	  else								     \
+	    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			     \
+	  R##_e = Y##_e;						     \
+	}								     \
+      else								     \
+	{								     \
+	  if (diff > 0)							     \
+	    {								     \
+	      if (diff <= _FP_WFRACBITS_##fs)				     \
+	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \
+	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \
+	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \
+	      else							     \
+	        _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc);		     \
+	    }								     \
+	  R##_e = X##_e;						     \
+	}								     \
+									     \
+      R##_c = FP_CLS_NORMAL;						     \
+									     \
+      if (X##_s == Y##_s)						     \
+	{								     \
+	  R##_s = X##_s;						     \
+	  _FP_FRAC_ADD_##wc(R, X, Y);					     \
+	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \
+	    {								     \
+	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \
+	      R##_e++;							     \
+	    }								     \
+	}								     \
+      else								     \
+	{								     \
+	  R##_s = X##_s;						     \
+	  _FP_FRAC_SUB_##wc(R, X, Y);					     \
+	  if (_FP_FRAC_ZEROP_##wc(R))					     \
+	    {								     \
+	      /* return an exact zero */				     \
+	      if (FP_ROUNDMODE == FP_RND_MINF)				     \
+		R##_s |= Y##_s;						     \
+	      else							     \
+		R##_s &= Y##_s;						     \
+	      R##_c = FP_CLS_ZERO;					     \
+	    }								     \
+	  else								     \
+	    {								     \
+	      if (_FP_FRAC_NEGP_##wc(R))				     \
+		{							     \
+		  _FP_FRAC_SUB_##wc(R, Y, X);				     \
+		  R##_s = Y##_s;					     \
+		}							     \
+									     \
+	      /* renormalize after subtraction */			     \
+	      _FP_FRAC_CLZ_##wc(diff, R);				     \
+	      diff -= _FP_WFRACXBITS_##fs;				     \
+	      if (diff)							     \
+		{							     \
+		  R##_e -= diff;					     \
+		  _FP_FRAC_SLL_##wc(R, diff);				     \
+		}							     \
+	    }								     \
+	}								     \
+      break;								     \
+    }									     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \
+    _FP_CHOOSENAN(fs, wc, R, X, Y);					     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \
+    R##_e = X##_e;							     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \
+    _FP_FRAC_COPY_##wc(R, X);						     \
+    R##_s = X##_s;							     \
+    R##_c = X##_c;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \
+    R##_e = Y##_e;							     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \
+    _FP_FRAC_COPY_##wc(R, Y);						     \
+    R##_s = Y##_s;							     \
+    R##_c = Y##_c;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \
+    if (X##_s != Y##_s)							     \
+      {									     \
+	/* +INF + -INF => NAN */					     \
+	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \
+	R##_s = X##_s ^ Y##_s;						     \
+	R##_c = FP_CLS_NAN;						     \
+	break;								     \
+      }									     \
+    /* FALLTHRU */							     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \
+    R##_s = X##_s;							     \
+    R##_c = FP_CLS_INF;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \
+    R##_s = Y##_s;							     \
+    R##_c = FP_CLS_INF;							     \
+    break;								     \
+									     \
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \
+    /* make sure the sign is correct */					     \
+    if (FP_ROUNDMODE == FP_RND_MINF)					     \
+      R##_s = X##_s | Y##_s;						     \
+    else								     \
+      R##_s = X##_s & Y##_s;						     \
+    R##_c = FP_CLS_ZERO;						     \
+    break;								     \
+									     \
+  default:								     \
+    abort();								     \
+  }									     \
+} while (0)
+
+
+/*
+ * Main negation routine.  FIXME -- when we care about setting exception
+ * bits reliably, this will not do.  We should examine all of the fp classes.
+ */
+
+#define _FP_NEG(fs, wc, R, X)		\
+  do {					\
+    _FP_FRAC_COPY_##wc(R, X);		\
+    R##_c = X##_c;			\
+    R##_e = X##_e;			\
+    R##_s = 1 ^ X##_s;			\
+  } while (0)
+
+
+/*
+ * Main multiplication routine.  The input values should be cooked.
+ */
+
+#define _FP_MUL(fs, wc, R, X, Y)			\
+do {							\
+  R##_s = X##_s ^ Y##_s;				\
+  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
+  {							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_NORMAL;				\
+    R##_e = X##_e + Y##_e + 1;				\
+							\
+    _FP_MUL_MEAT_##fs(R,X,Y);				\
+							\
+    if (_FP_FRAC_OVERP_##wc(fs, R))			\
+      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\
+    else						\
+      R##_e--;						\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
+    _FP_CHOOSENAN(fs, wc, R, X, Y);			\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
+    R##_s = X##_s;					\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
+    _FP_FRAC_COPY_##wc(R, X);				\
+    R##_c = X##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
+    R##_s = Y##_s;					\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
+    _FP_FRAC_COPY_##wc(R, Y);				\
+    R##_c = Y##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
+    R##_c = FP_CLS_NAN;					\
+    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
+    break;						\
+							\
+  default:						\
+    abort();						\
+  }							\
+} while (0)
+
+
+/*
+ * Main division routine.  The input values should be cooked.
+ */
+
+#define _FP_DIV(fs, wc, R, X, Y)			\
+do {							\
+  R##_s = X##_s ^ Y##_s;				\
+  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
+  {							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_NORMAL;				\
+    R##_e = X##_e - Y##_e;				\
+							\
+    _FP_DIV_MEAT_##fs(R,X,Y);				\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
+    _FP_CHOOSENAN(fs, wc, R, X, Y);			\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
+    R##_s = X##_s;					\
+    _FP_FRAC_COPY_##wc(R, X);				\
+    R##_c = X##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
+    R##_s = Y##_s;					\
+    _FP_FRAC_COPY_##wc(R, Y);				\
+    R##_c = Y##_c;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_ZERO;				\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
+    R##_c = FP_CLS_INF;					\
+    break;						\
+							\
+  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
+  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
+    R##_c = FP_CLS_NAN;					\
+    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
+    break;						\
+							\
+  default:						\
+    abort();						\
+  }							\
+} while (0)
+
+
+/*
+ * Main differential comparison routine.  The inputs should be raw not
+ * cooked.  The return is -1,0,1 for normal values, 2 otherwise.
+ */
+
+#define _FP_CMP(fs, wc, ret, X, Y, un)					\
+  do {									\
+    /* NANs are unordered */						\
+    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\
+	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\
+      {									\
+	ret = un;							\
+      }									\
+    else								\
+      {									\
+        int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\
+        int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\
+									\
+	if (__x_zero && __y_zero)					\
+	  ret = 0;							\
+	else if (__x_zero)						\
+	  ret = Y##_s ? 1 : -1;						\
+	else if (__y_zero)						\
+	  ret = X##_s ? -1 : 1;						\
+	else if (X##_s != Y##_s)					\
+	  ret = X##_s ? -1 : 1;						\
+	else if (X##_e > Y##_e)						\
+	  ret = X##_s ? -1 : 1;						\
+	else if (X##_e < Y##_e)						\
+	  ret = X##_s ? 1 : -1;						\
+	else if (_FP_FRAC_GT_##wc(X, Y))				\
+	  ret = X##_s ? -1 : 1;						\
+	else if (_FP_FRAC_GT_##wc(Y, X))				\
+	  ret = X##_s ? 1 : -1;						\
+	else								\
+	  ret = 0;							\
+      }									\
+  } while (0)
+
+
+/* Simplification for strict equality.  */
+
+#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \
+  do {									  \
+    /* NANs are unordered */						  \
+    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \
+	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \
+      {									  \
+	ret = 1;							  \
+      }									  \
+    else								  \
+      {									  \
+	ret = !(X##_e == Y##_e						  \
+		&& _FP_FRAC_EQ_##wc(X, Y)				  \
+		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
+      }									  \
+  } while (0)
+
+/*
+ * Main square root routine.  The input value should be cooked.
+ */
+
+#define _FP_SQRT(fs, wc, R, X)						\
+do {									\
+    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\
+    _FP_W_TYPE q;							\
+    switch (X##_c)							\
+    {									\
+    case FP_CLS_NAN:							\
+    	R##_s = 0;							\
+    	R##_c = FP_CLS_NAN;						\
+    	_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
+    	break;								\
+    case FP_CLS_INF:							\
+    	if (X##_s)							\
+    	  {								\
+    	    R##_s = 0;							\
+	    R##_c = FP_CLS_NAN; /* sNAN */				\
+    	  }								\
+    	else								\
+    	  {								\
+    	    R##_s = 0;							\
+    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\
+    	  }								\
+    	break;								\
+    case FP_CLS_ZERO:							\
+	R##_s = X##_s;							\
+    	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\
+	break;								\
+    case FP_CLS_NORMAL:							\
+    	R##_s = 0;							\
+        if (X##_s)							\
+          {								\
+	    R##_c = FP_CLS_NAN; /* sNAN */				\
+	    break;							\
+          }								\
+    	R##_c = FP_CLS_NORMAL;						\
+        if (X##_e & 1)							\
+          _FP_FRAC_SLL_##wc(X, 1);					\
+        R##_e = X##_e >> 1;						\
+        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\
+        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\
+        q = _FP_OVERFLOW_##fs;						\
+        _FP_FRAC_SLL_##wc(X, 1);					\
+        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\
+        _FP_FRAC_SRL_##wc(R, 1);					\
+    }									\
+  } while (0)
+
+/*
+ * Convert from FP to integer
+ */
+
+/* "When a NaN, infinity, large positive argument >= 2147483648.0, or 
+ * large negative argument <= -2147483649.0 is converted to an integer,
+ * the invalid_current bit...should be set and fp_exception_IEEE_754 should
+ * be raised. If the floating point invalid trap is disabled, no trap occurs
+ * and a numerical result is generated: if the sign bit of the operand
+ * is 0, the result is 2147483647; if the sign bit of the operand is 1,
+ * the result is -2147483648."
+ * Similarly for conversion to extended ints, except that the boundaries
+ * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and
+ * -2^63 for s=1.
+ * -- SPARC Architecture Manual V9, Appendix B, which specifies how
+ * SPARCs resolve implementation dependencies in the IEEE-754 spec.
+ * I don't believe that the code below follows this. I'm not even sure
+ * it's right! 
+ * It doesn't cope with needing to convert to an n bit integer when there
+ * is no n bit integer type. Fortunately gcc provides long long so this
+ * isn't a problem for sparc32.
+ * I have, however, fixed its NaN handling to conform as above.
+ *         -- PMM 02/1998
+ * NB: rsigned is not 'is r declared signed?' but 'should the value stored
+ * in r be signed or unsigned?'. r is always(?) declared unsigned.
+ * Comments below are mine, BTW -- PMM 
+ */
+#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)			\
+  do {									\
+    switch (X##_c)							\
+      {									\
+      case FP_CLS_NORMAL:						\
+	if (X##_e < 0)							\
+	  {								\
+	  /* case FP_CLS_NAN: see above! */				\
+	  case FP_CLS_ZERO:						\
+	    r = 0;							\
+	  }								\
+	else if (X##_e >= rsize - (rsigned != 0))			\
+	  {	/* overflow */						\
+	  case FP_CLS_NAN:                                              \
+          case FP_CLS_INF:						\
+	    if (rsigned)						\
+	      {								\
+		r = 1;							\
+		r <<= rsize - 1;					\
+		r -= 1 - X##_s;						\
+	      }								\
+	    else							\
+	      {								\
+		r = 0;							\
+		if (!X##_s)						\
+		  r = ~r;						\
+	      }								\
+	  }								\
+	else								\
+	  {								\
+	    if (_FP_W_TYPE_SIZE*wc < rsize)				\
+	      {								\
+		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
+		r <<= X##_e - _FP_WFRACBITS_##fs;			\
+	      }								\
+	    else							\
+	      {								\
+		if (X##_e >= _FP_WFRACBITS_##fs)			\
+		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\
+		else							\
+		  _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\
+		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
+	      }								\
+	    if (rsigned && X##_s)					\
+	      r = -r;							\
+	  }								\
+	break;								\
+      }									\
+  } while (0)
+
+#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\
+  do {									\
+    if (r)								\
+      {									\
+	X##_c = FP_CLS_NORMAL;						\
+									\
+	if ((X##_s = (r < 0)))						\
+	  r = -r;							\
+	/* Note that `r' is now considered unsigned, so we don't have	\
+	   to worry about the single signed overflow case.  */		\
+									\
+	if (rsize <= _FP_W_TYPE_SIZE)					\
+	  __FP_CLZ(X##_e, r);						\
+	else								\
+	  __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), 	\
+		     (_FP_W_TYPE)r);					\
+	if (rsize < _FP_W_TYPE_SIZE)					\
+		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\
+	X##_e = rsize - X##_e - 1;					\
+									\
+	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e)	\
+	  __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize);	\
+	r &= ~((_FP_W_TYPE)1 << X##_e);					\
+	_FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize);	\
+	_FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));		\
+      }									\
+    else								\
+      {									\
+	X##_c = FP_CLS_ZERO, X##_s = 0;					\
+      }									\
+  } while (0)
+
+
+#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\
+  do {							\
+    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\
+    D##_e = S##_e;					\
+    D##_c = S##_c;					\
+    D##_s = S##_s;					\
+  } while (0)
+
+/*
+ * Helper primitives.
+ */
+
+/* Count leading zeros in a word.  */
+
+#ifndef __FP_CLZ
+#if _FP_W_TYPE_SIZE < 64
+/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
+#define __FP_CLZ(r, x)				\
+  do {						\
+    _FP_W_TYPE _t = (x);			\
+    r = _FP_W_TYPE_SIZE - 1;			\
+    if (_t > 0xffff) r -= 16;			\
+    if (_t > 0xffff) _t >>= 16;			\
+    if (_t > 0xff) r -= 8;			\
+    if (_t > 0xff) _t >>= 8;			\
+    if (_t & 0xf0) r -= 4;			\
+    if (_t & 0xf0) _t >>= 4;			\
+    if (_t & 0xc) r -= 2;			\
+    if (_t & 0xc) _t >>= 2;			\
+    if (_t & 0x2) r -= 1;			\
+  } while (0)
+#else /* not _FP_W_TYPE_SIZE < 64 */
+#define __FP_CLZ(r, x)				\
+  do {						\
+    _FP_W_TYPE _t = (x);			\
+    r = _FP_W_TYPE_SIZE - 1;			\
+    if (_t > 0xffffffff) r -= 32;		\
+    if (_t > 0xffffffff) _t >>= 32;		\
+    if (_t > 0xffff) r -= 16;			\
+    if (_t > 0xffff) _t >>= 16;			\
+    if (_t > 0xff) r -= 8;			\
+    if (_t > 0xff) _t >>= 8;			\
+    if (_t & 0xf0) r -= 4;			\
+    if (_t & 0xf0) _t >>= 4;			\
+    if (_t & 0xc) r -= 2;			\
+    if (_t & 0xc) _t >>= 2;			\
+    if (_t & 0x2) r -= 1;			\
+  } while (0)
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+#endif /* ndef __FP_CLZ */
+
+#define _FP_DIV_HELP_imm(q, r, n, d)		\
+  do {						\
+    q = n / d, r = n % d;			\
+  } while (0)
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)