Internet-Draft IGP Extensions for Deterministic Link June 2024
Xiong & Zhu Expires 29 December 2024 [Page]
Workgroup:
LSR
Internet-Draft:
draft-xiong-lsr-deterministic-link-00
Published:
Intended Status:
Standards Track
Expires:
Authors:
Q. Xiong
ZTE Corporation
X. Zhu
ZTE Corporation

IGP Extensions for Deterministic Link

Abstract

This document proposes the deterministic link to provide an one-dimensional metric to indicate the deterministic forwarding capabilities at different levels and proposes the deterministic links distribution by IGP extensions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 December 2024.

Table of Contents

1. Introduction

According to [RFC8655], Deterministic Networking (DetNet) operates at the IP layer and delivers service which provides extremely low data loss rates and bounded latency within a network domain. The bounded latency indicates the minimum and maximum end-to-end latency from source to destination and bounded jitter (packet delay variation). [I-D.ietf-detnet-scaling-requirements] has described the enhanced requirements for DetNet enhanced data plane including the deterministic latency guarantees. As per [I-D.ietf-detnet-controller-plane-framework], network nodes need to collect topology information and deterministic capabilities through IGP.

The computing method of end-to-end delay bounds is defined in [RFC9320]. It is the sum of the six delays in bounded latency model. It is the sum of non-queuing delay bound and queuing delay bound. The upper bounds of queuing delay depends on the queuing mechanisms deployed along the path. For example, a link with a queuing mechanism that does not guarantee a bounded delay is a non-deterministic link and a link with a time-based queuing mechanism that can provide deterministic latency guarantee is called a deterministic link. The delay of a deterministic link is consist of the propagation delay of the packet on the link and the queuing delay of the packet at the node. A deterministic link can be a sub-network that provides deterministic transmission or a Point-to-Point (P2P) link.

This document proposes the deterministic link to provide an one-dimensional metric to indicate the deterministic forwarding capabilities at different levels and proposes the deterministic links distribution by IGP extensions.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. Terminology

The terminology is defined as [RFC8655] and [RFC9320].

This document proposes the deterministic link to provide an one-dimensional metric to indicate the deterministic forwarding capabilities at different levels. The deterministic links can shield the differences from underlying forwarding mechanisms.

As per [RFC9320], six types of delays are defined in timing Model of DetNet. And the DetNet domain can also be modeling as deterministic links and nodes as shown in Figure 1. The deterministic node delay is constant while the deterministic link delay is variable within bounded latency. The end-to-end bounded latency depends on the sum of the deterministic link delay.


           DetNet transit node A                 DetNet transit node B
      +-------------------------+             +------------------------+
      |              Queuing    |             |              Queuing   |
      |   Regulator subsystem   |             |   Regulator subsystem  |
      |   +-+-+-+-+ +-+-+-+-+   |             |   +-+-+-+-+ +-+-+-+-+  |
   -->+   | | | | | | | | | +   +------------>+   | | | | | | | | | +  +--->
      |   +-+-+-+-+ +-+-+-+-+   |             |   +-+-+-+-+ +-+-+-+-+  |
      |                         |             |                        |
      +-------------------------+             +------------------------+
      |-->|------->|------->|-->|------------>|-->|------->|------>|-->|-->|
  2,3  4      5        6      1      2,3       4      5        6     1   2,3
          |---- Deterministic Link Delay ---->|

                 Deterministic Links     Deterministic Node
      | A |---------------------------------->| B |----------------------->|

Figure 1: Deterministic Link Model

3.2. Classification of Deterministic Links

There are a number of deterministic links between deterministic nodes. And each deterministic link provides different level of deterministic forwarding capabilities indicated by Deterministic Class-Type (DT).

Deterministic Class-Type (DT): indicate the set of Traffic Trunks crossing a deterministic link that is governed by a specific set of bounded latency constraints and QoS requirements of deterministic guarantees such as tight jitter,strict latency, loose latency and so on. DT is used for the purposes of deterministic link resource planning, reservation and allocation, deterministic link resource constraint-based routing and admission control. A given Traffic Trunk belongs to the same DT on all links.

The scheduling type of the deterministic link depends on the classification of the queuing solutions. Many variations and extensions of queuing mechanisms have been proposed to guarantee the deterministic latency in DetNet such as ECQF [IEEE 802.1Qdv], Multi-CQF [I-D.dang-queuing-with-multiple-cyclic-buffers], TCQF [I-D.eckert-detnet-tcqf], CSQF [I-D.chen-detnet-sr-based-bounded-latency], TQF [I-D.peng-detnet-packet-timeslot-mechanism], C-SCORE [I-D.joung-detnet-stateless-fair-queuing], EDF[I-D.peng-detnet-deadline-based-forwarding], gLBF [I-D.eckert-detnet-glbf] and so on. [I-D.ietf-detnet-dataplane-taxonomy] has described the classification criteria of the solutions.

[I-D.xiong-lsr-time-resource] has proposed the Time-based Resources Container (TRC) to indicate the capabilities with time-based resources. It can be used for deterministic link to reserve the corresponding scheduling resources such as queuing, buffer and bandwidth to guarantee the deterministic capability.

For example, three deterministic links with guaranteed jitter are supported between the Node A and Node B as following shown.

4. ISIS Extensions of Deterministic Link

This document defines new IS-IS TE sub-TLVs to distribute the deterministic link attributes at TE link and it can be announced in TLVs 22, 23, 141, 222, and 223" registry.

A new IS-IS Deterministic Link Sub-TLV is defined and the format is as shown in the following figure.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Type               |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               DT            |     Link Scheduling Type      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                        Sub-sub-TLV                          ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


Figure 2: Deterministic Link Sub-TLV

where:

A new IS-IS Deterministic Link Maximum Reservable Bandwidth Sub-sub-TLV is defined and the format is as shown in the following figure.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Type               |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Maximum Reservable Bandwidth                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: Deterministic Link Maximum Reserved Bandwidth sub-sub-TLV

where:

  • Type: Set to TBD2.
  • Length: Contains the total length of the sub-sub-TLV in octets. The Length MUST be at least 8 and MUST be a multiple of 4.
  • Maximum Reservable Bandwidth: indicates the maximum bandwidth which can be reserved for this deterministic link.

A new IS-IS Deterministic Link Available Bandwidth Sub-sub-TLV is defined and the format is as shown in the following figure.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Type               |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Available Bandwidth                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4: Deterministic Link Available Bandwidth sub-sub-TLV

where:

  • Type: Set to TBD3.
  • Length: Contains the total length of the sub-sub-TLV in octets. The Length MUST be at least 8 and MUST be a multiple of 4.
  • Available Bandwidth: indicates the available bandwidth of this deterministic link.

A new IS-IS Deterministic Link Delay Sub-sub-TLV is defined and the format is as shown in the following figure.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Type               |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |A| Reserved  |           Maximum Deterministic Link Delay    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Reserved  |           Minimum Deterministic Link Delay    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Reserved  |  Maximum Deterministic Link Delay Variation   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5: Deterministic Link Delay sub-sub-TLV

where:

  • Type: Set to TBD4.
  • Length: Contains the total length of the sub-sub-TLV in octets. The Length MUST be at least 8 and MUST be a multiple of 4.
  • A: The A bit represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold.
  • Maximum Deterministic Link Delay: indicates the maximum deterministic link delay value (in microseconds) over a configurable interval, encoded as an integer value.
  • Minimum Deterministic Link Delay: indicates the minimum deterministic link delay value (in microseconds) over a configurable interval, encoded as an integer value.
  • Maximum Deterministic Link Delay Variation: indicates the maximum deterministic link delay variation value over a configurable interval in microseconds, encoded as an integer value.

5. OSPF Extensions of Deterministic Links

TBA

6. Security Considerations

Security considerations for DetNet are covered in the DetNet Architecture [RFC8655] and DetNet controller plane [I-D.ietf-detnet-controller-plane-framework] and DetNet security considerations [RFC9055]. The security considerations specified in [RFC5304] are also applicable to the IGP procedures defined in this document.

7. IANA Considerations

IANA is requested to register the following sub-TLVs in the "Sub-TLVs for TLVs 22, 23, 141, 222,and 223" registry:


    Type    Description
   ------------------------------------
    TBD1    Deterministic Link Sub-TLV
    TBD2    Deterministic Link Maximum Reservable Bandwidth Sub-sub-TLV
    TBD3    Deterministic Link Available Bandwidth Sub-sub-TLV
    TBD4    Deterministic Link Delay Sub-sub-TLV

8. Acknowledgements

The authors would like to acknowledge Aihua Liu, Bin Tan for their thorough review and very helpful comments.

9. References

9.1. Normative References

[I-D.chen-detnet-sr-based-bounded-latency]
Chen, M., Geng, X., Li, Z., Joung, J., and J. Ryoo, "Segment Routing (SR) Based Bounded Latency", Work in Progress, Internet-Draft, draft-chen-detnet-sr-based-bounded-latency-03, , <https://datatracker.ietf.org/doc/html/draft-chen-detnet-sr-based-bounded-latency-03>.
[I-D.dang-queuing-with-multiple-cyclic-buffers]
Liu, B. and J. Dang, "A Queuing Mechanism with Multiple Cyclic Buffers", Work in Progress, Internet-Draft, draft-dang-queuing-with-multiple-cyclic-buffers-00, , <https://datatracker.ietf.org/doc/html/draft-dang-queuing-with-multiple-cyclic-buffers-00>.
[I-D.eckert-detnet-glbf]
Eckert, T. T., Clemm, A., Bryant, S., and S. Hommes, "Deterministic Networking (DetNet) Data Plane - guaranteed Latency Based Forwarding (gLBF) for bounded latency with low jitter and asynchronous forwarding in Deterministic Networks", Work in Progress, Internet-Draft, draft-eckert-detnet-glbf-02, , <https://datatracker.ietf.org/doc/html/draft-eckert-detnet-glbf-02>.
[I-D.eckert-detnet-tcqf]
Eckert, T. T., Li, Y., Bryant, S., Malis, A. G., Ryoo, J., Liu, P., Li, G., Ren, S., and F. Yang, "Deterministic Networking (DetNet) Data Plane - Tagged Cyclic Queuing and Forwarding (TCQF) for bounded latency with low jitter in large scale DetNets", Work in Progress, Internet-Draft, draft-eckert-detnet-tcqf-05, , <https://datatracker.ietf.org/doc/html/draft-eckert-detnet-tcqf-05>.
[I-D.ietf-detnet-controller-plane-framework]
Malis, A. G., Geng, X., Chen, M., Qin, F., Varga, B., and C. J. Bernardos, "Deterministic Networking (DetNet) Controller Plane Framework", Work in Progress, Internet-Draft, draft-ietf-detnet-controller-plane-framework-06, , <https://datatracker.ietf.org/doc/html/draft-ietf-detnet-controller-plane-framework-06>.
[I-D.ietf-detnet-dataplane-taxonomy]
Joung, J., Geng, X., Peng, S., and T. T. Eckert, "Dataplane Enhancement Taxonomy", Work in Progress, Internet-Draft, draft-ietf-detnet-dataplane-taxonomy-00, , <https://datatracker.ietf.org/doc/html/draft-ietf-detnet-dataplane-taxonomy-00>.
[I-D.ietf-detnet-scaling-requirements]
Liu, P., Li, Y., Eckert, T. T., Xiong, Q., Ryoo, J., zhushiyin, and X. Geng, "Requirements for Scaling Deterministic Networks", Work in Progress, Internet-Draft, draft-ietf-detnet-scaling-requirements-06, , <https://datatracker.ietf.org/doc/html/draft-ietf-detnet-scaling-requirements-06>.
[I-D.joung-detnet-stateless-fair-queuing]
Joung, J., Ryoo, J., Cheung, T., Li, Y., and P. Liu, "Latency Guarantee with Stateless Fair Queuing", Work in Progress, Internet-Draft, draft-joung-detnet-stateless-fair-queuing-02, , <https://datatracker.ietf.org/doc/html/draft-joung-detnet-stateless-fair-queuing-02>.
[I-D.peng-detnet-deadline-based-forwarding]
Peng, S., Du, Z., Basu, K., cheng, Yang, D., and C. Liu, "Deadline Based Deterministic Forwarding", Work in Progress, Internet-Draft, draft-peng-detnet-deadline-based-forwarding-10, , <https://datatracker.ietf.org/doc/html/draft-peng-detnet-deadline-based-forwarding-10>.
[I-D.peng-detnet-packet-timeslot-mechanism]
Peng, S., Liu, P., Basu, K., Liu, A., Yang, D., and G. Peng, "Timeslot Queueing and Forwarding Mechanism", Work in Progress, Internet-Draft, draft-peng-detnet-packet-timeslot-mechanism-07, , <https://datatracker.ietf.org/doc/html/draft-peng-detnet-packet-timeslot-mechanism-07>.
[I-D.xiong-lsr-time-resource]
Xiong, Q. and X. Zhu, "IGP Extensions for Time-based Resource", Work in Progress, Internet-Draft, draft-xiong-lsr-time-resource-00, , <https://datatracker.ietf.org/doc/html/draft-xiong-lsr-time-resource-00>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC5304]
Li, T. and R. Atkinson, "IS-IS Cryptographic Authentication", RFC 5304, DOI 10.17487/RFC5304, , <https://www.rfc-editor.org/info/rfc5304>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[RFC8655]
Finn, N., Thubert, P., Varga, B., and J. Farkas, "Deterministic Networking Architecture", RFC 8655, DOI 10.17487/RFC8655, , <https://www.rfc-editor.org/info/rfc8655>.
[RFC8664]
Sivabalan, S., Filsfils, C., Tantsura, J., Henderickx, W., and J. Hardwick, "Path Computation Element Communication Protocol (PCEP) Extensions for Segment Routing", RFC 8664, DOI 10.17487/RFC8664, , <https://www.rfc-editor.org/info/rfc8664>.
[RFC9055]
Grossman, E., Ed., Mizrahi, T., and A. Hacker, "Deterministic Networking (DetNet) Security Considerations", RFC 9055, DOI 10.17487/RFC9055, , <https://www.rfc-editor.org/info/rfc9055>.
[RFC9320]
Finn, N., Le Boudec, J.-Y., Mohammadpour, E., Zhang, J., and B. Varga, "Deterministic Networking (DetNet) Bounded Latency", RFC 9320, DOI 10.17487/RFC9320, , <https://www.rfc-editor.org/info/rfc9320>.

Authors' Addresses

Quan Xiong
ZTE Corporation
China
Xiangyang Zhu
ZTE Corporation
China