Network Working Group A. Huang Feng
Internet-Draft P. Francois
Updates: RFC7950 RFC7951 RFC9254 (if approved) INSA-Lyon
Intended status: Standards Track T. Graf
Expires: 31 July 2025 Swisscom
B. Claise
Huawei
27 January 2025
Extensible YANG Model for YANG-Push Notifications
draft-netana-netconf-notif-envelope-02
Abstract
This document defines a new extensible notification structure,
defined in YANG, for use in YANG-Push Notification messages enabling
any YANG compatible encodings such as XML, JSON or CBOR.
Additionally, it defines two essential extensions to this structure,
the support of a hostname and a sequence number and the support of a
timestamp caracterizing the moment when the changed data was
observed.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 31 July 2025.
Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Huang Feng, et al. Expires 31 July 2025 [Page 1]
Internet-Draft YANG-Push Notification Envelope January 2025
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4
2. Relationship to past documents . . . . . . . . . . . . . . . 4
2.1. Relationship to RFC5277 . . . . . . . . . . . . . . . . . 4
2.2. Relationship to RFC8639 . . . . . . . . . . . . . . . . . 5
2.3. Relationship to RFC7950 . . . . . . . . . . . . . . . . . 5
2.4. Relationship to RFC7951 . . . . . . . . . . . . . . . . . 5
2.5. Relationship to RFC9254 . . . . . . . . . . . . . . . . . 5
3. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1. Enabling the Notification Envelope . . . . . . . . . . . 7
3.2. Discovering the support of this model . . . . . . . . . . 8
3.3. Notification Envelope . . . . . . . . . . . . . . . . . . 8
3.3.1. Base Notification Model . . . . . . . . . . . . . . . 8
3.3.2. Encoding of the Notification model . . . . . . . . . 9
3.4. Extensions for the Notification Envelope . . . . . . . . 13
3.4.1. Support of Hostname and Sequencing . . . . . . . . . 14
3.5. Extensions for the YANG-Push Envelope . . . . . . . . . . 16
3.5.1. Support of Observation Timestamp . . . . . . . . . . 16
4. Operational Considerations . . . . . . . . . . . . . . . . . 21
5. YANG Modules . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1. The 'ietf-yp-notification' Module . . . . . . . . . . . . 21
5.1.1. YANG ietf-yp-notification Tree Diagram . . . . . . . 22
5.1.2. YANG ietf-yp-notification Module . . . . . . . . . . 22
5.2. The 'ietf-yp-observation' Module . . . . . . . . . . . . 27
5.2.1. YANG ietf-yp-observation Tree Diagram . . . . . . . . 27
5.2.2. YANG ietf-yp-observation Module . . . . . . . . . . . 27
6. Implementation Status . . . . . . . . . . . . . . . . . . . . 30
6.1. Huawei VRP . . . . . . . . . . . . . . . . . . . . . . . 31
6.2. 6WIND VSR . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3. Cisco IOS XR . . . . . . . . . . . . . . . . . . . . . . 31
7. Security Considerations . . . . . . . . . . . . . . . . . . . 31
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 31
8.1. URI . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2. YANG module name . . . . . . . . . . . . . . . . . . . . 32
8.3. YANG SID-file . . . . . . . . . . . . . . . . . . . . . . 32
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 32
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 32
10.1. Normative References . . . . . . . . . . . . . . . . . . 32
10.2. Informative References . . . . . . . . . . . . . . . . . 34
Appendix A. .sid file . . . . . . . . . . . . . . . . . . . . . 35
Huang Feng, et al. Expires 31 July 2025 [Page 2]
Internet-Draft YANG-Push Notification Envelope January 2025
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 36
1. Introduction
YANG-Push [RFC8639] allows publishers to send notifications to a data
collection. The YANG-Push receiver decodes the message and
optionally validates the header and the content before forwarding to
the next process in the data collection system.
The notification container from YANG-Push is currently based on the
XML model from NETCONF Event Notifications [RFC5277]. This model has
the drawback that only a single mandatory "eventTime" leaf is defined
and does offer a way to extend this header with new notification
metadata. Additionally, this XML model is only valid for XML-based
environments. When messages are encoded in other YANG encodings,
such as JSON [RFC7951] or CBOR [RFC9254], validators cannot use YANG
to validate the message schema.
YANG data consumer receiving notifications require additional
notification metadata to understand the full context of the received
message. For example, in addition to the timestamp of when the event
was encoded, it is also important to know the timestamp when the
metrics were observed, the hostname that sourced the message, and
have sequence numbers in generated messages so that lost notification
messages can be detected in unreliable transports. This additional
notification metadata is also helpful to correlate the data with
other sources of Network Telemetry [RFC9232] information.
For such reasons, this document proposes the following:
* First, it provides an extensible YANG notification header allowing
implementors and IETF contributors to easily add new notification
metadata to the notification message.
* Second, it provides the first crucial extensions enabling
operators to identify which network node publishes which YANG-Push
messages and when the events or metrics were observed on the
network node.
* And finally, it provides a way to enable and disable these
extensions globally at the server, making the coexistence of
different YANG-Push and NETCONF Event Notification [RFC5277]
possible.
Huang Feng, et al. Expires 31 July 2025 [Page 3]
Internet-Draft YANG-Push Notification Envelope January 2025
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The terms "subscriber", "publisher", and "receiver" are used as
defined in [RFC8639].
The terms "client" is used as defined in [RFC6241] for NETCONF and
[RFC8040] for RESTCONF.
The terms "implementation-time information" and "runtime information"
are used as defined in [RFC9196].
In addition, this document defines the following terms:
Notification Metadata: Additional data describing the context of a
notification that is sent in each message, e.g. which node generated
the messsage or at which time the notification was published.
Notification Envelope: YANG structure encapsulating the payload of a
notification, allowing the inclusion of metadata.
2. Relationship to past documents
This section shows the relationship to [RFC5277], [RFC8639],
[RFC7951] and [RFC9254].
2.1. Relationship to RFC5277
[RFC5277] defines a mechanism for NETCONF nodes to send notifications
to a collector. These are the key relationships between the current
document and [RFC5277]:
* This document does not change the header defined by [RFC5277] nor
update any behavior defined in [RFC5277]. Implementations of
[RFC5277] use the header defined in Section 2.2.1 of [RFC5277].
* The co-existance of the notification model defined in [RFC5277]
and the model defined in the current document is possible. The
co-existence is discussed in Section 4.
Huang Feng, et al. Expires 31 July 2025 [Page 4]
Internet-Draft YANG-Push Notification Envelope January 2025
2.2. Relationship to RFC8639
Subscribed Notifications [RFC8639] defines a mechanism on top of
[RFC5277] to stream notifications from the NETCONF node. These are
the key relationships between the current document and [RFC8639]:
* Section 1.4 of [RFC8639] states that the solution uses the
notification header defined in [RFC5277]. This document proposes
a new header, which clients can enable and replace the previously
[RFC5277] defined. When this new header is used, notification
messages are encoded as defined in Section 3.3.
* Section 2.4.2 of [RFC8639] defines how a YANG-Push subscription is
defined via an the 'establish-subscription' RPC. This document
extends the RPCs from Subscribed Notifications [RFC8639] to
support enabling the new header defined in this document.
2.3. Relationship to RFC7950
[RFC7950] defines how YANG data is encoded in XML. These are the key
relationship points between the current document and [RFC7950]:
* Section 7.16.2 of [RFC7950] defines the XML encoding of YANG
notification. This document defines a new header for such
notifications. When a YANG-Push publisher implements the
specifications in this document with the XML encoding, the
notifications are encoded according to Section 3.3.2.1 in this
document.
2.4. Relationship to RFC7951
[RFC7951] defines how YANG data is encoded using JSON. These are the
key relationship points between the current document and [RFC7951]:
* [RFC7951] does not define explicitly how a YANG notification
should be encoded using JSON encoding. This document specifies a
new header for such notifications. When a YANG-Push publisher
implements the specifications in this document with JSON encoding,
the notifications are encoded according to Section 3.3.2.2 in this
document.
2.5. Relationship to RFC9254
[RFC9254] defines how YANG data is encoded using CBOR. These are the
key relationship points between the current document and [RFC9254]:
Huang Feng, et al. Expires 31 July 2025 [Page 5]
Internet-Draft YANG-Push Notification Envelope January 2025
* [RFC9254] does not define explicitly how a YANG notification
should be encoded using CBOR encoding. When a YANG-Push publisher
implements the specifications in this document in CBOR encoding,
the notifications are encoded according to Section 3.3.2.3 in this
document.
3. Solution
Section 4.2.10 of [RFC7950] defines the encoding of YANG
notifications. A notification is created by defining a
'notification' statement in the YANG module. When a NETCONF server
sends this notification, it is composed of two parts: a header
containing notification metadata which encapsulates the content and
the content defined by the 'notification' statement.
In YANG 1.1 [RFC7950], the notification header is based on the model
defined in [RFC5277] which contains a single metadata 'eventTime'
leaf. An example extracted from [RFC7950] is shown in the following
XML:
2007-09-01T10:00:00Z
so-1/2/3.0
up
down
This document defines a new notification header and enables extending
this header with new notification metadata. The notification header
and extensions defined in the following sections are to be used in
YANG-Push [RFC8641] environments and can be implemented with NETCONF
[RFC6241] and RESTCONF [RFC8040]. Thus, when enabled, this new
header replaces the notifications defined in Subscribed Notifications
[RFC8639] and YANG-Push [RFC8641] notifications globally for all the
entire server.
Section 3.1 defines how a client enables the header defined in this
document. Section 3.2 extends the model from [RFC9196] to enable
clients to discover the capability of using the new notification
header for both implementation-time information and runtime
information. Lastly, Section 3.3.2 defines the new notification
header and how it is encoded using XML, JSON and CBOR.
Huang Feng, et al. Expires 31 July 2025 [Page 6]
Internet-Draft YANG-Push Notification Envelope January 2025
3.1. Enabling the Notification Envelope
The use of the notification envelope defined in this document can be
enabled during the configuration of a YANG-Push subscription. This
document augments the "ietf-subscribed-notification" model [RFC8639]
to support the configuration of "notification-envelope". When
enabled, all the notifications defined in Subscribed Notification
[RFC8639] and YANG-Push [RFC8641] are encoded as defined in
Section 3.3.
module: ietf-yp-notification
augment /sn:subscriptions:
+--ro enable-notification-envelope? boolean
+--ro metadata
rpcs:
+---x enable-notif-envelope
+---w input
+---w enable-notification-envelope? boolean
+---w metadata
When the node 'enable-notification-envelope' is set to true, the
notifications published by a YANG-Push publisher MUST use the header
defined in Section 3.3.1. If any notification metadata is enabled
during the configuration of the subscription, the notification
metadata nodes MUST be present in the header. When this node is
disabled, notifications are encoded following [RFC5277].
This node 'enable-notification-envelope' MUST be enabled and disabled
via the RPC 'enable-notif-envelope' only. This node MUST be changed
prior to the creation of any Dynamic Subscriptions. If any Dynamic
Subscription is sending YANG-Push notifications at the time of
modifying this node, the server MUST refuse the change and send an
'invalid-notification-envelope-config' error.
When a client changes this node 'enable-notification-envelope', any
new Dynamic Subscriptions send YANG-Push notifications according to
the new value of this node. In Configured Subscriptions, when the
node 'enable-notification-envelope' changes, the YANG-Push
subscription is restarted using the header defined by this node, i.e.
encoded as Section 3.3.1 when enabled and using [RFC5277] if
disabled.
Huang Feng, et al. Expires 31 July 2025 [Page 7]
Internet-Draft YANG-Push Notification Envelope January 2025
3.2. Discovering the support of this model
A client can discover the support of 'notification-envelope' model
through the capabilities model defined in [RFC9196]. This documents
extends the 'ietf-notification-capabilities' model with:
* A container containing a leaf 'notification-envelope', stating
that the YANG notification can be encoded following the
notification-envelope model.
* A container 'metadata' containing all the supported extensions to
this header. Extensions are defined in Section 3.4.
The YANG models defined in Section 5 augments the 'ietf-notification-
capabilities' model with the leaf and container listed above.
augment /sysc:system-capabilities/notc:subscription-capabilities:
+--ro notification-metadata
+--ro notification-envelope? boolean {notification-envelope}?
+--ro metadata
This model can be retrieved via a NETCONF RPC.
3.3. Notification Envelope
This section defines how YANG notifications are structured when the
notification envelope is enabled on YANG-Push subscriptions. The
following sections define how this model is encoded in XML, JSON and
CBOR.
3.3.1. Base Notification Model
When a YANG-Push publisher uses the notification model defined in
this document, the notification is structured as follows:
* The notification is encapsulated in a root "envelope" container.
* The header of the notification contains the notification metadata
that is enabled during the configuration of the subscription as a
child nodes of the root "notification-envelope" container.
* The content of the notification defined by the 'notification'
statement is encoded in the 'notification-contents' leaf.
* The 'notification-contents' element SHOULD be located at the end
of the notification envelop structure.
Huang Feng, et al. Expires 31 July 2025 [Page 8]
Internet-Draft YANG-Push Notification Envelope January 2025
The following YANG tree [RFC8340] illustrates the notification
envelope supporting only the mandatory metadata 'event-time'. See
Section 3.4 for more extensions to this header.
notifications:
+---n envelope
+--ro event-time yang:date-and-time
+--ro notification-contents?
3.3.2. Encoding of the Notification model
The YANG notification can be encoded using XML
[W3C.REC-xml-20001006][RFC7951], JSON [RFC7951] and CBOR [RFC9254].
3.3.2.1. XML encoding
A YANG notification encoded in XML is structured as a root "envelope"
container. The namespace of this container is the namespace defined
in the YANG module "ietf-yp-notification":
urn:ietf:params:xml:ns:yang:ietf-yp-notification
Two mandatory child nodes within the "envelope" container are
expected, representing the event time and the notification payload.
The "event-time" node is defined within the same XML namespace as the
"envelope" container. The "event-time" node MUST be compliant with
[RFC3339]. Other notification metadata defined within the YANG
module defined in Section 5.1.2 MUST use the same XML namespace. See
Section 3.4 for more details.
When other notification metadata is enabled through configuration,
the supplementary nodes are encoded at the same level of the
mandatory "event-time" node and use the XML namespace defined in the
YANG module.
The content of the notification that is defined by the 'notification'
statement is encoded in the "notification-contents" node. The name
and namespace of this payload element are determined by the YANG
module containing the 'notification' statement representing the
notification message.
The following example shows a "push-update" notification defined in
the YANG module of YANG-Push [RFC8641] encoded in XML:
Huang Feng, et al. Expires 31 July 2025 [Page 9]
Internet-Draft YANG-Push Notification Envelope January 2025
2024-10-10T10:59:55.32Z
1011
eth0
up
Figure 1: XML-encoded notification
3.3.2.2. JSON Encoding
A YANG notification encoded in JSON is structured as a root
"envelope" container. The namespace of this container is the name of
the YANG module "ietf-yp-notification" defined in Section 5.1.2.
Two mandatory child nodes within the "ietf-notification:envelope"
container are expected, representing the event time and the
notification payload. The "event-time" node is defined within the
same namespace as the "ietf-yp-notification:envelope" container and
is compliant with [RFC3339]. Other metadata specified within the
YANG module defined in Section 5.1.2 MUST use the same namespace
"ietf-yp-notification".
When other notification metadata is enabled through configuration,
the supplementary nodes are encoded at the same level of the
mandatory 'event-time' node and use the YANG module name as its
namespace. See Section 3.4 for more details.
The content of the notification that is defined by the 'notification'
statement is encoded in the "notification-contents" node. The name
and namespace of this payload element are determined by the YANG
module containing the 'notification' statement representing the
notification message.
The following example shows a "push-update" notification defined in
the YANG module of YANG-Push [RFC8641] encoded in JSON:
Huang Feng, et al. Expires 31 July 2025 [Page 10]
Internet-Draft YANG-Push Notification Envelope January 2025
{
"ietf-yp-notification:envelope": {
"event-time": "2024-10-10T08:00:11.22Z",
"notification-contents": {
"ietf-yang-push:push-update": {
"id": 1011,
"datastore-contents": {
"ietf-interfaces:interfaces": [
{
"interface": {
"name": "eth0",
"oper-status": "up"
}
}
]
}
}
}
}
}
Figure 2: JSON-encoded notification
3.3.2.3. CBOR Encoding
YANG notifications can be encoded in CBOR using Names or SIDs in
keys.
Notifications encoded using names is similar to JSON encoding as
defined in Section 3.3 of [RFC9254]. The key of the element can be
the name of the element itself or be namespace-qualified. In the
latter case, the namespace of the notification container uses the
YANG module name "ietf-yp-notification" defined in Section 5.1.2.
Notification encoded using YANG-SIDs replaces the names of the keys
of the CBOR encoded message for a 63 bit unsigned integer. In this
case, the keys of the encoded data use the SID value as defined in
Section 3.2 of [RFC9254]. A SID allocation process is needed
beforehand following [I-D.ietf-core-sid].
In the notification, two mandatory child nodes within the "ietf-yp-
notification:envelope" container are expected, representing the event
time and the notification payload. The "event-time" node is defined
within the same namespace as the "ietf-yp-notification:envelope"
container and is compliant with [RFC3339].
Huang Feng, et al. Expires 31 July 2025 [Page 11]
Internet-Draft YANG-Push Notification Envelope January 2025
When other notification metadata is enabled through configuration,
the supplementary nodes are encoded at the same level of the
mandatory "event-time" node and use the YANG module name as its
namespace when they are encoded as names. When they are encoded
using YANG SIDs, a SID value assigned to the metadata node is used.
See Section 3.4 for more details.
The content of the notification that is defined by the 'notification'
statement is encoded in the "notification-contents" node. The name
and namespace of this payload element are determined by the YANG
module containing the 'notification' statement representing the
notification message. Similarly, SIDs can be used as keys if they
are well allocated.
Figure 3 shows a "push-update" notification defined in the YANG
module of YANG-Push [RFC8641] encoded in CBOR using names as keys.
The example uses the CBOR diagnostic notation as defined in section
3.1 of [RFC9254]:
{
"ietf-yp-notification:envelope": {
"event-time": "2024-10-10T08:00:11.22Z",
"notification-contents": {
"ietf-yang-push:push-update": {
"id": 1011,
"datastore-contents": {
"ietf-interfaces:interfaces": [
{
"interface": {
"name": "eth0",
"oper-status": "up"
}
}
]
}
}
}
}
}
Figure 3: CBOR-encoded notification using diagnostic notation
And Figure 4 shows the same notifcation encoded using SIDs:
Huang Feng, et al. Expires 31 July 2025 [Page 12]
Internet-Draft YANG-Push Notification Envelope January 2025
{
2551: {
1: "2024-10-10T08:00:11.22Z",
4: {
"ietf-yang-push:push-update": {
"id": 1011,
"datastore-contents": {
"ietf-interfaces:interfaces": [
{
"interface": {
"name": "eth0",
"oper-status": "up"
}
}
]
}
}
}
}
}
Figure 4: CBOR-encoded notification using YANG SIDs in CBOR
diagnostic notation
3.4. Extensions for the Notification Envelope
This section described two YANG notification header extensions which
are sent by default when the notification envelope is enabled. When
the envelope is enabled using the "enable-notification-envelope"
node, the publisher includes by default the "hostname" and "sequence-
number" defined in the following sections. The client discovers the
support of these two extension headers with the mechanism defined in
Section 3.2. When the extensions defined in this document are
supported by the server, the client discovers the presence of these
new metadata with the following augmentations in the 'ietf-
notification-capabilities':
module: ietf-yp-notification
augment /sysc:system-capabilities/notc:subscription-capabilities:
+--ro notification-metadata
+--ro notification-envelope? boolean
+--ro metadata
+--ro hostname-sequence-number? boolean
Huang Feng, et al. Expires 31 July 2025 [Page 13]
Internet-Draft YANG-Push Notification Envelope January 2025
module: ietf-yp-observation
augment /sysc:system-capabilities/notc:subscription-capabilities:
+--ro yang-push-observation-supported? boolean
{yang-push-observation-timestamp}?
This document defines the following notification metadata as shown in
the following YANG tree [RFC8340]. It also defines an extension to
the YANG-Push header. See the following sections for more details.
notifications:
+---n envelope
+--ro event-time yang:date-and-time
+--ro hostname? inet:host
| {notification-hostname-sequence-number}?
+--ro sequence-number? yang:counter32
| {notification-hostname-sequence-number}?
+--ro notification-contents?
3.4.1. Support of Hostname and Sequencing
When YANG-Push notification messages are forwarded from a receiver to
another system, such as a message broker or a time series database,
the transport context is lost since it is not part of the
notification metadata of the notification container. Therefore, the
downstream system is unable to associate the message to the
publishing process (the exporting network node), nor able to detect
message loss or reordering.
To correlate network data among different Network Telemetry planes as
described in Section 3.1 of [RFC9232] or among different YANG-Push
subscription types as defined in Section 3.1 of [RFC8641], a
reference to the node streaming the data is needed. This is
essential for understanding the timely relationship among these
different planes and YANG-Push subscription types.
Today, network operators work around this impediment by preserving
the transport source IP address and sequence numbers of the
publishing process. However, this implies encoding this information
in the YANG-Push notification messages which impacts the semantic
readability of the message in the downstream system.
On top of that, the transport source IP address might not represent
the management IP address by which the YANG-Push publisher should be
known. In other terms, the source-host [RFC6470], which is the
"Address of the remote host for the session" might not be the
management IP address.
Huang Feng, et al. Expires 31 July 2025 [Page 14]
Internet-Draft YANG-Push Notification Envelope January 2025
To overcome these issues, this document proposes a notification
container extension with a hostname and a sequence number. This
allows the downstream system to not only be able to identify from
which network node, subscription, and time the message was published
but also, the order of the published messages.
hostname: Describes the node's hostname according to the 'sysName'
object definition in [RFC1213] from where the message was
published from. This value is usually configured on the node by
the administrator to uniquely identify the node in the network.
sequence-number: Generates a unique sequence number for each
published message by the publisher process. The number counts up
at every published notification message as described in [RFC9187].
Figure 5 provides an example of a JSON encoded, [RFC8259], "push-
update" notification message with hostname and sequence-number as
extension.
========== NOTE: '\' line wrapping per RFC 8792) ===========
{
"ietf-yp-notification:envelope": {
"event-time": "2023-03-25T08:30:11.22Z",
"hostname": "example-router",
"sequence-number": 1,
"notification-contents": {
"ietf-yang-push:push-update": {
"id": 6666,
"datastore-contents": {
"ietf-interfaces:interfaces": [
{
"interface": {
"name": "eth0",
"type": "iana-if-type:ethernetCsmacd",
"oper-status": "up",
"mtu": 1500
}
}
]
}
}
}
}
}
Figure 5: JSON Example for a 'push-update' notification message
Huang Feng, et al. Expires 31 July 2025 [Page 15]
Internet-Draft YANG-Push Notification Envelope January 2025
3.5. Extensions for the YANG-Push Envelope
This section described two optional YANG push-update and push-change-
update notification header extensions which are enabled by default.
The client discovers the support of these two extension headers with
the mechanism defined in Section 3.2.
This document defines the following notification metadata as shown in
the following YANG tree [RFC8340]. See the following sections for
more details.
module: ietf-yang-push
rpcs:
+---x resync-subscription {on-change}?
+---w input
+---w id sn:subscription-id
notifications:
+---n push-update
| +--ro id? sn:subscription-id
| +--ro datastore-contents?
| +--ro incomplete-update? empty
| +--ro ypot:timestamp? yang:date-and-time
| +--ro ypot:point-in-time? enumeration
+---n push-change-update {on-change}?
+--ro id? sn:subscription-id
+--ro datastore-changes
+--ro incomplete-update? empty
+--ro ypot:timestamp? yang:date-and-time
+--ro ypot:point-in-time? enumeration
3.5.1. Support of Observation Timestamp
To correlate network data among different Network Telemetry planes as
described in Section 3.1 of [RFC9232] or among different YANG-Push
subscription types defined in Section 3.1 of [RFC8641], observation
timestamp describes when the state change was observed or when the
data was accounted. This is essential for understanding the timely
relationship among these different planes and YANG push subscription
types.
Huang Feng, et al. Expires 31 July 2025 [Page 16]
Internet-Draft YANG-Push Notification Envelope January 2025
With Section 3.4 the delay between the YANG Notification export and
the arrival at the downstream system storing the data can be
measured. With observation timestamp described in this document, the
delay between the time of the network observation and the data export
of the YANG-Push publisher process can be measured as well, extending
the delay measurement scope from the time the network observation and
storing the data.
When the time bucket length in a time series database and the
periodical YANG-Push subscription time is identical, the 'event-time'
of the netconf notification message header is used for indexing,
there is variable delay between the observation timestamp and the
'event-time', and the anchor-time as described in Section 4.2 of
[RFC8641] is close to the time bucket boundaries, a time bucket is
going to have periodically 0 or 2 measurements indexed instead of 1.
Leading to inconsistent accounting errors in the time series
database. This problem is resolved by using the observation
timestamp instead of the 'event-time' for time series database
indexing.
By extending YANG-Push Notifications with the observation timestamp
YANG object and a point-in-time enumeration for streaming update
YANG-Push notifications it is ensured that the observation timestamp
is always present with the best available time, it can be therefore
used unconditionally in the data processing chain and with the point-
in-time enumeration there is semantic describing at which point in
time the observation timestamp was observed.
Besides the Subscription ID as described in Section 3.7 of [RFC8641],
the following network observation time metadata objects are part of
"push-update" and "push-change-update" notifications.
timestamp: States the measurement observation time for the "push-
update" notification in a "periodical" and for the "push-change-
update" notification in a "on-change" subscription.
By comparing the observation timestamp of two "push-update"
notifications in a periodical subscription, the collector can
deduce the actual cadence of the measurements, and compare it with
the subscription configuration. In case of an "on-change"
subscription it states the time when the network state change was
observed.
point-in-time: The enumeration states at which point in time the
value of the observation timestamp was observed. Choices are:
current-accounting states for "periodical" subscriptions, the
point-in-time where the metrics are being polled and observed.
Huang Feng, et al. Expires 31 July 2025 [Page 17]
Internet-Draft YANG-Push Notification Envelope January 2025
initial-state states for "on-change sync on start" subscriptions,
the initial point in time when the subscription was established
and the state was observed.
state-changed states for "on-change" and "on-change sync on start"
subscriptions, the point in time when the state change was
observed after the subscription was established.
Figure 6 provides an example timeline of events to describe
observation timestamp and point-in-time for "on-change sync on start"
subscriptions. At "T2" when the "on-change sync on start"
subscription is established, the timestamp of "T2" is used in
observation timestamp and "point-in-time" is set to "initial-state".
At "T3" and "T4" the timestamp of "T3" respectively "T4" is used in
observation timestamp and point-in-time is set to "state-changed".
Timeline
---------------------------------------------------------------------->
| (T1) Interface | (T2) YANG-Push | (T3) Interface | (T4) Interface
| state changed | "on-change sync | state changed | state changed
| to "Up". | on start" | to "Down". | to "Up".
| | subscription for | |
| | interface state | |
| | is established. | |
v v v v
Figure 6: Example timeline for On-Change Sync on Start Subscription
Figure 7 provides an example of a JSON encoded, [RFC8259], "push-
change-update" notification message with Section 3.4 as extension.
Huang Feng, et al. Expires 31 July 2025 [Page 18]
Internet-Draft YANG-Push Notification Envelope January 2025
========== NOTE: '\' line wrapping per RFC 8792) ===========
{
"ietf-yp-notification:envelope": {
"event-time": "2023-03-25T08:30:12.22Z",
"hostname": "example-router",
"sequence-number": 1,
"notification-contents": {
"ietf-yang-push:push-change-update": {
"id": 2222,
"ietf-yp-observation:timestamp": \
"2023-03-25T08:30:11.22Z",
"ietf-yp-observation:point-in-time": \
"state-changed",
"datastore-contents": {
"yang-patch": {
"patch-id": "patch_54",
"comment": "Changing encoding to JSON and increasing \
the period to 10 minutes",
"edit": [
{
"edit-id": "id_change_1",
"operation": "merge",
"target": "/ietf-subscribed-notifications\:subs\
criptions/subscription[id=2222]",
"value": {
"ietf-subscribed-notifications:encoding": \
"ietf-subscribed-notifications:encode-json",
"ietf-yang-push:periodic": {
"period": 60000
}
}
}
]
}
}
}
}
}
}
Figure 7: JSON Push Example for a push-change-update notification
message
Huang Feng, et al. Expires 31 July 2025 [Page 19]
Internet-Draft YANG-Push Notification Envelope January 2025
Figure 8 provides an example timeline of events to describe point-in-
time for "periodical" subscriptions. The timestamp of observation
timestamp in "T2" is set at the start of the polling of the YANG data
store to "T2" and point-in-time is set "current-accounting". At "T3"
the timestamp of observation timestamp of "T3" is used. At "T4" the
timestamp of observation timestamp of "T4" is used.
Timeline
---------------------------------------------------------------------->
| (T1) YANG-Push | (T2) YANG-Push | (T3) YANG-Push | (T4) YANG-Push
| "periodical" | "periodical" | "periodical" | "periodical"
| subscription | current | current | current
| for interface | accounting | accounting. | accounting.
| counter is | | |
| established | | |
v v v v
Figure 8: Example timeline for Periodical Subscription
Figure 9 provides an example of a JSON encoded, [RFC8259], "push-
update" notification message with Section 3.4 as extension.
Huang Feng, et al. Expires 31 July 2025 [Page 20]
Internet-Draft YANG-Push Notification Envelope January 2025
========== NOTE: '\' line wrapping per RFC 8792) ===========
{
"ietf-yp-notification:envelope": {
"event-time": "2023-03-25T08:30:11.22Z",
"hostname": "example-router",
"sequence-number": 1,
"notification-contents": {
"ietf-yang-push:push-update": {
"id": 6666,
"ietf-yp-observation:timestamp": \
"2023-03-25T08:30:11.22Z",
"ietf-yp-observation:point-in-time": \
"current-accounting",
"datastore-contents": {
"ietf-interfaces:interfaces": [
{
"interface": {
"name": "eth0",
"type": "iana-if-type:ethernetCsmacd",
"oper-status": "up",
"mtu": 1500
}
}
]
}
}
}
}
}
Figure 9: JSON Push Example for a push-update notification message
4. Operational Considerations
TBD: explain co-existence with RFC5277
5. YANG Modules
5.1. The 'ietf-yp-notification' Module
The following sections shows the YANG tree and YANG module for the
'ietf-yp-notification' module.
Huang Feng, et al. Expires 31 July 2025 [Page 21]
Internet-Draft YANG-Push Notification Envelope January 2025
5.1.1. YANG ietf-yp-notification Tree Diagram
This YANG module extends "ietf-subscribed-notifications" [RFC8641]
and "ietf-notification-capabilities" [RFC9196] as shown in the
following YANG tree [RFC8340]:
module: ietf-yp-notification
augment /sn:subscriptions:
+--ro enable-notification-envelope? boolean
+--ro metadata
augment /sysc:system-capabilities/notc:subscription-capabilities:
+--ro notification-metadata
+--ro notification-envelope? boolean
+--ro metadata
+--ro hostname-sequence-number? boolean
rpcs:
+---x enable-notif-envelope
+---w input
+---w enable-notification-envelope? boolean
+---w metadata
structure envelope:
+-- event-time yang:date-and-time
+-- hostname? inet:host
+-- sequence-number? yang:counter32
+-- notification-contents?
5.1.2. YANG ietf-yp-notification Module
The YANG module augments the module "ietf-subscribed-notifications"
[RFC8641], augments the module "ietf-notification-capabilities"
[RFC9196] and uses "ietf-yang-types" module [RFC6991] and "ietf-yang-
structure-ext" module [RFC8791].
file "ietf-yp-notification@2025-01-27.yang"
module ietf-yp-notification {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-yp-notification";
prefix inotenv;
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types";
}
import ietf-inet-types {
prefix inet;
Huang Feng, et al. Expires 31 July 2025 [Page 22]
Internet-Draft YANG-Push Notification Envelope January 2025
reference
"RFC 6991: Common YANG Data Types";
}
import ietf-subscribed-notifications {
prefix sn;
reference
"RFC 8639: Subscription to YANG Notifications";
}
import ietf-system-capabilities {
prefix sysc;
reference
"RFC 9196: YANG Modules Describing Capabilities for
Systems and Datastore Update Notifications";
}
import ietf-notification-capabilities {
prefix notc;
reference
"RFC 9196: YANG Modules Describing Capabilities for
Systems and Datastore Update Notifications";
}
import ietf-yang-structure-ext {
prefix sx;
reference
"RFC 8791: YANG Data Structure Extensions";
}
organization "IETF NETCONF (Network Configuration) Working Group";
contact
"WG Web:
WG List:
Authors: Alex Huang Feng
Pierre Francois
Thomas Graf
Benoit Claise
";
description
"Defines a notification header for Subscribed Notifications
[RFC8639] and YANG-Push [RFC8641]. When this notification header
is enabled through configuration, the root container of the
notification is encoded as defined in RFCXXX.
This module can be used to validate XML encoded notifications
[RFC7950], JSON encoded messages [RFC7951] and CBOR encoded
Huang Feng, et al. Expires 31 July 2025 [Page 23]
Internet-Draft YANG-Push Notification Envelope January 2025
messages [RFC9254]. Refer to Section Y of RFC XXXX for more
details.
Copyright (c) 2024 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Revised BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
for full legal notices.";
revision 2025-01-27 {
description
"First revision";
reference
"RFC XXXX: YANG-Push Notification Envelope";
}
identity notif-envelope-error {
description
"Base identify for errors found while attempting to
change configuration values during the
'enable-notif-envelope' RPC requests.";
}
identity invalid-notification-envelope-config {
base notif-envelope-error;
description
"This error is triggered and sent in the response of
the RPC 'enable-notif-envelope' when attempting to change
the value of the 'enable-notification-envelope' node
while any Dynamic Subscription is active. The node
'enable-notification-envelope' can only be changed prior to
the creation of the Dynamic Subscription.";
}
grouping notif-env-capabilities {
description
"This grouping defines the capabilities for
the notification-envelope defined in RFC XXXX
and the different supported metadata.";
leaf notification-envelope {
Huang Feng, et al. Expires 31 July 2025 [Page 24]
Internet-Draft YANG-Push Notification Envelope January 2025
type boolean;
default false;
description
"Supports YANG-Push to use the notification-envelope
defined in RFC XXXX.";
}
container metadata {
description
"Container with the supported optional metadata by the
YANG-Push publisher.";
leaf hostname-sequence-number {
type boolean;
default false;
description
"Supports hostname and sequence-number
in the YANG-Push notifications as defined in the
YANG-Push notification-envelope in RFC XXXX.";
}
}
}
sx:structure envelope {
leaf event-time {
type yang:date-and-time;
mandatory true;
description
"The date and time the event was generated by the event
source. This parameter is of type dateTime and compliant
to [RFC3339].";
}
leaf hostname {
type inet:host;
description
"The hostname of the network node according to
[RFC1213]. This value is usually configured on the node
by the administrator to uniquely identify the node in
the network.";
}
leaf sequence-number {
type yang:counter32;
description
"Unique sequence number as described in [RFC9187] for each
published message.";
}
anydata notification-contents {
description
"This contains the values defined by the 'notification'
statement unchanged.";
Huang Feng, et al. Expires 31 July 2025 [Page 25]
Internet-Draft YANG-Push Notification Envelope January 2025
}
}
// Subscription container
augment "/sn:subscriptions" {
description
"This augmentation adds the configuration switches for
enabling the notification envelope and metadatas.";
leaf enable-notification-envelope {
config false;
type boolean;
default false;
description
"Enables YANG-Push to use the notification-envelope
defined in RFC XXXX.";
}
container metadata {
config false;
description
"Container for configuring optional metadata.";
}
}
// RPCs
rpc enable-notif-envelope {
description
"This RPC allows a client to enable the notification envelope
globally for the server. When this option is enabled, all the YANG-Push
Notifications from all the subscriptions are encoded following
this structure.";
input {
leaf enable-notification-envelope {
type boolean;
default false;
description
"Enables YANG-Push to use the notification-envelope
defined in RFC XXXX.";
}
container metadata {
description
"Container for configuring optional metadata.";
}
}
}
// YANG-Push Capabilities extension
augment "/sysc:system-capabilities/notc:subscription-capabilities" {
description
Huang Feng, et al. Expires 31 July 2025 [Page 26]
Internet-Draft YANG-Push Notification Envelope January 2025
"Extension to the subscription-capabilities model to enable
clients to learn whether the publisher supports the
notification-envelope";
container notification-metadata {
description
"Adds the notification metadata capabilities to subscription
capabilities.";
uses notif-env-capabilities;
}
}
}
5.2. The 'ietf-yp-observation' Module
The following sections shows the YANG tree and YANG module for the
'ietf-yp-observation' module.
5.2.1. YANG ietf-yp-observation Tree Diagram
This YANG module extends "ietf-yang-push" [RFC8641] and "ietf-
notification-capabilities" [RFC9196] as shown in the following YANG
tree [RFC8340]:
module: ietf-yp-observation
augment /yp:push-update:
+--ro timestamp? yang:date-and-time
+--ro point-in-time? enumeration
augment /yp:push-change-update:
+--ro timestamp? yang:date-and-time
+--ro point-in-time? enumeration
augment /sysc:system-capabilities/notc:subscription-capabilities:
+--ro yang-push-observation-supported?
inotifseq:notification-support
{yang-push-observation-timestamp}?
5.2.2. YANG ietf-yp-observation Module
The YANG module augments the module "ietf-yang-push" [RFC8641],
augments the module "ietf-system-capabilities" [RFC9196].
Huang Feng, et al. Expires 31 July 2025 [Page 27]
Internet-Draft YANG-Push Notification Envelope January 2025
file "ietf-yp-observation@2024-12-17.yang"
module ietf-yp-observation {
yang-version 1.1;
namespace
"urn:ietf:params:xml:ns:yang:ietf-yp-observation";
prefix ypot;
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types";
}
import ietf-yang-push {
prefix yp;
reference
"RFC 8641: Subscription to YANG Notifications for Datastore Updates";
}
import ietf-system-capabilities {
prefix sysc;
reference
"RFC 9196: YANG Modules Describing Capabilities for
Systems and Datastore Update Notifications";
}
import ietf-notification-capabilities {
prefix notc;
reference
"RFC 9196: YANG Modules Describing Capabilities for
Systems and Datastore Update Notifications";
}
import ietf-notification-sequencing {
prefix inotifseq;
reference
"draft-tgraf-netconf-notif-sequencing-05: YANG Notifications
Sequencing";
}
organization "IETF NETCONF (Network Configuration) Working Group";
contact
"WG Web:
WG List:
Authors: Thomas Graf
Benoit Claise
Alex Huang Feng
";
description
"Defines YANG-Push event notification header with the observation
Huang Feng, et al. Expires 31 July 2025 [Page 28]
Internet-Draft YANG-Push Notification Envelope January 2025
time in streaming update notifications.
Copyright (c) 2024 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, is permitted pursuant to, and subject to the license
terms contained in, the Revised BSD License set forth in Section
4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see the RFC
itself for full legal notices.";
revision 2024-12-17 {
description
"First revision";
reference
"RFC XXXX: Support of YANG-Push Notifications Observation Time";
}
feature yang-push-observation-timestamp {
description
"This feature indicates the YANG-push Notifications support
the observation timestamps in streaming update notifications.";
}
grouping yang-push-observation {
description
"This grouping adds the observation timestamp for the observed metrics.";
leaf timestamp {
type yang:date-and-time;
description
"This is the time when metrics were observed.";
}
leaf point-in-time {
type enumeration {
enum current-accounting {
description "For periodical subscriptions, the point-in-time
where the metrics are being polled and observed.";
}
enum initial-state {
description "For 'on-change sync on start' subscriptions, the
initial point in time when the subscription was established
and the state was observed.";
}
enum state-changed {
description "For 'on-change sync on start' subscriptions, the
Huang Feng, et al. Expires 31 July 2025 [Page 29]
Internet-Draft YANG-Push Notification Envelope January 2025
point in time when the state change was observed after the
subscription was established.";
}
}
description
"This describes at which point in time the metrics were observed";
}
}
// Event notifications
augment "/yp:push-update" {
description
"This augmentation adds the observation timestamp of the accounted metrics
in the push-update notification.";
uses ypot:yang-push-observation;
}
augment "/yp:push-change-update" {
description
"This augmentation adds the observation timestamp of the event
in the push-change-update notification.";
uses ypot:yang-push-observation;
}
// Event capabilities
augment "/sysc:system-capabilities/notc:subscription-capabilities" {
description
"Add system level capabilities";
leaf yang-push-observation-supported {
if-feature "yang-push-observation-timestamp";
type boolean;
description
"Specifies whether the publisher supports exporting
observation-timestamp and point-in-time in notifications.";
reference
"RFC XXXX: YANG Notifications Observation Time";
}
}
}
6. Implementation Status
Note to the RFC-Editor: Please remove this section before publishing.
Huang Feng, et al. Expires 31 July 2025 [Page 30]
Internet-Draft YANG-Push Notification Envelope January 2025
6.1. Huawei VRP
Huawei implemented in push-update and push-change-update
notifications the timestamp and point-in-time extension as described
in Section 3.5 for a YANG-Push publisher on UDP-based Transport for
Configured Subscriptions [I-D.ietf-netconf-udp-notif] in their VRP
platform.
6.2. 6WIND VSR
6WIND implemented in push-update and push-change-update notifications
the timestamp and point-in-time extension as described in Section 3.5
for a YANG-Push publisher on UDP-based Transport for Configured
Subscriptions [I-D.ietf-netconf-udp-notif] in their VSR platform.
6.3. Cisco IOS XR
Cisco implemented in push-update and push-change-update notifications
the timestamp and point-in-time extension as described in Section 3.5
for a YANG-Push publisher on UDP-based Transport for Configured
Subscriptions [I-D.ietf-netconf-udp-notif] in their IOS XR platform.
7. Security Considerations
TBD
8. IANA Considerations
This document describes the URI used for the IETF XML Registry and
registers a new YANG module name.
8.1. URI
IANA is requested to add this document as a reference in the
following URI's in the IETF XML Registry [RFC3688].
URI: urn:ietf:params:xml:ns:yang:ietf-yp-notification
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
Reference: RFC-to-be
URI: urn:ietf:params:xml:ns:yang:ietf-yp-observation
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
Reference: RFC-to-be
Huang Feng, et al. Expires 31 July 2025 [Page 31]
Internet-Draft YANG-Push Notification Envelope January 2025
8.2. YANG module name
This document registers the following YANG modules in the YANG Module
Names Registry [RFC6020], within the "YANG Parameters" registry:
name: ietf-yp-notification
namespace: urn:ietf:params:xml:ns:yang:ietf-yp-notification
prefix: inotenv
reference: RFC-to-be
name: ietf-yp-observation
namespace: urn:ietf:params:xml:ns:yang:ietf-yp-observation
prefix: ypot
reference: RFC-to-be
8.3. YANG SID-file
IANA is requested to register a new ".sid" file in the "IETF YANG SID
Registry" [I-D.ietf-core-sid]:
SID range entry point: TBD
SID range size: 50
YANG module name: ietf-yp-notification
reference: RFC-to-be
A ".sid" file is proposed in Appendix A.
9. Acknowledgements
The authors would like to thank Per Anderson, Andy Bierman, Carsten
Bormann, Mohamed Boucadair, Tom Petch, Jason Sterne, Kent Watsen and
Rob Wilton for their review and valuable comments.
10. References
10.1. Normative References
[I-D.ietf-core-sid]
Veillette, M., Pelov, A., Petrov, I., Bormann, C., and M.
Richardson, "YANG Schema Item iDentifier (YANG SID)", Work
in Progress, Internet-Draft, draft-ietf-core-sid-24, 22
December 2023, .
[RFC1213] McCloghrie, K. and M. Rose, "Management Information Base
for Network Management of TCP/IP-based internets: MIB-II",
STD 17, RFC 1213, DOI 10.17487/RFC1213, March 1991,
.
Huang Feng, et al. Expires 31 July 2025 [Page 32]
Internet-Draft YANG-Push Notification Envelope January 2025
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.
[RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
.
[RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
.
[RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,
.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, .
Huang Feng, et al. Expires 31 July 2025 [Page 33]
Internet-Draft YANG-Push Notification Envelope January 2025
[RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
E., and A. Tripathy, "Subscription to YANG Notifications",
RFC 8639, DOI 10.17487/RFC8639, September 2019,
.
[RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
September 2019, .
[RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data
Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
June 2020, .
[RFC9187] Touch, J., "Sequence Number Extension for Windowed
Protocols", RFC 9187, DOI 10.17487/RFC9187, January 2022,
.
[RFC9196] Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
Describing Capabilities for Systems and Datastore Update
Notifications", RFC 9196, DOI 10.17487/RFC9196, February
2022, .
[RFC9254] Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,
C., and M. Richardson, "Encoding of Data Modeled with YANG
in the Concise Binary Object Representation (CBOR)",
RFC 9254, DOI 10.17487/RFC9254, July 2022,
.
[W3C.REC-xml-20001006]
Bray, T., Paoli, J., Sperberg-McQueen, M., and E. Maler,
"Extensible Markup Language (XML) 1.0 (Second Edition)",
W3C, October 2000,
.
10.2. Informative References
[I-D.ietf-netconf-udp-notif]
Zheng, G., Zhou, T., Graf, T., Francois, P., Feng, A. H.,
and P. Lucente, "UDP-based Transport for Configured
Subscriptions", Work in Progress, Internet-Draft, draft-
ietf-netconf-udp-notif-18, 13 January 2025,
.
[RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
February 2012, .
Huang Feng, et al. Expires 31 July 2025 [Page 34]
Internet-Draft YANG-Push Notification Envelope January 2025
[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017,
.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
.
[RFC9232] Song, H., Qin, F., Martinez-Julia, P., Ciavaglia, L., and
A. Wang, "Network Telemetry Framework", RFC 9232,
DOI 10.17487/RFC9232, May 2022,
.
Appendix A. .sid file
Note to the RFC-Editor: Please remove this section before publishing.
For CBOR encoding using YANG-SIDs identifiers, a ".sid" file is
requested to IANA in Section 8.3.
file "ietf-yp-notification@2024-10-18.sid"
{
"ietf-sid-file:sid-file": {
"module-name": "ietf-yp-notification",
"module-revision": "2024-10-10",
"description": "YANG-Push Notification Envelope",
"dependency-revision": [
{
"module-name": "ietf-yang-types",
"module-revision": "2013-07-15"
},
{
"module-name": "ietf-subscribed-notifications",
"module-revision": "2019-09-09"
}
],
"assignment-range": [
{
"entry-point": "2550",
"size": "50"
}
],
"item": [
{
"namespace": "module",
"identifier": "ietf-yp-notification",
"sid": "2550"
Huang Feng, et al. Expires 31 July 2025 [Page 35]
Internet-Draft YANG-Push Notification Envelope January 2025
},
{
"namespace": "data",
"identifier": "/ietf-yp-notification:envelope",
"sid": "2551"
},
{
"namespace": "data",
"identifier": "/ietf-yp-notification:envelope/event-time",
"sid": "2552"
},
{
"namespace": "data",
"identifier": "/ietf-yp-notification:envelope/hostname",
"sid": "2553"
},
{
"namespace": "data",
"identifier": "/ietf-yp-notification:envelope/sequence-number",
"sid": "2554"
},
{
"namespace": "data",
"identifier": "/ietf-yp-notification:envelope/notification-contents",
"sid": "2555"
}
]
}
}
Figure 10: .sid file for "ietf-yp-notification" module
Authors' Addresses
Alex Huang Feng
INSA-Lyon
Lyon
France
Email: alex.huang-feng@insa-lyon.fr
Pierre Francois
INSA-Lyon
Lyon
France
Email: pierre.francois@insa-lyon.fr
Huang Feng, et al. Expires 31 July 2025 [Page 36]
Internet-Draft YANG-Push Notification Envelope January 2025
Thomas Graf
Swisscom
Binzring 17
CH-8045 Zurich
Switzerland
Email: thomas.graf@swisscom.com
Benoit Claise
Huawei
Email: benoit.claise@huawei.com
Huang Feng, et al. Expires 31 July 2025 [Page 37]