Internet Engineering Task Force (IETF) J. McCann
Request for Comments: 8201 Digital Equipment Corporation
STD: 87 S. Deering
Obsoletes: 1981 Retired
Category: Standards Track J. Mogul
ISSN: 2070-1721 Digital Equipment Corporation
R. Hinden, Ed.
Check Point Software
July 2017
Path MTU Discovery for IP version 6
Abstract
This document describes Path MTU Discovery (PMTUD) for IP version 6.
It is largely derived from RFC 1191, which describes Path MTU
Discovery for IP version 4. It obsoletes RFC 1981.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc8201.
McCann, et al. Standards Track [Page 1]
RFC 8201 IPv6 Path MTU Discovery July 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
McCann, et al. Standards Track [Page 2]
RFC 8201 IPv6 Path MTU Discovery July 2017
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Protocol Overview . . . . . . . . . . . . . . . . . . . . . . 6
4. Protocol Requirements . . . . . . . . . . . . . . . . . . . . 7
5. Implementation Issues . . . . . . . . . . . . . . . . . . . . 8
5.1. Layering . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2. Storing PMTU Information . . . . . . . . . . . . . . . . 9
5.3. Purging Stale PMTU Information . . . . . . . . . . . . . 11
5.4. Packetization Layer Actions . . . . . . . . . . . . . . . 12
5.5. Issues for Other Transport Protocols . . . . . . . . . . 13
5.6. Management Interface . . . . . . . . . . . . . . . . . . 14
6. Security Considerations . . . . . . . . . . . . . . . . . . . 14
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1. Normative References . . . . . . . . . . . . . . . . . . 15
8.2. Informative References . . . . . . . . . . . . . . . . . 15
Appendix A. Comparison to RFC 1191 . . . . . . . . . . . . . . . 17
Appendix B. Changes Since RFC 1981 . . . . . . . . . . . . . . . 17
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 19
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 19
McCann, et al. Standards Track [Page 3]
RFC 8201 IPv6 Path MTU Discovery July 2017
1. Introduction
When one IPv6 node has a large amount of data to send to another
node, the data is transmitted in a series of IPv6 packets. These
packets can have a size less than or equal to the Path MTU (PMTU).
Alternatively, they can be larger packets that are fragmented into a
series of fragments each with a size less than or equal to the PMTU.
It is usually preferable that these packets be of the largest size
that can successfully traverse the path from the source node to the
destination node without the need for IPv6 fragmentation. This
packet size is referred to as the Path MTU, and it is equal to the
minimum link MTU of all the links in a path. This document defines a
standard mechanism for a node to discover the PMTU of an arbitrary
path.
IPv6 nodes should implement Path MTU Discovery in order to discover
and take advantage of paths with PMTU greater than the IPv6 minimum
link MTU [RFC8200]. A minimal IPv6 implementation (e.g., in a boot
ROM) may choose to omit implementation of Path MTU Discovery.
Nodes not implementing Path MTU Discovery must use the IPv6 minimum
link MTU defined in [RFC8200] as the maximum packet size. In most
cases, this will result in the use of smaller packets than necessary,
because most paths have a PMTU greater than the IPv6 minimum link
MTU. A node sending packets much smaller than the Path MTU allows is
wasting network resources and probably getting suboptimal throughput.
Nodes implementing Path MTU Discovery and sending packets larger than
the IPv6 minimum link MTU are susceptible to problematic connectivity
if ICMPv6 [ICMPv6] messages are blocked or not transmitted. For
example, this will result in connections that complete the TCP three-
way handshake correctly but then hang when data is transferred. This
state is referred to as a black-hole connection [RFC2923]. Path MTU
Discovery relies on ICMPv6 Packet Too Big (PTB) to determine the MTU
of the path.
An extension to Path MTU Discovery defined in this document can be
found in [RFC4821]. RFC 4821 defines a method for Packetization
Layer Path MTU Discovery (PLPMTUD) designed for use over paths where
delivery of ICMPv6 messages to a host is not assured.
Note: This document is an update to [RFC1981] that was published
prior to [RFC2119] being published. Consequently, although RFC 1981
used the "should/must" style language in upper and lower case, this
document does not cite the RFC 2119 definitions and only uses lower
case for these words.
McCann, et al. Standards Track [Page 4]
RFC 8201 IPv6 Path MTU Discovery July 2017
2. Terminology
node a device that implements IPv6.
router a node that forwards IPv6 packets not explicitly
addressed to itself.
host any node that is not a router.
upper layer a protocol layer immediately above IPv6.
Examples are transport protocols such as TCP and
UDP, control protocols such as ICMPv6, routing
protocols such as OSPF, and internet-layer or
lower-layer protocols being "tunneled" over
(i.e., encapsulated in) IPv6 such as Internetwork
Packet Exchange (IPX), AppleTalk, or IPv6 itself.
link a communication facility or medium over which
nodes can communicate at the link layer, i.e.,
the layer immediately below IPv6. Examples are
Ethernets (simple or bridged); PPP links; X.25,
Frame Relay, or ATM networks; and internet-layer
or higher-layer "tunnels", such as tunnels over
IPv4 or IPv6 itself.
interface a node's attachment to a link.
address an IPv6-layer identifier for an interface or a
set of interfaces.
packet an IPv6 header plus payload. The packet can have
a size less than or equal to the PMTU.
Alternatively, this can be a larger packet that
is fragmented into a series of fragments each
with a size less than or equal to the PMTU.
link MTU the maximum transmission unit, i.e., maximum
packet size in octets, that can be conveyed in
one piece over a link.
path the set of links traversed by a packet between a
source node and a destination node.
path MTU the minimum link MTU of all the links in a path
between a source node and a destination node.
PMTU path MTU.
McCann, et al. Standards Track [Page 5]
RFC 8201 IPv6 Path MTU Discovery July 2017
Path MTU Discovery the process by which a node learns the PMTU of a
path.
EMTU_S Effective MTU for sending; used by upper-layer
protocols to limit the size of IP packets they
queue for sending [RFC6691] [RFC1122].
EMTU_R Effective MTU for receiving; the largest packet
that can be reassembled at the receiver
[RFC1122].
flow a sequence of packets sent from a particular
source to a particular (unicast or multicast)
destination for which the source desires special
handling by the intervening routers.
flow id a combination of a source address and a non-zero
flow label.
3. Protocol Overview
This memo describes a technique to dynamically discover the PMTU of a
path. The basic idea is that a source node initially assumes that
the PMTU of a path is the (known) MTU of the first hop in the path.
If any of the packets sent on that path are too large to be forwarded
by some node along the path, that node will discard them and return
ICMPv6 Packet Too Big messages. Upon receipt of such a message, the
source node reduces its assumed PMTU for the path based on the MTU of
the constricting hop as reported in the Packet Too Big message. The
decreased PMTU causes the source to send smaller packets or change
EMTU_S to cause the upper layer to reduce the size of IP packets it
sends.
The Path MTU Discovery process ends when the source node's estimate
of the PMTU is less than or equal to the actual PMTU. Note that
several iterations of the packet-sent/Packet-Too-Big-message-received
cycle may occur before the Path MTU Discovery process ends, as there
may be links with smaller MTUs further along the path.
Alternatively, the node may elect to end the discovery process by
ceasing to send packets larger than the IPv6 minimum link MTU.
The PMTU of a path may change over time, due to changes in the
routing topology. Reductions of the PMTU are detected by Packet Too
Big messages. To detect increases in a path's PMTU, a node
periodically increases its assumed PMTU. This will almost always
result in packets being discarded and Packet Too Big messages being
McCann, et al. Standards Track [Page 6]
RFC 8201 IPv6 Path MTU Discovery July 2017
generated, because in most cases the PMTU of the path will not have
changed. Therefore, attempts to detect increases in a path's PMTU
should be done infrequently.
Path MTU Discovery supports multicast as well as unicast
destinations. In the case of a multicast destination, copies of a
packet may traverse many different paths to many different nodes.
Each path may have a different PMTU, and a single multicast packet
may result in multiple Packet Too Big messages, each reporting a
different next-hop MTU. The minimum PMTU value across the set of
paths in use determines the size of subsequent packets sent to the
multicast destination.
Note that Path MTU Discovery must be performed even in cases where a
node "thinks" a destination is attached to the same link as itself,
as it might have a PMTU lower than the link MTU. In a situation such
as when a neighboring router acts as proxy [ND] for some destination,
the destination can appear to be directly connected, but it is in
fact more than one hop away.
4. Protocol Requirements
As discussed in Section 1, IPv6 nodes are not required to implement
Path MTU Discovery. The requirements in this section apply only to
those implementations that include Path MTU Discovery.
Nodes should appropriately validate the payload of ICMPv6 PTB
messages to ensure these are received in response to transmitted
traffic (i.e., a reported error condition that corresponds to an IPv6
packet actually sent by the application) per [ICMPv6].
If a node receives a Packet Too Big message reporting a next-hop MTU
that is less than the IPv6 minimum link MTU, it must discard it. A
node must not reduce its estimate of the Path MTU below the IPv6
minimum link MTU on receipt of a Packet Too Big message.
When a node receives a Packet Too Big message, it must reduce its
estimate of the PMTU for the relevant path, based on the value of the
MTU field in the message. The precise behavior of a node in this
circumstance is not specified, since different applications may have
different requirements, and since different implementation
architectures may favor different strategies.
After receiving a Packet Too Big message, a node must attempt to
avoid eliciting more such messages in the near future. The node must
reduce the size of the packets it is sending along the path. Using a
PMTU estimate larger than the IPv6 minimum link MTU may continue to
elicit Packet Too Big messages. Because each of these messages (and
McCann, et al. Standards Track [Page 7]
RFC 8201 IPv6 Path MTU Discovery July 2017
the dropped packets they respond to) consume network resources, nodes
using Path MTU Discovery must detect decreases in PMTU as fast as
possible.
Nodes may detect increases in PMTU, but because doing so requires
sending packets larger than the current estimated PMTU, and because
the likelihood is that the PMTU will not have increased, this must be
done at infrequent intervals. An attempt to detect an increase (by
sending a packet larger than the current estimate) must not be done
less than 5 minutes after a Packet Too Big message has been received
for the given path. The recommended setting for this timer is twice
its minimum value (10 minutes).
A node must not increase its estimate of the Path MTU in response to
the contents of a Packet Too Big message. A message purporting to
announce an increase in the Path MTU might be a stale packet that has
been floating around in the network, a false packet injected as part
of a denial-of-service (DoS) attack, or the result of having multiple
paths to the destination, each with a different PMTU.
5. Implementation Issues
This section discusses a number of issues related to the
implementation of Path MTU Discovery. This is not a specification,
but rather a set of notes provided as an aid for implementers.
The issues include:
- What layer or layers implement Path MTU Discovery?
- How is the PMTU information cached?
- How is stale PMTU information removed?
- What must transport and higher layers do?
5.1. Layering
In the IP architecture, the choice of what size packet to send is
made by a protocol at a layer above IP. This memo refers to such a
protocol as a "packetization protocol". Packetization protocols are
usually transport protocols (for example, TCP) but can also be
higher-layer protocols (for example, protocols built on top of UDP).
Implementing Path MTU Discovery in the packetization layers
simplifies some of the inter-layer issues but has several drawbacks:
the implementation may have to be redone for each packetization
protocol, it becomes hard to share PMTU information between different
McCann, et al. Standards Track [Page 8]
RFC 8201 IPv6 Path MTU Discovery July 2017
packetization layers, and the connection-oriented state maintained by
some packetization layers may not easily extend to save PMTU
information for long periods.
It is therefore suggested that the IP layer store PMTU information
and that the ICMPv6 layer process received Packet Too Big messages.
The packetization layers may respond to changes in the PMTU by
changing the size of the messages they send. To support this
layering, packetization layers require a way to learn of changes in
the value of MMS_S, the "maximum send transport-message size"
[RFC1122].
MMS_S is a transport message size calculated by subtracting the size
of the IPv6 header (including IPv6 extension headers) from the
largest IP packet that can be sent, EMTU_S. MMS_S is limited by a
combination of factors, including the PMTU, support for packet
fragmentation and reassembly, and the packet reassembly limit (see
"Fragment Header", Section 4.5 of [RFC8200]). When source
fragmentation is available, EMTU_S is set to EMTU_R, as indicated by
the receiver using an upper-layer protocol or based on protocol
requirements (1500 octets for IPv6). When a message larger than PMTU
is to be transmitted, the source creates fragments, each limited by
PMTU. When source fragmentation is not desired, EMTU_S is set to
PMTU, and the upper-layer protocol is expected to either perform its
own fragmentation and reassembly or otherwise limit the size of its
messages accordingly.
However, packetization layers are encouraged to avoid sending
messages that will require source fragmentation (for the case against
fragmentation, see [FRAG]).
5.2. Storing PMTU Information
Ideally, a PMTU value should be associated with a specific path
traversed by packets exchanged between the source and destination
nodes. However, in most cases a node will not have enough
information to completely and accurately identify such a path.
Rather, a node must associate a PMTU value with some local
representation of a path. It is left to the implementation to select
the local representation of a path. For nodes with multiple
interfaces, Path MTU information should be maintained for each IPv6
link.
In the case of a multicast destination address, copies of a packet
may traverse many different paths to reach many different nodes. The
local representation of the "path" to a multicast destination must
represent a potentially large set of paths.
McCann, et al. Standards Track [Page 9]
RFC 8201 IPv6 Path MTU Discovery July 2017
Minimally, an implementation could maintain a single PMTU value to be
used for all packets originated from the node. This PMTU value would
be the minimum PMTU learned across the set of all paths in use by the
node. This approach is likely to result in the use of smaller
packets than is necessary for many paths. In the case of multipath
routing (e.g., Equal-Cost Multipath Routing (ECMP)), a set of paths
can exist even for a single source and destination pair.
An implementation could use the destination address as the local
representation of a path. The PMTU value associated with a
destination would be the minimum PMTU learned across the set of all
paths in use to that destination. This approach will result in the
use of optimally sized packets on a per-destination basis. This
approach integrates nicely with the conceptual model of a host as
described in [ND]: a PMTU value could be stored with the
corresponding entry in the destination cache.
If flows [RFC8200] are in use, an implementation could use the flow
id as the local representation of a path. Packets sent to a
particular destination but belonging to different flows may use
different paths, as with ECMP, in which the choice of path might
depend on the flow id. This approach might result in the use of
optimally sized packets on a per-flow basis, providing finer
granularity than PMTU values maintained on a per-destination basis.
For source-routed packets (i.e. packets containing an IPv6 Routing
header [RFC8200]), the source route may further qualify the local
representation of a path.
Initially, the PMTU value for a path is assumed to be the (known) MTU
of the first-hop link.
When a Packet Too Big message is received, the node determines which
path the message applies to based on the contents of the Packet Too
Big message. For example, if the destination address is used as the
local representation of a path, the destination address from the
original packet would be used to determine which path the message
applies to.
Note: if the original packet contained a Routing header, the
Routing header should be used to determine the location of the
destination address within the original packet. If Segments Left
is equal to zero, the destination address is in the Destination
Address field in the IPv6 header. If Segments Left is greater
than zero, the destination address is the last address
(Address[n]) in the Routing header.
McCann, et al. Standards Track [Page 10]
RFC 8201 IPv6 Path MTU Discovery July 2017
The node then uses the value in the MTU field in the Packet Too Big
message as a tentative PMTU value or the IPv6 minimum link MTU if
that is larger, and compares the tentative PMTU to the existing PMTU.
If the tentative PMTU is less than the existing PMTU estimate, the
tentative PMTU replaces the existing PMTU as the PMTU value for the
path.
The packetization layers must be notified about decreases in the
PMTU. Any packetization layer instance (for example, a TCP
connection) that is actively using the path must be notified if the
PMTU estimate is decreased.
Note: even if the Packet Too Big message contains an Original
Packet Header that refers to a UDP packet, the TCP layer must be
notified if any of its connections use the given path.
Also, the instance that sent the packet that elicited the Packet Too
Big message should be notified that its packet has been dropped, even
if the PMTU estimate has not changed, so that it may retransmit the
dropped data.
Note: An implementation can avoid the use of an asynchronous
notification mechanism for PMTU decreases by postponing
notification until the next attempt to send a packet larger than
the PMTU estimate. In this approach, when an attempt is made to
SEND a packet that is larger than the PMTU estimate, the SEND
function should fail and return a suitable error indication. This
approach may be more suitable to a connectionless packetization
layer (such as one using UDP), which (in some implementations) may
be hard to "notify" from the ICMPv6 layer. In this case, the
normal timeout-based retransmission mechanisms would be used to
recover from the dropped packets.
It is important to understand that the notification of the
packetization layer instances using the path about the change in the
PMTU is distinct from the notification of a specific instance that a
packet has been dropped. The latter should be done as soon as
practical (i.e., asynchronously from the point of view of the
packetization layer instance), while the former may be delayed until
a packetization layer instance wants to create a packet.
5.3. Purging Stale PMTU Information
Internetwork topology is dynamic; routes change over time. While the
local representation of a path may remain constant, the actual
path(s) in use may change. Thus, PMTU information cached by a node
can become stale.
McCann, et al. Standards Track [Page 11]
RFC 8201 IPv6 Path MTU Discovery July 2017
If the stale PMTU value is too large, this will be discovered almost
immediately once a large enough packet is sent on the path. No such
mechanism exists for realizing that a stale PMTU value is too small,
so an implementation should "age" cached values. When a PMTU value
has not been decreased for a while (on the order of 10 minutes), it
should probe to find if a larger PMTU is supported.
Note: an implementation should provide a means for changing the
timeout duration, including setting it to "infinity". For
example, nodes attached to a link with a large MTU that is then
attached to the rest of the Internet via a link with a small MTU
are never going to discover a new non-local PMTU, so they should
not have to put up with dropped packets every 10 minutes.
5.4. Packetization Layer Actions
A packetization layer (e.g., TCP) must use the PMTU for the path(s)
in use by a connection; it should not send segments that would result
in packets larger than the PMTU, except to probe during PMTU
Discovery (this probe packet must not be fragmented to the PMTU). A
simple implementation could ask the IP layer for this value each time
it created a new segment, but this could be inefficient. An
implementation typically caches other values derived from the PMTU.
It may be simpler to receive asynchronous notification when the PMTU
changes, so that these variables may be also updated.
A TCP implementation must also store the Maximum Segment Size (MSS)
value received from its peer, which represents the EMTU_R, the
largest packet that can be reassembled by the receiver, and must not
send any segment larger than this MSS, regardless of the PMTU.
The value sent in the TCP MSS option is independent of the PMTU; it
is determined by the receiver reassembly limit EMTU_R. This MSS
option value is used by the other end of the connection, which may be
using an unrelated PMTU value. See Section 5, "Packet Size Issues",
and Section 8.3, "Maximum Upper-Layer Payload Size", of [RFC8200] for
information on selecting a value for the TCP MSS option.
Reception of a Packet Too Big message implies that a packet was
dropped by the node that sent the ICMPv6 message. A reliable upper-
layer protocol will detect this loss by its own means, and recover it
by its normal retransmission methods. The retransmission could
result in delay, depending on the loss detection method used by the
upper-layer protocol. If the Path MTU Discovery process requires
several steps to find the PMTU of the full path, this could finally
delay the retransmission by many round-trip times.
McCann, et al. Standards Track [Page 12]
RFC 8201 IPv6 Path MTU Discovery July 2017
Alternatively, the retransmission could be done in immediate response
to a notification that the Path MTU was decreased, but only for the
specific connection specified by the Packet Too Big message. The
packet size used in the retransmission should be no larger than the
new PMTU.
Note: A packetization layer that determines a probe packet is lost
needs to adapt the segment size of the retransmission. Using the
reported size in the last Packet Too Big message, however, can
lead to further losses as there might be smaller PMTU limits at
the routers further along the path. This would lead to loss of
all retransmitted segments and therefore cause unnecessary
congestion as well as additional packets to be sent each time a
new router announces a smaller MTU. Any packetization layer that
uses retransmission is therefore also responsible for congestion
control of its retransmissions [RFC8085].
A loss caused by a PMTU probe indicated by the reception of a Packet
Too Big message must not be considered as a congestion notification,
and hence the congestion window may not change.
5.5. Issues for Other Transport Protocols
Some transport protocols are not allowed to repacketize when doing a
retransmission. That is, once an attempt is made to transmit a
segment of a certain size, the transport cannot split the contents of
the segment into smaller segments for retransmission. In such a
case, the original segment can be fragmented by the IP layer during
retransmission. Subsequent segments, when transmitted for the first
time, should be no larger than allowed by the Path MTU.
Path MTU Discovery for IPv4 [RFC1191] used NFS as an example of a
UDP-based application that benefits from PMTU Discovery. Since then,
[RFC7530] states that the supported transport layer between NFS and
IP must be an IETF standardized transport protocol that is specified
to avoid network congestion; such transports include TCP, Stream
Control Transmission Protocol (SCTP) [RFC4960], and the Datagram
Congestion Control Protocol (DCCP) [RFC4340]. In this case, the
transport is responsible for ensuring that transmitted segments
(except probes) conform to the Path MTU, including supporting PMTU
Discovery probe transmissions as needed.
McCann, et al. Standards Track [Page 13]
RFC 8201 IPv6 Path MTU Discovery July 2017
5.6. Management Interface
It is suggested that an implementation provides a way for a system
utility program to:
- Specify that Path MTU Discovery not be done on a given path.
- Change the PMTU value associated with a given path.
The former can be accomplished by associating a flag with the path;
when a packet is sent on a path with this flag set, the IP layer does
not send packets larger than the IPv6 minimum link MTU.
These features might be used to work around an anomalous situation or
by a routing protocol implementation that is able to obtain Path MTU
values.
The implementation should also provide a way to change the timeout
period for aging stale PMTU information.
6. Security Considerations
This Path MTU Discovery mechanism makes possible two DoS attacks,
both based on a malicious party sending false Packet Too Big messages
to a node.
In the first attack, the false message indicates a PMTU much
smaller than reality. In response, the victim node should never
set its PMTU estimate below the IPv6 minimum link MTU. A sender
that falsely reduces to this MTU would observe suboptimal
performance.
In the second attack, the false message indicates a PMTU larger
than reality. If believed, this could cause temporary blockage as
the victim sends packets that will be dropped by some router.
Within one round-trip time, the node would discover its mistake
(receiving Packet Too Big messages from that router), but frequent
repetition of this attack could cause lots of packets to be
dropped. A node, however, must not raise its estimate of the PMTU
based on a Packet Too Big message, so it should not be vulnerable
to this attack.
Both of these attacks can cause a black-hole connection, that is, the
TCP three-way handshake completes correctly but the connection hangs
when data is transferred.
McCann, et al. Standards Track [Page 14]
RFC 8201 IPv6 Path MTU Discovery July 2017
A malicious party could also cause problems if it could stop a victim
from receiving legitimate Packet Too Big messages, but in this case
there are simpler DoS attacks available.
If ICMPv6 filtering prevents reception of ICMPv6 Packet Too Big
messages, the source will not learn the actual path MTU.
"Packetization Layer Path MTU Discovery" [RFC4821] does not rely upon
network support for ICMPv6 messages and is therefore considered more
robust than standard PMTUD. It is not susceptible to "black-holed"
connections caused by the filtering of ICMPv6 messages. See
[RFC4890] for recommendations regarding filtering ICMPv6 messages.
7. IANA Considerations
This document does not require any IANA actions.
8. References
8.1. Normative References
[ICMPv6] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification", STD 89,
RFC 4443, DOI 10.17487/RFC4443, March 2006,
<http://www.rfc-editor.org/info/rfc4443>.
[RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", STD 86, RFC 8200,
DOI 10.17487/RFC8200, July 2017,
<http://www.rfc-editor.org/info/rfc8200>.
8.2. Informative References
[FRAG] Kent, C. and J. Mogul, "Fragmentation Considered Harmful",
In Proc. SIGCOMM '87 Workshop on Frontiers in Computer
Communications Technology, DOI 10.1145/55483.55524, August
1987.
[ND] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
"Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
DOI 10.17487/RFC4861, September 2007,
<http://www.rfc-editor.org/info/rfc4861>.
[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
Communication Layers", STD 3, RFC 1122,
DOI 10.17487/RFC1122, October 1989,
<http://www.rfc-editor.org/info/rfc1122>.
McCann, et al. Standards Track [Page 15]
RFC 8201 IPv6 Path MTU Discovery July 2017
[RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
DOI 10.17487/RFC1191, November 1990,
<http://www.rfc-editor.org/info/rfc1191>.
[RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
1996, <http://www.rfc-editor.org/info/rfc1981>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, DOI 10.17487/RFC2923, September 2000,
<http://www.rfc-editor.org/info/rfc2923>.
[RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340,
DOI 10.17487/RFC4340, March 2006,
<http://www.rfc-editor.org/info/rfc4340>.
[RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
<http://www.rfc-editor.org/info/rfc4821>.
[RFC4890] Davies, E. and J. Mohacsi, "Recommendations for Filtering
ICMPv6 Messages in Firewalls", RFC 4890,
DOI 10.17487/RFC4890, May 2007,
<http://www.rfc-editor.org/info/rfc4890>.
[RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,
<http://www.rfc-editor.org/info/rfc4960>.
[RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, DOI 10.17487/RFC6691, July 2012,
<http://www.rfc-editor.org/info/rfc6691>.
[RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
(NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
March 2015, <http://www.rfc-editor.org/info/rfc7530>.
[RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
March 2017, <http://www.rfc-editor.org/info/rfc8085>.
McCann, et al. Standards Track [Page 16]
RFC 8201 IPv6 Path MTU Discovery July 2017
Appendix A. Comparison to RFC 1191
RFC 1981 (obsoleted by this document) was based in large part on RFC
1191, which describes Path MTU Discovery for IPv4. Certain portions
of RFC 1191 were not needed in RFC 1981:
router specification Packet Too Big messages and corresponding
router behavior are defined in [ICMPv6]
Don't Fragment bit there is no DF bit in IPv6 packets
TCP MSS discussion selecting a value to send in the TCP MSS option
is discussed in [RFC8200]
old-style messages all Packet Too Big messages report the MTU of
the constricting link
MTU plateau tables not needed because there are no old-style
messages
Appendix B. Changes Since RFC 1981
This document is based on RFC 1981 and has the following changes from
RFC 1981:
o Clarified in Section 1, "Introduction", that the purpose of PMTUD
is to reduce the need for IPv6 fragmentation.
o Added text to Section 1, "Introduction", about the effects on
PMTUD when ICMPv6 messages are blocked.
o Added a "Note" to the introduction to document that this
specification doesn't cite RFC 2119 and only uses lower case
"should/must" language. Changed all upper case "should/must" to
lower case.
o Added a short summary to Section 1, "Introduction", about PLPMTUD
and a reference to RFC 4821 that defines it.
o Aligned text in Section 2, "Terminology", to match current
packetization layer terminology.
o Added clarification in Section 4, "Protocol Requirements", that
nodes should validate the payload of ICMP PTB messages per RFC
4443, and that nodes should detect decreases in PMTU as fast as
possible.
McCann, et al. Standards Track [Page 17]
RFC 8201 IPv6 Path MTU Discovery July 2017
o Removed a "Note" from Section 4, "Protocol Requirements", about a
Packet Too Big message reporting a next-hop MTU that is less than
the IPv6 minimum link MTU because this was removed from [RFC8200].
o Added clarification in Section 5.2, "Storing PMTU Information", to
discard an ICMPv6 Packet Too Big message if it contains an MTU
less than the IPv6 minimum link MTU.
o Added clarification in Section 5.2, "Storing PMTU Information",
that for nodes with multiple interfaces, Path MTU information
should be stored for each link.
o Removed text in Section 5.2, "Storing PMTU Information", about
Routing Header type 0 (RH0) because it was deprecated by RFC 5095.
o Removed text about obsolete security classification from
Section 5.2, "Storing PMTU Information".
o Changed the title of Section 5.4 to "Packetization Layer Actions"
and changed the text in the first paragraph to generalize this
section to cover all packetization layers, not just TCP.
o Clarified text in Section 5.4, "Packetization Layer Actions", to
use normal packetization layer retransmission methods.
o Removed text in Section 5.4, "Packetization Layer Actions", that
described 4.2 BSD because it is obsolete, and removed reference to
TP4.
o Updated text in Section 5.5, "Issues for Other Transport
Protocols", about NFS, including adding a current reference to NFS
and removing obsolete text.
o Added a paragraph to Section 6, "Security Considerations", about
black-hole connections if PTB messages are not received and
comparison to PLPMTUD.
o Updated "Acknowledgements".
o Editorial Changes.
McCann, et al. Standards Track [Page 18]
RFC 8201 IPv6 Path MTU Discovery July 2017
Acknowledgements
We would like to acknowledge the authors of and contributors to
[RFC1191], from which the majority of this document was derived. We
would also like to acknowledge the members of the IPng Working Group
for their careful review and constructive criticisms.
We would also like to acknowledge the contributors to this update of
"Path MTU Discovery for IP Version 6". This includes members of the
6MAN Working Group, area directorate reviewers, the IESG, and
especially Joe Touch and Gorry Fairhurst.
Authors' Addresses
Jack McCann
Digital Equipment Corporation
Stephen E. Deering
Retired
Vancouver, British Columbia
Canada
Jeffrey Mogul
Digital Equipment Corporation
Robert M. Hinden (editor)
Check Point Software
959 Skyway Road
San Carlos, CA 94070
United States of America
Email: bob.hinden@gmail.com
McCann, et al. Standards Track [Page 19]