patch-2.1.21 linux/Documentation/filesystems/romfs.txt

Next file: linux/Documentation/modules.txt
Previous file: linux/Documentation/filesystems/00-INDEX
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.1.20/linux/Documentation/filesystems/romfs.txt linux/Documentation/filesystems/romfs.txt
@@ -0,0 +1,152 @@
+
+ROMFS - ROM FILE SYSTEM
+
+This is a quite dumb, read only filesystem, mainly for initial ram
+disks of installation disks.  It has grown up by the need of having
+modules linked at boot time.  Using this filesystem, you get a very
+similar feature, and even the possibility of a small kernel, with a
+file system which doesn't take up useful memory from the router
+functions in the basement of your office.
+
+For comparison, both the older minix and xiafs filesystems (compiled
+as module) need more than 20000 bytes, while romfs is less than a
+page, about 4000 bytes (assuming ix86 code).  Under the same
+conditions, the msdos filesystem would need about 30K (and does not
+support device nodes or symlinks), while the nfs module with nfsroot
+is about 57K.  Furthermore, as a bit unfair comparison, an actual
+rescue disk used up 3202 blocks with ext2, while with romfs, it needed
+3079 blocks.
+
+To create such a file system, you'll need a user program named
+genromfs.  It is (or will be shortly) available via ftp on
+sunsite.unc.edu and its mirrors, in the /pub/Linux/system/Filesystems/
+directory.
+
+As the name suggests, romfs could be also used (space-efficiently) on
+various read-only medias, like (E)EPROM disks if someone will have the
+motivation.. :)
+
+However, the main purpose of romfs is to have a very small kernel,
+which has only this filesystem linked in, and then can load any module
+later, with the current module utilities.  It can also be used to run
+some program to decide if you need SCSI devices, and even IDE or
+floppy drives can be loaded later if you use the "initrd" -- initial
+ram disk -- feature of the kernel.  This would not be really news
+flash, but with romfs, you can even spare off your ext2 or minix or
+maybe even affs filesystem until you really know that you need it.
+
+For example, a distribution boot disk can contain only the cd disk
+drivers (and possibly the SCSI drivers), and the ISO filesystem
+module.  The kernel can be small enough, since it doesn't have other
+filesystems, like the quite large ext2fs module, which can then be
+loaded off the CD at a later stage of the installation.  Another use
+would be for a recovery disk, when you are reinstalling a workstation
+from the network, and you will have all the tools/modules available
+from a nearby server, so you don't want to carry two disks for this
+purpose, just because it won't fit into ext2.
+
+romfs operates on block devices as you can expect, and the underlying
+structure is very simple.  Every accessible structure begins on 16
+byte boundaries for fast access.  The minimum space a file will take
+is 32 bytes (this is an empty file, with a less than 16 character
+name).  The maximum overhead for any non-empty file is the header, and
+the 16 byte padding for the name and the contents, also 16+14+15 = 45
+bytes.  This is quite rare however, since most file names are longer
+than 3 bytes, and shorter than 15 bytes.
+
+The layout of the filesystem is the following:
+
+offset	    content
+
+	+---+---+---+---+
+  0	| - | r | o | m |  \
+	+---+---+---+---+	The ASCII representation of those bytes
+  4	| 1 | f | s | - |  /	(i.e. "-rom1fs-"
+	+---+---+---+---+
+  8	|   full size	|	The number of accessible bytes in this fs.
+	+---+---+---+---+
+ 12	|    checksum	|	The checksum of the FIRST 512 BYTES.
+	+---+---+---+---+
+ 16	| volume name	|	The zero terminated name of the volume,
+	:               :	padded to 16 byte boundary.
+	+---+---+---+---+
+ xx	|     file	|
+	:    headers	:
+
+Every multi byte value (32 bit words, I'll use the longwords term from
+now on) must be in big endian order.
+
+The first eight bytes identify the filesystem, even for the casual
+reader.  After that in the 3rd longword, it contains the number of
+bytes accessible from the start of this filesystem.  The 4th longword
+is the checksum of the first 512 bytes (or the number of bytes
+accessible, whichever is smallest).  The applied algorithm is the same
+as in the AFFS filesystem, namely a simple sum of the longwords
+(assuming bigendian quantities again).  For details, please consult
+the source.  This algorithm was chosen because although it's not quite
+reliable, it does not require any tables, and it is very simple.
+
+The following bytes are now part of the file system; each file header
+must begin on a 16 byte boundary.
+
+offset	    content
+
+     	+---+---+---+---+
+  0	| next filehdr|X|	The offset of the next file header
+	+---+---+---+---+	  (zero if no more files)
+  4	|   spec.info	|	Info for directories/hard links/devices
+	+---+---+---+---+
+  8	|     size      |	The size of this file in bytes
+	+---+---+---+---+
+ 12	|   checksum	|	Covering the meta data, including the file
+	+---+---+---+---+	  name, and padding
+ 16	| file name     |	The zero terminated name of the file,
+	:               :	padded to 16 byte boundary.
+	+---+---+---+---+
+ xx	| file data	|
+	:		:
+
+Since the file headers begin always at a 16 byte boundary, the lowest
+4 bits would be always zero in the next filehdr pointer.  These four
+bits are used for the mode information.  Bits 0..2 specify the type of
+the file; while bit 4 shows if the file is executable or not.  The
+permissions are assumed to be world readable, if this bit is not set,
+and world executable if it is; except the character and block devices,
+they are readable only for the owner.  The owner of every file is user
+and group 0, this should never be a problem for the intended use.  The
+mapping of the 8 possible values to file types is the following:
+
+	  mapping		spec.info means
+ 0	hard link	link destination [file header]
+ 1	directory	first file's header
+ 2	regular file	unused, must be zero [MBZ]
+ 3	symbolic link	unused, MBZ (file data is the link content)
+ 4	block device	16/16 bits major/minor number
+ 5	char device		    - " -
+ 6	socket		unused, MBZ
+ 7	fifo		unused, MBZ
+
+Note that hard links are specifically marked in this filesystem, but
+they will behave as you can expect (i.e. share the inode number).
+Note also that your responsibility to not create hard link loops, and
+creating all the . and .. links for directories.  This is normally
+done correctly by the genromfs program.  Please refrain from using the
+executable bits on the socket and fifo special files, they may have
+other uses in the future.  Additionally, please remember that only
+regular files, and symlinks are supposed to have a nonzero size field;
+they contain the number of bytes available directly after the (padded)
+file name.
+
+Another thing to note is that romfs works on file headers and data
+aligned to 16 byte boundaries, but most hardware devices and the block
+device drivers are unable to cope with smaller than block-sized data.
+To overcome this limitation, the whole size of the file system must be
+padded to an 1024 byte boundary.
+
+If you have any problems or suggestions concerning this file system,
+please contact me.  However, think twice before wanting me to add
+features and code, because the primary advantage of this file system
+is the small code.
+
+Have fun,
+Janos Farkas <chexum@shadow.banki.hu>

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov