MIT/GNU Scheme User’s Manual

for release 12.1
2021-02-19

by Stephen Adams
Chris Hanson
and the MIT Scheme Team

This manual documents the use of MIT/GNU Scheme 12.1.

Copyright (©) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

Table of Contents

Introduction 1
1 Installation................ 3
1.1 Unix Installation ... 3

2 Running Scheme.............. 5
2.1 Basics of Starting Scheme............ L. 5
2.2 Customizing Scheme........o i i 5
2.3 Memory Usage . ..o 6
2.4 Command-Line Optionscooiiiiiiiiiie ... 7
2.5 Custom Command-line Options............o, 9
2.6 Environment Variables 10
2.6.1 Environment Variables for the Microcode 10

2.6.2 Environment Variables for the Runtime System 11

2.6.3 Environment Variables for Edwin......................... 11

2.7 Leaving Scheme i 12

3 Using Schemeiiiii... 13
3.1 The Read-Eval-Print Loop............cooiiiiiiiiiiiiii, 13
3.1.1 The Prompt and Level Number........................... 13

3.1.2 Interruptingo 14

3.1.3 Restarting...... .o 14

3.1.4 The Current REPL Environment 15

3.1.5 REPL Escapes........ccouiiiiiii i 16

3.2 Loading Files. 20
3.3 World Tmagesouuriii i e 21
3.4 Garbage Collection 22

4 Compiling Programs........................... 25
4.1 Compilation Procedures i, 25
4.2 Declarations.t 26
4.2.1 Standard Names...........ooiiiiiiiiiiiiiiiiii . 26

4.2.2 In-line Coding........oouuiiiniii e 26

4.2.3 Operator Replacementcoiiiiiiiiiien... 28

4.2.4 Operator Reduction i 29

4.3 Efficiency Tipso 31
4.3.1 Coding style. ..o 32

4.3.2 Top-level variables............ ... 34

4.3.3 Type and range checkingo L 35

4.3.4 Fixnum arithmetic........... i 35

4.3.5 Flonum arithmetic........ ... 36

ii

5 Debugging......... ... 39
5.1 Subproblems and Reductions, 40
5.2 The Command-Line Debugger 40
5.3 Debugging Aidsot 43
5.4 Advising Procedures.o 46

6 Profiling......... 51

7 GNU Emacs Interface 53

8 Edwin........ 55
8.1 Starting Edwin........ ... i 55
8.2 Leaving EAdwin i 56
8.3 Scheme Mode ...ttt 56
8.4 Evaluation i 57
85 REPL Mode......ooiiii e e 57
8.6 The Edwin Debugger....... ... 58
8.7 Last Resorts.ooiiiii e 59

Appendix A GNU Free Documentation License .. 61
A.1 ADDENDUM: How to use this License for your documents.... 67

Appendix B Environment-variable Index....... 69
Appendix C Option Index....................... 71
Appendix D Variable Index 73

Appendix E Concept Index 75

Introduction

This document describes how to install and use MIT/GNU Scheme, the UnCommon Lisp. It
gives installation instructions for all of the platforms that we support; complete documen-
tation of the command-line options and environment variables that control how Scheme
works; and rudimentary descriptions of how to interact with the evaluator, compile and
debug programs, and use the editor.

This document discusses many operating-system specific features of the MIT/GNU
Scheme implementation. In order to simplify the discussion, we use abbreviations to refer
to some operating systems. When the text uses the term unix, this means any of the unix
systems that we support, including GNU /Linux, macOS, and the BSD variants.

The primary distribution site for this software is
https://www.gnu.org/software/mit-scheme/

Although our software is distributed from other sites and in other media, the complete
distribution and the most recent release is always available at our site.

The release notes for the current release are at
https://www.gnu.org/software/mit-scheme/release.html

To report bugs, use the bug-reporting tool at
https://savannah.gnu.org/projects/mit-scheme/

Please include the output of the identify-world procedure (see Section 2.1 [Basics of
Starting Scheme], page 5), so we know what version of the system you are using.

https://www.gnu.org/software/mit-scheme/
https://www.gnu.org/software/mit-scheme/release.html
https://savannah.gnu.org/projects/mit-scheme/

1 Installation

This chapter describes how to install MIT/GNU Scheme. The release is supported under
various unix operating systems. Read the section detailing the installation for the operating
system that you are using.

1.1 Unix Installation

We will use as an example the installation for GNU/Linux. The installation for other unix
systems is similar. There are several references to ARCH below; these refer to the computer
architecture that Scheme is compiled for: either ‘1386’ ‘x86-64’, ‘aarch64’, or ‘svml’.

MIT/GNU Scheme is distributed as a compressed ‘tar’ file. The tar file contains both
source and binary files; the binary files are pre-compiled Scheme code for a particular
computer architecture. The source files are C programs that need to be compiled.

Requirements
At a minimum, you will need a C compiler (e.g. ‘gcc’) and a ‘make’ program, and a “curses”
library. For example, here are the packages that must be installed on some popular systems:
e Debian-like systems: gcc make m4 libncurses-dev
e CentOS-like systems: gcc make m4 ncurses-devel

e macOS systems: Command line developer tools ‘xcode-select --install’

Additionally, if you want support for X11 graphics, you’ll need:
e Debian-like systems: libx11-dev
e CentOS-like systems: 1ibX11-devel
e macOS systems: XQuartz (from https://www.xquartz.org/)

Steps
In order to install the software, it’s necessary to configure and compile the C code, then to
install the combined C and Scheme binaries, with the following steps.

1. Unpack the tar file, mit-scheme-VERSION-ARCH.tar.gz, into the directory
mit-scheme-VERSION. For example,

tar xzf mit-scheme-VERSION-i386.tar.gz
will create a new directory mit-scheme-VERSION.
2. Move into the src subdirectory of the new directory:
cd mit-scheme-VERSION/src
3. Configure the software:
./configure

By default, the software will be installed in /usr/local, in the subdirectories bin
and 1ib. If you want it installed somewhere else, for example /opt/mit-scheme, pass
the —-prefix option to the configure script, as in ./configure —--prefix=/opt/mit-
scheme.

https://www.xquartz.org/

4 MIT/GNU Scheme 12.1

The configure script accepts all the normal arguments for such scripts, and additionally
accepts some that are specific to MIT/GNU Scheme. To see all the possible arguments
and their meanings, run the command ./configure --help. However, do not specify
the following options, which are all preconfigured to the right values; doing so will
probably cause the build to fail:
-—enable-native-code
—-—enable-host-scheme-test
--enable-cross-compiling
--with-compiler-target
--with-default-target
-—with-scheme-build
4. Build the software:
make
5. Install the software:
make install

Depending on configuration options and file-system permissions, you may need super-
user privileges to do the installation steps.

6. Build the documentation:

cd ../doc
./configure
make

7. Install the documentation:
make install-info install-html install-pdf

Depending on configuration options and file-system permissions, you may need super-
user privileges to do the installation step.

Plugins

After you have installed Scheme you may want to install several plugins. Scheme no longer
uses dynamically loaded microcode modules installed with Scheme. The micromodules have
been converted into plugins: new subsystems that use the C/FFI to dynamically load the
same code. Instead you configure, build, and install additional plugins after installing the
core system.

By default, the following plugins are built and installed: edwin, imail, x11, and
x11-screen. (The latter two only if X11 libraries are installed on your system.) To get all
of the functionality previously available in version 9.2 you will need to build and install the
remaining plugins included in the src subdirectory: blowfish, gdbm, and pgsql. These
plugins are all configured, built, and installed in the GNU standard way. See the README
file in each plugin’s source directory for complete details.

Cleanup

After installing Scheme and your desired plugins, you can delete the source directory:

cd ../..
rm -rf mit-scheme-VERSION

2 Running Scheme

This chapter describes how to run MIT/GNU Scheme. It also describes how you can
customize the behavior of MIT/GNU Scheme using command-line options and environment
variables.

2.1 Basics of Starting Scheme
Under unix, MIT/GNU Scheme is invoked by typing

mit-scheme

at your operating system’s command interpreter. In either case, Scheme will load itself and
print something like this:

Copyright (C) 2019 Massachusetts Institute of Technology
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Image saved on Tuesday May 26, 2020 at 10:23:04 PM
Release 10.90 || SF || LIAR/x86-64

This information, which can be printed again by evaluating
(identify-world)

tells you the following version information. ‘Release’ is the release number for the entire
Scheme system. This number is changed each time a new version of Scheme is released.

Following this there may be additional names for specific subsystems. ‘SF’ refers to the
scode optimization program sf; ‘LIAR/ARCH is the native-code compiler, where ARCH is
the native-code architecture it compiles to; ‘Edwin’ is the Emacs-like text editor. There are
other subsystems you can load that will add themselves to this list.

2.2 Customizing Scheme

You can customize your setup by using a variety of tools:

e Command-line options. Many parameters, like memory usage and the location of
libraries, may be varied by command-line options. See Section 2.4 [Command-Line
Options], page 7.

e Shell scripts. You might like to write scripts that invoke Scheme with your favorite
command-line options. For example, you might not have enough memory to run Edwin
or the compiler with its default memory parameters (it will print something like “Not
enough memory for this configuration” and halt when started), so you can write a shell
script that will invoke Scheme with the appropriate -—-heap and other parameters.

e Scheme supports init files: an init file is a file containing Scheme code that is loaded
when Scheme is started, immediately after the identification banner, and before the
input prompt is printed. This file is stored in your home directory, which is normally
specified by the HOME environment variable. Under unix, the file is called .scheme.init.

In addition, when Edwin starts up, it loads a separate init file from your home directory
into the Edwin environment. This file is called .edwin under unix (see Section 8.1
[Starting Edwin], page 55).

6 MIT/GNU Scheme 12.1

You can use both of these files to define new procedures or commands, or to change
defaults in the system.

The -—no-init-file command-line option causes Scheme to ignore the .scheme.init
file (see Section 2.4 [Command-Line Options], page 7).

e FEnvironment variables. Most microcode parameters, and some runtime system and
Edwin parameters, can be specified by means of environment variables. See Section 2.6
[Environment Variables], page 10.

e Icons. With some window managers under X11, it is possible to create icons that invoke
Scheme with different parameters.

2.3 Memory Usage

Some of the parameters that can be customized determine how much memory Scheme uses
and how that memory is used. This section describes how Scheme’s memory is organized
and used; subsequent sections describe command-line options and environment variables
that you can use to customize this usage for your needs.

Scheme uses four kinds of memory:
e A stack that is used for recursive procedure calls.

e A heap that is used for dynamically allocated objects, like cons cells and strings.
Storage used for objects in the heap that become unreferenced is eventually reclaimed
by garbage collection.

e A constant space that is used for allocated objects, like the heap. Unlike the heap,
storage used for objects in constant space is not reclaimed by garbage collection; any
unreachable objects in constant space remain there until the Scheme process is termi-
nated. Constant space is used for objects that are essentially permanent, like procedures
in the runtime system. Doing this reduces the expense of garbage collection because
these objects are no longer copied.

e Some extra storage that is used by the microcode (the part of the system that is
implemented in C).

All kinds of memory except the last may be controlled either by command-line options or
by environment variables.

MIT/GNU Scheme uses a two-space copying garbage collector for reclaiming storage in
the heap. The second space, used only during garbage collection, is dynamically allocated
as needed.

Once the storage is allocated for the constant space and the heap, Scheme will dynam-
ically adjust the proportion of the total that is used for constant space; the stack and
extra microcode storage is not included in this adjustment. Previous versions of MIT/GNU
Scheme needed to be told the amount of constant space that was required when loading
bands with the --band option. Dynamic adjustment of the heap and constant space avoids
this problem.

If the size of the constant space is not specified, it is automatically set to the correct size
for the band being loaded; it is rarely necessary to explicitly set the size of the constant
space. Additionally, each band requires a small amount of heap space; this amount is
added to any specified heap size, so that the specified heap size is the amount of free space
available.

Chapter 2: Running Scheme 7

The Scheme expression ‘(print-gc-statistics)’ shows how much heap and constant
space is available (see Section 3.4 [Garbage Collection], page 22).

2.4 Command-Line Options

Scheme accepts the command-line options detailed in the following sections. The options
may appear in any order, with the restriction that the microcode options must appear before
the runtime options, and the runtime options must appear before any other arguments on
the command line. Any arguments other than these options will generate a warning message
when Scheme starts. If you want to define your own command-line options, see Section 2.5
[Custom Command-line Options]|, page 9.

Note that MIT/GNU Scheme supports only long options, that is, options specified by
verbose names, as opposed to short options, which are specified by single characters. All
options start with two hyphens, for compatibility with GNU coding standards (and most
modern programs).

These are the microcode options:

--band filename

Specifies the initial world image file (band) to be loaded. Searches for filename
in the working directory and the library directories, using the full pathname of
the first readable file of that name. If filename is an absolute pathname (on
unix, this means it starts with /), then no search occurs—filename is tested
for readability and then used directly. If this option isn’t given, the filename is
the value of the environment variable MITSCHEME_BAND, or if that isn’t defined,
all.com; in these cases the library directories are searched, but not the working
directory.

--heap blocks
Specifies the size of the heap in 1024-word blocks. Overrides any default. The
size specified by this option is incremented by the amount of heap space needed
by the band being loaded. Consequently, -—heap specifies how much free space
will be available in the heap when Scheme starts, independent of the amount
of heap already consumed by the band.

—-—constant blocks
Specifies the size of constant space in 1024-word blocks. Overrides any default.
Constant space holds the compiled code for the runtime system and other sub-
systems.

--stack blocks
Specifies the size of the stack in 1024-word blocks. Overrides any default. This
is Scheme’s stack, not the unix stack used by C programs.

—--option-summary
Causes Scheme to write an option summary to standard error. This shows the
values of all of the settable microcode option variables.

--emacs Specifies that Scheme is running as a subprocess of GNU Emacs. This option
is automatically supplied by GNU Emacs, and should not be given under other
circumstances.

MIT/GNU Scheme 12.1

——interactive

——nocore

If this option isn’t specified, and Scheme’s standard I/O is not a terminal,
Scheme will detach itself from its controlling terminal, which prevents it from
getting signals sent to the process group of that terminal. If this option is
specified, Scheme will not detach itself from the controlling terminal.

This detaching behavior is useful for running Scheme as a background job. For
example, using Bourne shell, the following will run Scheme as a background job,
redirecting its input and output to files, and preventing it from being killed by
keyboard interrupts or by logging out:

mit-scheme < /usr/cph/foo.in > /usr/cph/foo.out 2>&1 &

This option is ignored under non-unix operating systems.
Specifies that Scheme should not generate a core dump under any circum-

stances. If this option is not given, and Scheme terminates abnormally, you
will be prompted to decide whether a core dump should be generated.

This option is ignored under non-unix operating systems.

--library path

Sets the library search path to path. This is a list of directories that is searched
to find various library files, such as bands. If this option is not given, the
value of the environment variable MITSCHEME_LIBRARY_PATH is used; if that
isn’t defined, the default is used.

On unix, the elements of the list are separated by colons, and the default value
is /usr/local/lib/mit-scheme-ARCH.

—-fasl filename

Specifies that a cold load should be performed, using filename as the initial file
to be loaded. If this option isn’t given, a normal load is performed instead.
This option may not be used together with the —-band option. This option is
useful only for maintenance and development of the MIT/GNU Scheme runtime
system.

The following options are runtime options. They are processed after the microcode options
and after the image file is loaded.

—--no-init-file

This option causes Scheme to ignore the ${HOME}/ . scheme. init file, normally
loaded automatically when Scheme starts (if it exists).

--suspend-file

Under some circumstances Scheme can write out a file called scheme_suspend
in the user’s home directory.! This file is a world image containing the complete
state of the Scheme process; restoring this file continues the computation that
Scheme was performing at the time the file was written.

Normally this file is never written, but the --suspend-file option enables
writing of this file.

1 Under unix, this file is written when Scheme is terminated by the ‘SIGUSR1’, ‘SIGHUP’, or ‘SIGPWR’ signals.
Under other operating systems, this file is never written.

Chapter 2: Running Scheme 9

--eval expression ...
This option causes Scheme to evaluate the expressions following it on the com-
mand line, up to but not including the next argument that starts with a hyphen.
The expressions are evaluated in the user-initial-environment. Unless ex-
plicitly handled, errors during evaluation are silently ignored.

--load file ...
This option causes Scheme to load the files (or lists of files) following it on the
command line, up to (but not including) the next argument that starts with
a hyphen. The files are loaded in the user-initial-environment. Unless
explicitly handled, errors during loading are silently ignored.

--edit This option causes Edwin to be loaded and started immediately when Scheme
is started.

The following options allow arguments to be passed to scripts via the command-line-
arguments procedure.

command-line-arguments [procedure]
Returns a list of arguments (strings) gathered from the command-line by options like
--args or —-.

--args argument ...
This option causes Scheme to append the arguments, up to (but not includ-
ing) the next argument that starts with a hyphen, to the list returned by the
command-line-arguments procedure.

-— argument ...
This option causes Scheme to append the rest of the command-line arguments
(even those starting with a hyphen) to the list returned by the command-line-
arguments procedure.

2.5 Custom Command-line Options

MIT/GNU Scheme provides a mechanism for you to define your own command-line options.
This is done by registering handlers to identify particular named options and to process them
when Scheme starts. Unfortunately, because of the way this mechanism is implemented,
you must define the options and then save a world image containing your definitions (see
Section 3.3 [World Images], page 21). Later, when you start Scheme using that world image,
your options will be recognized.

The following procedures define command-line parsers. In each, the argument keyword
defines the option that will be recognized on the command line. The keyword must be a
string containing at least one character; do not include the leading hyphens.

simple-command-line-parser keyword thunk [help] [procedure]
Defines keyword to be a simple command-line option. When this keyword is seen on
the command line, it causes thunk to be executed. Help, when provided, should be a
string describing the option in the --help output.

10 MIT/GNU Scheme 12.1

argument-command-line-parser keyword multiple? procedure [procedure]
[help]
Defines keyword to be a command-line option that is followed by one or more
command-line arguments. Procedure is a procedure that accepts one argument;
when keyword is seen, it is called once for each argument. Help, when provided,
should be a string describing the option. It is included in the --help output. When
not provided, --help will say something lame about your command line option.

Multiple?, if true, says that keyword may be followed by more than one argument
on the command line. In this case, procedure is called once for each argument that
follows keyword and does not start with a hyphen. If multiple? is #f, procedure is
called once, with the command-line argument following keyword. In this case, it does
not matter if the following argument starts with a hyphen.

set-command-line-parser! keyword procedure [procedure]
This low-level procedure defines keyword to be a command-line option that is defined
by procedure. When keyword is seen, procedure is called with all of the command-line
arguments, starting with keyword, as a single list argument. Procedure must return
two values (using the values procedure): the unused command-line arguments (as a
list), and either #f or a thunk to invoke after the whole command line has been parsed
(and the init file loaded). Thus procedure has the option of executing the appropriate
action at parsing time, or delaying it until after the parsing is complete. The execution
of the procedures (or their associated delayed actions) is strictly left-to-right, with
the init file loaded between the end of parsing and the delayed actions.

2.6 Environment Variables

Scheme refers to many environment variables. This section lists these variables and de-
scribes how each is used. The environment variables are organized according to the parts
of MIT/GNU Scheme that they affect.

Environment variables that affect the microcode must be defined before you
start Scheme; others can be defined or overwritten within Scheme by using the
set-environment-variable! procedure, e.g.

(set-environment-variable! "EDWIN_FOREGROUND" "32")

2.6.1 Environment Variables for the Microcode

These environment variables are referred to by the microcode: the executable C program
called mit-scheme-ARCH-VERSION. The values they specify are overridden by the corre-
sponding command-line options, if given.

MITSCHEME_BAND
The initial band to be loaded. The default value is all.com.

MITSCHEME_LIBRARY_PATH
A list of directories. These directories are searched, left to right, to find bands
and various other files. On unix systems the list is colon-separated, with the
default /usr/local/lib/mit-scheme-ARCH-VERSION.

Chapter 2: Running Scheme 11

MITSCHEME_CONSTANT
The size of constant space, in 1024-word blocks; overridden by --constant.
The default value is computed to be the correct size for the band being loaded.

MITSCHEME_HEAP_SIZE
The size of the heap, in 1024-word blocks; overridden by --heap. The default
value depends on the architecture: for 32-bit machines the default is ‘3072,
and for 64-bit machines the default is ‘16384,

MITSCHEME_STACK_SIZE
The size of the stack, in 1024-word blocks; overridden by --stack. The default
value is ‘1024°.

2.6.2 Environment Variables for the Runtime System
These environment variables are referred to by the runtime system.

HOME Directory in which to look for init files, for example /home/joe. Under unix
HOME is set by the login shell.

TMPDIR

TEMP

TMP Directory for various temporary files. The variables are tried in the given order.
If none of them is suitable, built-in defaults are used: /var/tmp, /usr/tmp,
/tmp.

MITSCHEME_INF_DIRECTORY
Directory containing the debugging information files for the Scheme system.
Should contain subdirectories corresponding to the subdirectories in the source
tree. By default, the information is searched for on the library path.

MITSCHEME_LOAD_OPTIONS
Specifies the location of the options database file used by the load-option
procedure. The default is optiondb.scm on the library path.

2.6.3 Environment Variables for Edwin

These environment variables are referred to by Edwin.

EDWIN_BINARY_DIRECTORY
Directory where Edwin expects to find files providing autoloaded facilities. The
default is edwin on the library path.

EDWIN_INFO_DIRECTORY
Directory where Edwin expects to find files for the ‘info’ documentation sub-
system. The default is edwin/info on the library path.

EDWIN_ETC_DIRECTORY
Directory where Edwin expects to find utility programs and documentation
strings. The default is edwin on the library path.

ESHELL Filename of the shell program to use in shell buffers. If not defined, the SHELL
environment variable is used instead.

12

SHELL

PATH

DISPLAY

TERM
LINES

COLUMNS

MIT/GNU Scheme 12.1

Filename of the shell program to use in shell buffers and when executing shell
commands. Used to initialize the shell-path-name editor variable. The default
is /bin/sh on unix systems.

Used to initialize the exec-path editor variable, which is subsequently used for
finding programs to be run as subprocesses.

Used when Edwin runs under unix and uses X11. Specifies the display on which
Edwin will create windows.

Used when Edwin runs under unix on a terminal. Terminal type.

Used when Edwin runs under unix on a terminal. Number of text lines on the
screen, for systems that don’t support ‘TIOCGWINSZ’.

Used when Edwin runs under unix on a terminal. Number of text columns on
the screen, for systems that don’t support ‘TIOCGWINSZ’.

2.7 Leaving Scheme

There are several ways that you can leave Scheme: there are two Scheme procedures that you
can call; there are several Edwin commands that you can execute; and there are graphical-
interface buttons (and their associated keyboard accelerators) that you can activate.

o Two Scheme procedures that you can call. The first is to evaluate

(exit)

which will halt the Scheme system, after first requesting confirmation. Any information
that was in the environment is lost, so this should not be done lightly.

The second procedure suspends Scheme; when this is done you may later restart where
you left off. Unfortunately this is not possible in all operating systems; currently it
works under unix versions that support job control (i.e. all of the unix versions for
which we distribute Scheme). To suspend Scheme, evaluate
(quit)

If your system supports suspension, this will cause Scheme to stop, and you will be
returned to the shell. Scheme remains stopped, and can be continued using the job-
control commands of your shell. If your system doesn’t support suspension, this pro-
cedure does nothing. (Calling the quit procedure is analogous to typing C-z, but it
allows Scheme to respond by typing a prompt when it is unsuspended.)

Several Edwin commands that you can execute, including save-buffers-kill-scheme,
normally bound to C-x C-c, and suspend-scheme, normally bound to C-x C-z. These
two commands correspond to the procedures exit and quit, respectively.

Graphical-interface buttons that you can activate. Under any operating system, closing
an Edwin window causes that window to go away, and if it is the only Edwin window,
it terminates Scheme as well.

13

3 Using Scheme

This chapter describes how to use Scheme to evaluate expressions and load programs. It
also describes how to save custom “world images”, and how to control the garbage collector.
Subsequent chapters will describe how to use the compiler, and how to debug your programs.

3.1 The Read-Eval-Print Loop

When you first start up Scheme from the command line, you will be typing at a program
called the Read-Eval-Print Loop (abbreviated REPL). It displays a prompt at the left
hand side of the screen whenever it is waiting for input. You then type an expression
(terminating it with RET). Scheme evaluates the expression, prints the result, and gives you
another prompt.

3.1.1 The Prompt and Level Number

The REPL prompt normally has the form
1]1=>

The ‘1’ in the prompt is a level number, which is always a positive integer. This number is
incremented under certain circumstances, the most common being an error. For example,
here is what you will see if you type f o o RET after starting Scheme:

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>

In this case, the level number has been incremented to ‘2’, which indicates that a new REPL
has been started (also the prompt string has been changed to remind you that the REPL was
started because of an error). The ‘2’ means that this new REPL is “over” the old one. The
original REPL still exists, and is waiting for you to return to it, for example, by entering
‘(restart 1)’. Furthermore, if an error occurs while you are in this REPL, yet another
REPL will be started, and the level number will be increased to ‘3’. This can continue ad
infinitum, but normally it is rare to use more than a few levels.

The normal way to get out of an error REPL and back to the top level REPL is to use
the C-g interrupt. This is a single-keystroke command executed by holding down the CTRL
key and pressing the G key. C-g always terminates whatever is running and returns you to
the top level REPL immediately.

Note: The appearance of the ‘error>’ prompt does not mean that Scheme is in some
weird inconsistent state that you should avoid. It is merely a reminder that your program
was in error: an illegal operation was attempted, but it was detected and avoided. Often
the best way to find out what is in error is to do some poking around in the error REPL. If
you abort out of it, the context of the error will be destroyed, and you may not be able to
find out what happened.

14 MIT/GNU Scheme 12.1

3.1.2 Interrupting

Scheme has several interrupt keys, which vary depending on the underlying operating sys-
tem; under unix they are C-g and C-c. The C-g key stops any Scheme evaluation that is
running and returns you to the top level REPL. C-c prompts you for another character and
performs some action based on that character. It is not necessary to type RET after C-g or
C-c, nor is it needed after the character that C-c will ask you for.

Here are the definitions of the more common interrupt keys; on unix, type C-c ? for

more possibilities.

C-c C-c
C-g Abort whatever Scheme evaluation is currently running and return to the top-
level REPL. If no evaluation is running, this is equivalent to evaluating

(cmdl-interrupt/abort-top-level)
C-c C-x Abort whatever Scheme evaluation is currently running and return to the “cur-
rent” REPL. If no evaluation is running, this is equivalent to evaluating
(cmdl-interrupt/abort-nearest)
C-c C-u Abort whatever Scheme evaluation is running and go up one level. If you are

already at level number 1, the evaluation is aborted, leaving you at level 1. If
no evaluation is running, this is equivalent to evaluating

(cmdl-interrupt/abort-previous)
C-c C-b Suspend whatever Scheme evaluation is running and start a breakpoint REPL.
The evaluation can be resumed by evaluating
(continue)

in that REPL at any time.

C-cq Similar to typing ‘(exit)’ at the REPL, except that it works even if Scheme is
running an evaluation.

C-c z Similar to typing ‘(quit)’ at the REPL, except that it works even if Scheme is
running an evaluation.

C-ci Ignore the interrupt. Type this if you made a mistake and didn’t really mean
to type C-c.

C-c? Print help information. This will describe any other options not documented
here.

3.1.3 Restarting

Another way to exit a REPL is to use the restart procedure:

restart (K] [procedure]
This procedure selects and invokes a restart method. The list of restart methods is
different for each REPL and for each error; in the case of an error REPL, this list is
printed when the REPL is started:

Chapter 3: Using Scheme 15

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>
If the k argument is given, it must be a positive integer index into the list (in the
example it must be between one and three inclusive). The integer k selects an item
from the list and invokes it. If k is not given, restart prints the list and prompts for
the integer index:

2 error> (restart)

;Choose an option by number:

; 3: Specify a value to use instead of foo.

; 2: Define foo to a given value.

; 1: Return to read-eval-print level 1.

Option number:
The simplest restart methods just perform their actions. For example:

2 error> (restart 1)
;Abort!

11=>
Other methods will prompt for more input before continuing;:

2 error> (restart)

;Choose an option by number:

; 3: Specify a value to use instead of foo.
; 2: Define foo to a given value.

; 1: Return to read-eval-print level 1.

Option number: 3

Value to use instead of foo: ’(a b)
;Value: (a b)

1 1=

3.1.4 The Current REPL Environment

Every REPL has a current environment, which is the place where expressions are evaluated
and definitions are stored. When Scheme is started, this environment is the value of the
variable user-initial-environment. There are a number of other environments in the
system, for example system-global-environment, where the runtime system’s bindings
are stored.

You can get the current REPL environment by evaluating

(nearest-repl/environment)

16 MIT/GNU Scheme 12.1

There are several other ways to obtain environments. For example, if you have a proce-
dure object, you can get a pointer to the environment in which it was closed by evaluating

(procedure-environment procedure)

Here are some procedures that manage the REPL’s environment:

ge environment [procedure]
Changes the current REPL environment to be environment (ge stands for “Goto
Environment”). Environment is allowed to be a procedure as well as an environment
object. If it is a procedure, then the closing environment of that procedure is used in
its place.

ve environment [procedure]
Starts a sub-REPL with it’s environment set to environment (ve stands for “Visit
Environment”). Environment is allowed to be a procedure as well as an environment
object. If it is a procedure, then the closing environment of that procedure is used in
its place.

pe [procedure]
This procedure is useful for finding out which environment you are in (pe stands for
“Print Environment”). If the current REPL environment belongs to a package, then
pe returns the package name (a list of symbols). If the current REPL environment
does not belong to a package then the environment is returned.

3.1.5 REPL Escapes

Normally the REPL evaluates an expression and prints the value it returns. The REPL also
supports a set of special escapes that bypass the normal evaluation. There are two kinds
of escapes:

, (command arg ...)

,command tells the REPL to perform a special action. The symbol command specifies the
action to perform; the arg elements are command specific. A command that can
be used with no arg elements can be abbreviated by dropping the parentheses.
Additionally, command can be shortened to any unique prefix, such as po for
pop. Note that command is not evaluated. An arg is not evaluated, unless
it starts with a comma, in which case it is evaluated in the current REPL
environment.

, ,expression
evaluates expression in user-initial-environment instead of the current
REPL environment. This is especially useful when working with library
environments, where many of the usual definitions, for example debug, are not
available.

The rest of this section documents the commands that can be used with the first form
of escape. The most important command is help:

help [name] [REPL command]
Prints each of the available commands along with a summary of what they do. If
name is given, show only commands that match name.

Chapter 3: Using Scheme 17

, (help p)

- 5,pop

—H Pops an environment off the stack and moves the REPL there.

- ;,push

- ;,(push env)

= Push the REPL env on the env stack and move the REPL to a new env.

-

=4 If ENV is provided, it is converted to an environment in the usual
- way. The the current REPL env is pushed on the env stack and the REPL
= is moved to ENV.

-

= If ENV is not provided, the current REPL env is exchanged with the top
= of the env stack.

A number of the commands manipulate the REPL’s environment in various ways. These
involve the following parts:

e The current REPL environment is the environment that’s used to evaluate expressions.

e The environment stack contains additional environments that are saved for future use.
This stack is modified by the push, pop, bury, and ge commands.

e A set of named environments that have been given symbolic names. This set is modified
by name and unname.

envs [env-name] [REPL command]
Prints a summary of the environments. If env-name is given, prints only the named
environments matching env-name.

For example, here is the output when the system is started:

,envs

-4 ;here: (user) #[environment 12]
- ;The env stack is empty

- ;no named envs

Where ;here: marks the current REPL environment.

Several commands take an env argument, specifying an environment. This argument
can have several forms:

a symbol Refers to a named environment.

a library name
Refers to the environment of a loaded library. For example, ‘(scheme base)’.

a package name
Refers to the environment of a loaded MIT/GNU Scheme package. For example,
‘(runtime)’.

,expression
Evaluates expression in the current environment; its value must be an environ-
ment object.

push [env] [REPL command]
Pushes the current REPL environment on the environment stack, then moves the
REPL to a new environment. If env is not given, then this swaps the current REPL

18 MIT/GNU Scheme 12.1

environment and the environment on the top of the stack. Otherwise env specifies
the new environment in the usual way.

If the command completes successfully, it prints the current REPL environment and
the environment stack:

, (push (srfi 133))

- ;here: #[environment 28]

- ;stack:

- 0: (user) #[environment 12]

We can swap the two environments:

,push
4 ;Package: (user)
- ;here: (user) #[environment 12]

- ;stack:
- 0: #[environment 28]
pop [REPL command]
Pops off the top of the environment stack and moves the current REPL environment
there.
»pop
4 ;Package: (user)
- ;here: (user) #[environment 12]
-1 ;The env stack is empty
bury [REPL command]

Saves the current REPL environment at the bottom of the stack, then pops off the
top of the environment stack and moves the current REPL environment there.

, (push (runtime))

- ;Package: (runtime)

-4 ;here: (runtime) #[environment 30]

- ;stack:

- 0: #[environment 28]

= 1: (user) #[environment 12]

,bury

- ;here: #[environment 28]

- ;stack:

- 0: (user) #[environment 12]

= 1: (runtime) #[environment 30]
ge [env] [REPL command]

Sets the current REPL environment to the specified environment without affecting
the environment stack. If env is not given, a newly created top-level environment is
used.

This is basically the same as the ge procedure.

Chapter 3: Using Scheme 19

ve [env] [REPL command]
Creates a new child REPL, setting its current environment to the specified one. If
env is not given, a newly created top-level environment is used.

This is basically the same as the ve procedure.

name env-name [REPL command|
Gives the current REPL environment a name env-name and adds it to the set of
named environments. The argument env-name must be a symbol.

, (name foobar)
-| ;env named foobar has been assigned

,envs

-4 ;here: foobar #[environment 28]

- ;stack:

- 0: (user) #[environment 12]

- 1: (runtime) #[environment 30]
- ;named envs

- foobar #[environment 28]

unname [env-name] [REPL command]
Removes the environment with name env-name from the set of named environments.
If env-name is not given, removes all named environments.

, (unname foobar)
- ;env named foobar has been unassigned

,envs

- ;here: #[environment 28]

- ;stack:

= 0: (user) #[environment 12]

—H 1: (runtime) #[environment 30]
-4 ;no named envs

This group of commands manages nested REPL instances.

down [REPL command]
Creates a new child REPL with the same current environment as this one.

import import-set . .. [REPL command]
Imports the given import-sets into the current REPL environment. The syntax is
described in R7RS section 5.2.

up [REPL command]
Pops up one level to the parent REPL.
This is equivalent to calling cmdl-interrupt/abort-previous.

top-level [REPL command]
Pops up to the top-level REPL.

This is equivalent to calling cmdl-interrupt/abort-top-level.

20 MIT/GNU Scheme 12.1

3.2 Loading Files

To load files of Scheme code, use the procedure load:

load filename [environment [syntax-table [purify?]]] [procedure]
Filename may be a string naming a file, or a list of strings naming multiple files.
Environment, if given, is the environment to evaluate the file in; if not given the
current REPL environment is used.

Syntax-table is no longer used and if supplied will be ignored.

The optional argument purify? is a boolean that says whether to move the contents
of the file into constant space after it is loaded but before it is evaluated. This is
performed by calling the procedure purify (see Section 3.4 [Garbage Collection],
page 22). If purify? is given and true, this is done; otherwise it is not.

load determines whether the file to be loaded is binary or source code, and performs
the appropriate action. By convention, files of source code have names ending in
.scm, and files of binary SCode have names ending in .bin. Native-code binaries
have names ending in .com. R7RS library files conventionally end in .sld, .binld,
and .comld respectively.

If no file-name suffix is specified, load will choose a file by trying different suffixes,
preferring in order native-code binaries, SCode binaries, and source files.

All file names are interpreted relative to a working directory, which is initialized when
Scheme is started. The working directory can be obtained by calling the procedure pwd
or modified by calling the procedure cd; see Section “Working Directory” in MIT/GNU
Scheme Reference Manual.

load-option symbol [no-error?] [procedure]
Loads the option specified by symbol; if already loaded, does nothing. Returns sym-
bol; if there is no such option, an error is signalled. However, if no-error? is specified
and true, no error is signalled in this case, and #£ is returned.

A number of built-in options are defined:

compress Support to compress and uncompress files. Undocumented; see the source
file runtime/cpress.scm. Used by the runtime system for compression
of compiled-code debugging information.

format The format procedure. See Section “Format” in MIT/GNU Scheme Ref-
erence Manual.

gdbm Support to access gdbm databases. Undocumented; see the source files
runtime/gdbm.scm and microcode/prgdbm.c.

ordered-vector
Support to search and do completion on vectors of ordered elements.
Undocumented; see the source file runtime/ordvec.scm.

regular-expression
Support to search and match strings for regular expressions. See Section
“Regular Expressions” in MIT/GNU Scheme Reference Manual.

Chapter 3: Using Scheme 21

stepper Support to step through the evaluation of Scheme expressions. Undoc-
umented; see the source file runtime/ystep.scm. Used by the Edwin
command step-expression.

subprocess
Support to run other programs as subprocesses of the Scheme process.
Undocumented; see the source file runtime/process.scm. Used exten-
sively by Edwin.

synchronous—-subprocess
Support to run synchronous subprocesses. See Section “Subprocesses” in
MIT/GNU Scheme Reference Manual.

In addition to the built-in options, you may define other options to be loaded by
load-options by modifying the file optiondb.scm on the library path. An example file is
included with the distribution; normally this file consists of a series of calls to the procedure
define-load-option, terminated by the expression

(further-load-options standard-load-options)

define-load-option symbol thunk . .. [procedure]
Each thunk must be a procedure of no arguments. Defines the load option named
symbol. When the procedure load-option is called with symbol as an argument, the
thunk arguments are executed in order from left to right.

3.3 World Images

A world image, also called a band, is a file that contains a complete Scheme system, perhaps
additionally including user application code. Scheme provides a method for saving and
restoring world images. The method writes a file containing all of the Scheme code and
data in the running process. The file all.com that is loaded by the microcode is just such
a band. To make your own band, use the procedure disk-save.

disk-save filename [identify] [procedure]
Causes a band to be written to the file specified by filename. The optional argument
identify controls what happens when that band is restored, as follows:

not specified
Start up in the top-level REPL, identifying the world in the normal way.

a string Do the same thing except print that string instead of ‘Scheme’ when
restarting.

the constant #t
Restart exactly where you were when the call to disk-save was per-
formed. This is especially useful for saving your state when an error has
occurred and you are not in the top-level REPL.

the constant #f
Just like #t, except that the runtime system will not perform normal
restart initializations; in particular, it will not load your init file.

22 MIT/GNU Scheme 12.1

To restore a saved band, give the --band option when starting Scheme. Alternatively,
evaluate ‘(disk-restore filename)’, which will destroy the current world, replacing it
with the saved world. The argument to disk-restore may be omitted, in which case it
defaults to the filename from which the current world was last restored.

3.4 Garbage Collection

This section describes procedures that control garbage collection. See Section 2.3 [Memory
Usage], page 6, for a discussion of how MIT/GNU Scheme uses memory.

gc-flip [safety-margin] [procedure]
Forces a garbage collection to occur. Returns the number of words of storage available
after collection, an exact non-negative integer.

Safety-margin determines the number of words of storage available to system tasks
after the need for a garbage collection is detected and before the garbage collector
is started. (An example of such a system task is changing the run-light to show
“gc” when scheme is running under Emacs.) Caution: You should not specify safety-
margin unless you know what you are doing. If you specify a value that is too small,
you can put Scheme in an unusable state.

purify object [pure-space? [queue?] [procedure]
Moves object from the heap into constant space. Has no effect if object is already
stored in constant space. Object is moved in its entirety; if it is a compound object
such as a list, a vector, or a record, then all of the objects that object points to are
also moved to constant space. See Section 2.3 [Memory Usage|, page 6.

The optional argument pure-space? is obsolete; it defaults to #t and when explicitly
specified should always be #t.

The optional argument queue?, if #£, specifies that object should be moved to constant
space immediately; otherwise object is queued to be moved during the next garbage
collection. This argument defaults to #t. The reason for queuing these requests is that
moving an object to constant space requires a garbage collection to occur, a relatively
slow process. By queuing the requests, this overhead is avoided, because moving
an object during a garbage collection has minimal effect on the time of the garbage
collection. Furthermore, if several requests are queued, they can all be processed
together in one garbage collection, while if done separately they would each require
their own garbage collection.

flush-purification-queue! [procedure]
Forces any pending queued purification requests to be processed. This examines the
purify queue, and if it contains any requests, forces a garbage collection to process
them. If the queue is empty, does nothing.

print-gc-statistics [procedure]
Prints out information about memory allocation and the garbage collector. The
information is printed to the current output port. Shows how much space is “in use”
and how much is “free”, separately for the heap and constant space. The amounts are
shown in words, and also in 1024-word blocks; the block figures make it convenient
to use these numbers to adjust the arguments given to the --heap and --constant

Chapter 3: Using Scheme 23

command-line options. Following the allocation figures, information about the most
recent 8 garbage collections is shown, in the same format as a GC notification.

Note that these numbers are accurate at the time that print-gc-statistics is
called. In the case of the heap, the “in use” figure shows how much memory has
been used since the last garbage collection, and includes all live objects as well as
any uncollected garbage that has accumulated since then. The only accurate way to
determine the size of live storage is to subtract the value of ‘(gc-flip)’ from the
size of the heap. The size of the heap can be determined by adding the “in use” and
“free” figures reported by print-gc-statistics.

(print-gc-statistics)

constant in use: 2302316 words = 2248 blocks + 364 words

constant free: 128 words = 0 blocks + 128 words

heap in use: 1747805 words = 1706 blocks + 861 words

heap free: 49682723 words = 48518 blocks + 291 words
set-gc-notification! [on?] [procedure]

Controls whether the user is notified of garbage collections. If on? is true, notification
is enabled; otherwise notification is disabled. If on? is not given, it defaults to #t.
When Scheme starts, notification is disabled.

The notification appears as a single line like the following, showing how many garbage
collections have occurred, the time taken to perform the garbage collection and the
free storage remaining (in words) after collection.

GC #5: took: 0.50 (8%) CPU time, 0.70 (2%) real time; free: 364346

To operate comfortably, the amount of free storage after garbage collection should be
a substantial proporti