
BASIL

PET

EMULATOR

Version 1.0

Basil is a PET Emulator for Commodore 64, inspired by Jim Butterfield's
One-Line PET Emulator shown in Robin Harbron's 8-Bit Show And Tell

Basil emulates CB2 sound, both PET character sets, various keyboard models, shift
key register, joystick, jiffy clock, screen retrace bit, disables color control codes
and remaps the tape buffer. Basil runs patched C64 KERNAL ROM and patched
copy C64 BASIC, remapping many zeropage POKE's and PEEK's to corresponding
C64 locations (such as cursor location, key buffer, memory pointers, USR function
address).

Basil even adds that one extra space before each line number in LIST, just like PET
does. First half of PET BASIC ROM is included as a memory image, because many
programs check bytes in memory range $c000-$c3ff to detect PET ROM version.

Historical games currently working include Bonzo, Android Nim, Bat, Bets,
Blackjack, Checkers, Dungeon, Everest, Lander, Ambush, Capture, Racer, Lawn,
Tank, Ouranos, Rescue, Star Wars Train, Pinball, Frogs, Space, Afo, Alligator 2,
Jackpot, Debris, Ski, Volcano, Millipede, Tron Journey, Meteorites, Canyon, Demon,
Nab and many more. Currently, Space Ace and Microchess 3.0 almost work, but
crash after a while or when doing certain moves.

EMULATOR FUNCTION KEYS

F1 Show one-line help
F2 Reset PET
F3 Keyboard (151) mode
F4 Shift (152) emulation on/off
F5 Key repeat on/off
F6 Change text color (light green, green, amber, light gray, white)
F7 Sound on/off
F8 Tape buffer patch on/off

PATCHED POKES & PEEKS (BASIC)

PET C64 Description
216 214 Cursor line number
198 211 Cursor column
158 198 Number of chars in keyboard buffer
205 212 Quote mode
40-53 43-56 BASIC memory pointers
0-2 784-786 USR() function jmp and address

How does it work? In Basil, POKE0,96 actually writes 96 to 784. Similarly, PEEK(0)
reads from 784. Magic! Obviously, this translation only works in BASIC programs.

TAPE BUFFER PATCH (BASIC)

PET has two tape buffers, the first starting at $027a. It's a common place for
short machine code subroutines, such as the Cursor Magazine joystick and
keyboard reading routine. This area clashes with many C64 KERNAL screen editor
variables.

Basil captures any POKE and PEEK statements accessing area $0200-$02ff and
changes the address to $0300-$03ff. SYS to $0200-$02ff triggers a relocate
routine that scans the code at $0340-$03ff modifying any 16-bit absolute,
indexed or immediate addressing instructions and jumps there.

The relocation is also triggered when writing the MSB of USR() instruction to
location 2 (mapped to 786 by Basil). Relocate code also changes any JMP $d278
and JMP $d26d instructions to the C64 equivalent JMP $b391 (convert integer to
floating point) - a common and reasonable way to exit an USR() function.

JOYSTICK EMULATION (IRQ)

PET Description
59471 Bit 0 up, bit 1 down, bit 2 left, bit 3 right. Fire: up+down

Joystick in port 2 is translated to PET joystick directions at $e84f (59471) every
5 ms. Bit value goes zero when a joystick direction is active. Fire button zeroes
both bits 0 and 1 (thus making it impossible to detect simultaneous up/down +
fire).

There's the high nybble for another joystick port, but emulating joystick port 1 is
not implemented, because I didn't find any two player games for testing this.
Cursor Magazine joystick reading subroutine combines (ands) input from both
nybbles.

KEYBOARD EMULATION (IRQ)

PET C64 Description
151 197 Keyboard input
152 653 Shift key (bit 0)

C64 keypresses from 197 are translated to PET keys in location 151 using one of
the four available keyboard modes. Press F3 to change mode:

GRAPHICS Graphics keyboard
BUSINESS/NUMPAD Business keyboard, numbers mapped to PET numeric pad
BUSINESS/TOP ROW # Business keyboard, numbers mapped to PET top row
CRTC (ASCII) PET with CRTC chip, partially implemented

Note: This selection doesn't have any effect when reading keys using GET or
INPUT statements in BASIC, or when using (C64) KERNAL routines or the normal
screen editor. The mapping only makes a difference when the PET program is
reading keyboard directly from location 151. One such program is the game Bat,
which requires GRAPHICS keyboard mode (the default) to work.

CRTC (ASCII) mode is only partially implemented. For now, it only knows the
unshifted keys. Shifted keys set bit 7, which works fine for shifted cursor keys,
but not for other keys, some of which I believe should return a totally different
ASCII character when shifted. CRTC chip is included in all 80 column PET's, but
also in some later 40 column models. In which? I don't know. I didn't find any
software for testing this.

Known issue: Shift key from bit 0 in C64 register 653 is reflected to the
equivalent PET location 152. This clashes with the C64 memory location for

number of files open, so if your PET program accesses multiple files, you may need
to turn off Shift emulation by pressing F4. Again, this setting only makes a
difference when reading the state of shift directly from location 152, not when
using GET, INPUT, (C64) KERNAL or the screen editor.

CHARACTER SET SWITCHING (IRQ)

PET Description
59468 Bit 1 selects uppercase & graphics or upper- & lowercase set

POKE59468,12 or PRINTCHR$(142) to display uppercase + graphics
POKE59468,14 or PRINTCHR$(14) to uppercase + lowercase

To conserve memory, only the non-reversed chars are stored in memory and the
reversed characters are generated when switching sets. Thus, there is a brief 50
ms pause in emulation when switching.

Note: You're likely to find some older PET programs that have uppercase and
lowercase letters swapped. Those programs were written on the early PET ROM
revision, where uppercase and lowercase were swapped in char ROM. An option to
emulate this may be added in a future version of Basil.

SOUND EMULATION (IRQ)

PET Description
59467 Set bit 4 to enable sound (looping shift register mode)
59464 Sound frequency
59466 Shift register pattern (1-bit waveform)

PET documentation suggests using bit patterns %00001111 (15), %00110011
(51) and %01010101 (85). Each defines a 50% pulse wave on different octaves.

Basil tries to imitate any bit pattern to the extent what is playable on a single SID
voice, so coarse pulse width modulation is possible, just like on the real PET. For
example, bit patterns 1, 3, 7, 15, 31, 65, 127 produce SID pulse widths $02,
$04, $06, $08, $0a, $0c, $0e on the lowest octave. Also the same bit pattern
rolled to any of its 8 positions gives the same octave and pulse width. Pulse width
can be also modified on the second octave, but at half the accuracy ($04, $08,
$0c). Highest octave is always square ($08).

Non-SID compatible bit patterns (such as %11011011) play a compromised tone
on the second octave with pulse width of 2 x (number of 1-bits). Notes that are
too high for SID (fundamental frequency around 4000 Hz) are muted.  

SCREEN RETRACE BIT (IRQ)

PET Description
59456 Bit 5 screen retrace: 1 = 'vblank', 0 = 'drawing screen'

Entire C64 KERNAL is copied to RAM and the memory area $e700-$e8ff is freed
for an readable/writeable image of PET hardware registers. Corresponding KERNAL
code is moved to $c700-$c7ff and any accesses elsewhere in KERNAL are
patched pointing there. This enabled reading the joystick directions from $e84f
and polling the screen retrace bit in $e840 (bit 5).

Basil IRQ is not currently synchronized to screen refresh (like it is on PET), but it's
running on the regular KERNAL 60 Hz CIA timer divided by 4. Keyboard scan is
done every fourth call.

There seems to be some differences what screen retrace actually means
depending on PET model (whether it has a CRTC chip or not). I couldn't verify
whether a zero value always means the raster scan is outside visible screen lines
or does it in older models actually indicate the hardware vertical blanking period.

Basil approximation is that $e840 / 59456 bit 5 is set for 25% of the time and
cleared for 75% of the time. This is somewhat consistent to whatever I had in my
current VICE XPET emulator settings.

TIMERS AS RANDOM SOURCE (IRQ)

PET Description
59460 Timer 1 LO
59461 Timer 2 HI
59465 Timer 2 HI

Timers are not emulated, but because many programs potentially use timers as a
source of (somewhat) random numbers, Basil fills these three timer registers with
(somewhat) random numbers every 5 ms.

For example, without this feature the Meteorites game dropped constant
meteorites falling in one direction only.

(Joystick and sound emulation are also running at 5 ms.)

JIFFY CLOCK EMULATION (IRQ)

C64 jiffy clock - a human-readable 3-byte software timer of 1/60 seconds,
seconds and minutes - is mirrored to PET jiffy clock locations $8d-$8f.

Since PET IRQ is synchronized to screen refresh instead of a cycle-accurate timer,
there's another counter for jiffy clock correction at $99-$9a. On PET this counter
counts 1/60th seconds up to 623, then resets to zero and skips one 1/60th
second in $a0, for the purpose of keeping the clock in time.

Some software such as Microchess 3.0 use the jiffy clock correction counter as a
'stop timer', zeroing location $99 and waiting for the value there reach >128,
producing a ~2 second wait. Basil enables this type of short delay loops by
incrementing the value in $99 every frame. High byte $9a is not emulated.

FUTURE EXPLORATION

- Chain PET interrupts to C64 IRQ handler
- Move entire C64 IRQ to NMI to enable some PET programs that do SEI
- Patch KERNAL ROM and move C64 "number of files open" to another location
- Option to block unknown POKE's for less crashes in untested BASIC programs
- Study programs that almost but not quite work yet and see what classic or new
machine code games could be supported with reasonable effort

IMAGE CREDITS

PET photo, Wikimedia Commons CC BY 2.0 Michael Dunn
PET logo remake, CC-BY-SA Dj152
Basil photo, Wikimedia Commons CC BY 3.0 Frank Huber

22

APPENDIX: CB2 SOUND

HOW DO I MAKE SOUND ON MY PET?

 This process sets the PET's shift register in a free-running state where the

 signal is used for sound generation. By adjusting the pattern of the output

 and the frequency you can produce a wide variety of sounds, and even music!

 Three pokes are required to make sound:

 POKE 59467,16 (turn on port for sound output use 0 to turn it off*)

 POKE 59466,octave (octave number, see below)

 POKE 59464,frequency (0 for no sound)

 After setting 59467 you can adjust 59466 and 59464 to get any sort of sound,

 but to get music you need to set them with specific values, here is a

 three-octave note table:

 Note Table:

 octave=15 octave=51 octave=85

 Note Oct.0 Oct.1 ! Oct.1 Oct.2 ! Oct.2 Oct.3

 Freq ------------+-------------+--------------

 B 251 125 ! 251 125 ! 251 125

 C 238 118 ! 238 118 ! 238 118

 C# 224 110 ! 224 110 ! 224 110

 D 210 104 ! 210 104 ! 210 104

 D# 199 99 ! 199 99 ! 199 99

 E 188 93 ! 188 93 ! 188 93

 F 177 88 ! 177 88 ! 177 88

 F# 168 83 ! 168 83 ! 168 83

 G 158 78 ! 158 78 ! 158 78

 G# 149 74 ! 149 74 ! 149 74

 A 140 69 ! 140 69 ! 140 69

 A# 133 65 ! 133 65 ! 133 65

 Set 59466 with octave range desired and play notes by setting the frequency

 in 59464. To stop any sound use POKE 59464,0.

 * Note, due to a hardware bug, leaving the shift register in free running

 mode will cause problems when attempting to use the datasette so always

 POKE 59467,0 before attempting to use any tape commands.

APPENDIX: PET KEYBOARDS

Source: http://www.6502.org/users/andre/petindex/keyboards.html

