
Parallel Eigensystem Solver
PeIGS Version 2.1, rev. 0.0

July 28, 1995

David Elwood, George Fann and Richard Littlefield
Pacific Northwest Laboratory

1

Copyright c© 1993, 1994, 1995 Battelle Memorial Institute.

DISCLAIMER

This material was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the United States Depart-
ment of Energy, nor Battelle, nor any of their employees, MAKES ANY WARRANTY, EX-
PRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY
FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMA-
TION, APPARATUS, PRODUCT, SOFTWARE, OR PROCESS DISCLOSED, OR REP-
RESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

ACKNOWLEDGMENT

This software and its documentation were produced with Government support under Con-
tract Number DE-AC06-76RLO-1830 awarded by the United States Department of En-
ergy. The Government retains a paid-up non-exclusive, irrevocable worldwide license to
reproduce, prepare derivative works, perform publicly and display publicly by or for the
Government, including the right to distribute to other Government contractors.

3

1 PeIGS: an overview

PeIGS is a collection of commonly used linear algebra subroutines for computing the eigen-
system of the real standard symmetric eigensystem problem Ax = λx and the general sym-
metric eigensystem problem Ax = λBx where A and B are dense and real matrices with
B positive definite and λ is an eigenvalue corresponding to eigenvector x. The intended
computer architecture is a parallel message passing computer or a homogeneous network
of workstations. The current code is written in C and Fortran 77 with message passing.
Subroutine calls are supported in Fortran 77 and in C. The PeIGS program is in the public
domain.

1.1 Problems that PeIGS can Solve

PeIGS can solve problems in linear algebra that are associated with the general symmet-
ric and the standard symmetric eigensystem problems. PeIGS can also handle associated
computations such as the Choleski factorization of positive definite matrices in packed stor-
age format and linear matrix equations involving lower and upper triangular matrices in
distributed packed row/column storage.

Dense and real matrices are assumed throughout in the computation. Only double
precision is currently supported.

1.2 Computers for which PeIGS is Suitable

PeIGS is designed for parallel and distributed memory computers with a high startup time
for communication. The Intel Paragon and the IBM SP-1 are examples of such parallel
computers. Workstations linked together using network message passing software, such as
Robert Harrison’s TCGMSG1, are also examples of such "parallel computers." PeIGS can
be also be used on shared memory computers and on vector computers using the software
TCGMSG. PeIGS also runs using MPI.

The programming model used by PeIGS is single program multiple data (SPMD).

1.3 BLAS and Floating Point Computations

PeIGS has been written so that most of the floating point computations are performed by
calls to the Basic Linear Algebra Subprograms(BLAS) library2. Extremely efficient machine
specific BLAS are available for many of today’s computers. Such a machine specific BLAS
library is necessary for achieving high performance for floating point computations on many
of today’s RISC processors.

1.4 Algorithms

The numerical algorithms implemented are standard with the exception of a subspace
inverse iteration and reorthogonalization scheme for finding basis vectors for degenerate

1 Harrison, R.J., "Portable tools and applications for parallel computers," Int. J. Quantum Chem.,
40(1991), pp.847-863. TCGMSG can be obtained via anonymous ftp from ftp.tcg.anl.gov in the directory
/pub/tcgmsg

2 Dongarra J. et. al. A proposal for an Extended Set of Fortran Basic Linear Algebra Subprograms, NAG
report TR3/86, NAG Limited, Oxford, 1986. The BLAS library is available from netlib at netlib2.ornl.gov

4 PeIGS

eigen-subspaces34. In particular, inverse iteration to convergence is performed on all of the
eigenpairs in a cluster in a perfectly parallel fashion. Orthogonalization is then performed in
parallel using all the processors storing the unconverged eigenvectors of the cluster. Exactly
two iterations of "inverse iteration followed by orthogonalization" are always done. The key
here is that two iterations of modified Gram-Schmidt are used in the first orthogonalization.
This algorithm usually yields highly orthogonal eigenvectors, but this is not guaranteed to
always be the case since a convergence test is not currently done.

One feature of PeIGS is that only processors holding some matrix elements participate
in the computation. Other processors are free to work on other problems. The PeIGS data
layout is a column/row wrapping according to a list of processors marking the processors
that own the columns/rows. Most of the algorithms are based on panel-blocked computation
strategies with the exception of the choleski factorization and the lower triangular inverse
computations.

All the algorithms coded are described in

• Anderson, E. et. al. "LAPACK User’s Guide,", SIAM, 1992.

• Dahlquist, G. et. al.,"Numerical Methods," Prentice Hall, 1974.

• Golub, G. and Charles Van Loan, "Matrix Computations,", Johns Hopkins, 1993.

• Isaacson, E. and H.B. Keller, "Analysis of Numerical Methods," Wiley, 1966.

• Parlett, B., "Symmetric Eigenvalue Problem," Prentice Hall, 1980.

• Wilkinson, J.H., "Algebraic Eigenvalue Problem," Oxford, 1988.

1.5 Portability

This package is self-contained with the exception of the processor specific libraries for the
BLAS. We provide Fortran versions of the BLAS and LAPACK routines that are used by
PeIGS. It is currently intended for cross development and cross compilation using Unix as
the host environment and GNU utilites.

The communication calls are made through a set of code wrappers over the basic message
passing provided by some of the distributed memory parallel computers and TCGMSG. For
the distributed memory computers we do support native message passing provided by the
Intel iPSC 860, and Touchstone DELTA. We also support an interface to TCGMSG and to
MPI.

The installation procedure creates a BLAS library and a LAPACK library. The user can
replace these libraries with a more efficient optimized library or perhaps newer versions of
the BLAS and LAPACK libraries. The user should be aware that there may be changes
in the calling syntax of the latest LAPACK that may be incompatible with the LAPACK
included here. The LAPACK codes that are included here are dated (Sept. 30, 1994).
The subdirectory /src/f77 contains a number of "fixed" codes originating from LAPACK.
These "fixed" codes have the same LAPACK name with a number after their file name
(as is the case with their subroutine name) to distinguish them from the original LAPACK

3 Fann, G. and Littlefield, R., "Parallel Inverse Iteration with Reorthogonalization", Proceeding of the
6th SIAM Conference on Parallel Processing for Scientific Computing, SIAM, 1993

4 Fann, G., R. Littlefield, and D. Elwood, "Performance of a Fully Parallel Dense Real Symmetric Eigen-
solver in Quantum Chemistry Applications", in High Performance Computing Symposium 1995, Pro-
ceedings of the 1995 Simulation Multiconference, The Computer Simulation Society

Chapter 1: PeIGS: an overview 5

codes. The INSTALL file in the top level of the PeIGS directory supersede the following
installation procedure.

1.6 Support

We currently support the PeIGS library routines that are documented in the next chapter.
All of the communication subroutines are supported in the context of providing communi-
cation calls used by the linear algebra subroutines. We support the package in the sense
that reports of bugs, errors or poor performance will get our immediate attention. We will
try to solve your problems and will provide bug fixes.

1.7 Thanks

Our thanks go out to all who helped to improve this work. In particular, we thank Robert
Harrison and Eduardo Apra for assisting us in understanding the chemistry problems and
their associated spectra. We thank Jaroslaw Nieplocha for his patience in recording and
observing various mistakes and obscurities in the manual. We thank Elizabeth Jessup and
Ken Bube for advice and strategies. All mistakes are our own.

We thank the Free Software Foundation for developing software tools that made our
work easier.

We thank the Concurrent Supercomputing Consortium for providing access to the Intel
Touchstone DELTA and Intel Paragon. This work is deliverable 263100AA24 of the WBS
2.6.3.1 EMSL construction subtask at the Battelle Pacific Northwest Laboratory.

7

2 Installation

This is a short synopsis of how to install PeIGS on a target system. The user should consult
the INSTALL file in the top level PeIGS directory for up to date information regarding
the installation procedure. We currently only support installation on Unix systems with
the resources listed below for installing PeIGS. The library codes and the test programs
are created using Makefiles. All machine specific data is contained in the DEFS file in the
main PeIGS directory. Each subdirectory has a Makefile which "includes" the DEFS file.
Because the Makefiles use ifeq conditionals, the GNU make version 3.68 or higher from
the Free Software Foundation is required as the make utility. If this is not available to the
installer then the installer needs to edit DEFS and the various Makefiles and comment out
the ifeq and endif statements and leave the appropriate lines for the intended system.1 The
DEFS file currently has a list of workstations and parallel computers and their corresponding
compilation switches. Most of the currently available distributed memory parallel computers
are on this list: Cray T3D, IBM SP-1/2, Intel DELTA, Intel Paragon, SGI PowerChallange,
Kendall Square Research KSR-2. Homogeneous networks of workstations are also support
via TCGMSG or MPI.

Thus, the following software resources are needed to make the library:

• 1. ANSI-C compatible C compiler

• 2. Fortran 77 compiler

• 3. GNU make utility, version 3.68 and higher.

We assume that all Fortran callable subroutines have a trailing underscore at the end of
their name in the name-space. Thus, we assume that C subroutines call Fortran subroutines
using subroutine names with a trailing underscore added to the end of their name, e.g.
f77name . We also assume that a Fortran subroutine calls a C subroutine using a subroutine
name with a trailing underscore added to the end of their name, e.g. call cname . Users
of IBM AIX RS6000 version 3 systems must add the -qextname or -qEXTNAME options
to the xlf compiler or to the f77 compiler. Users of HP9000 HP-UX version 9.0 or higher
must add +ppu as an option to the HP f77 compiler. Users of other dialects of Unix should
consult their language manuals or system gurus for the appropriate options. A separate
makefile has been added for the users of the IBM RS6000 without an installed GNU. The
user is advised to read the INSTALL file and the DEFS files in the PeIGS directory.

In many of the calls to C subroutines from Fortran we assume that the C double is
the same size as the Fortran double precision. This is not a serious obstacle since many
Fortran compilers and C compilers have 8 byte switches for real*8 computataions. Also, we
assume that the address to double precision numbers is less than or equal to the size of a
double precision number. In many of the Fortran to C interface codes we recast some of the
double precision scratch spaces as pointers to double precision numbers. The user should
also check whether the intended "C" and Fortran compilers are compatible in integer and
integer pointers sizes. For example, on machines with 8 bytes for both int and long int it
is important that the Fortran integer also be 8 bytes. This is a common problem when
installing PeIGS.

1 GNU make is available via anonymous ftp from prep.ai.mit.edu:18.71.0.38 in the directory /pub/gnu as
make###.tar.gz.

8 PeIGS

In h/blas lapack.h we have tried to deal with some of the computers, for example, Cray
T3D and the KSR2 where the single precision computation is performed in 64 bits of
precision.

PeIGS uses machine specific arithmetic constants (obtained from LAPACK’s dlamach
and slamch) in a number of places. These constants are defined in h/blas lapack.h.

You will probably obtain this library as a compressed tar file named peigsXY.tar.Z,
where X.Y is the version number.

To build PeIGS on a Unix system using csh:

− type make -v to make sure that you are using the GNU make utility.

− uncompress the file peigsXY.tar.Z by typing uncompress peigsXY.tar.Z which will
create a tar file called peigsXY.tar.

− untar the file peigsXY.tar by typing tar xvf peigsXY.tar. This will create a directory
called peigsX.Y with a number of subdirectories and a file called DEFS.

− scan through the file DEFS using your favorite editor to see if your target parallel
computer is supported. Make the appropriate changes, if necessary, for the compilers,
directory paths, compiler options and library options. If you want to use MPI, rather
than the default of TCGMSG or Intel NX, then follow the directions in DEFS about
MPI use.

− save the corrected file DEFS.

− set the environment variable TARGET. For example, for the iPSC 860, the installer
would type setenv TARGET iPSC 860.

− Check the file PEIGSDIR/h/blas lapack.h to see if the machine parameters are de-
fined for the target computer. If not, then the user must define his own parameters.
To do this go to the example directory and type "make teslamach" to generate the
executable code teslamch. Run teslamch on one node of the intended parallel machine.
The code reports the machine arithmetic parameters that need to be inserted into
PEIGSDIR/h/blas lapack.h. On machines that use 8 bytes for single precision calcu-
lations, e.g. Cray T3D, the user must also insert CODEOBJ= SINGLE in the DEFS
file so that make can build the single precision fortran codes in PEIGSDIR/src/f77.
On other machines the user must set CODEOBJ= DBLE.

− type the command make. The libraries libblas.a, liblapack.a and libpeigs.a will now be
built.

Compiler optimization can cause errors and unexpected results in certain situations.
We handle this in the Makefiles by having the files that we know do not optimize well
compile without optimization. The user is advised that much of our C utility codes fail
to function with the GNU gcc compiler with the -O2 optimization. Some of the utility
codes also failed to function correctly with the Portland Group’s icc compiler with the -O3
optimization option. We are currently trying to remedy this situation. The user is advised
that the latest installation instruction is located in the INSTALL file at the top of the peigs
directory.

9

3 Content: Code Functionalities and Data
Structure

This section lists the subroutines in PeIGS and their functionalities. PeIGS is designed
using the bottom up approach. Each subroutine is built up on more basic routines. At the
top level are drivers to solve the symmetric eigensystem problems. The second level contains
factorization and linear algebra subroutines that are required by the eigensystem solvers.
The last level contains internal PeIGS routines and utilites for managing communications,
list processing, and error checking. In terms of data structure, the C routines are the most
flexible since all the procedure arguments are pointers or one dimensional arrays of pointers.
Thus, in many applications, minimal data movements are required to use these subroutines
since no copying or data movements are needed. One only needs to set the address to the
correct data positions.

This chapter is organized in terms of subroutine and data structure. Section 3.1 sum-
marizes the routines that are supported in this version of PeIGS. Section 3.2. describes how
the input data are expected in Fortran and in C. We assume that the reader is familiar with
column distribution of data1.

3.1 Summary

Let us summarize the subroutines and their functions. The following is a short list of the
supported routines in PeIGS. These subroutines are protected from possible communica-
tion deadlock by enforcing the following rules. In the generalized eigenproblem the set of
processors storing the matrix A, the matrix B and the eigenvectors Z must be the same set
of processors. In the standard eigenproblem the set of processors storing the matrix A and
the eigenvectors Z must be the same set of processors. This is not the same as the data
distribution being the same. It means that the set of processors holding one matrix must
be the same as the set of processors holding any other matrix.

If you are solving the real symmetric eigensystem problem Ax = λx the processors hold-
ing the columns of matrix A, and the processors holding the eigenvectors X are required
to be the same set or the processors holding eigenvectors of X must be a subset of those
holding columns of A. This mild restriction is currently necessary to avoid possible race
conditions. Using such input restriction and no buffering assumptions PeIGS can be used
on strong message typing message passing software (e.g. TCGMSG) – with no message
queues or buffers. The user can, of course, use other routines in PeIGS but at their own
risk. Some of the unsupported and internal PeIGS routines, with certain data distributions
and insufficient message buffer space, may encounter communication deadlock. In this re-
lease, we assume that all the matrices A and B for the general eigensystem problems and
the standard symmetric eigensystem problems with matrix of eigenvectors Z share the same
set of processors for their data distributions.2

Level 1 drivers:

− PDSPGV : General real symmetric eigensystem solver

1 Golub, Gene H. and Charles F. Van Loan, "Matrix Computations," 2nd ed, Johns Hopkins University
Press, 1989.

2 For those wanting a subset of the eigenvalues and the eigenvectors, the user is asked to use FMEMREQ
and memreq to allocate storage space. This is not good if the user only wants a small fraction of the
eigenpairs. We are current working on removing this bug.

10 PeIGS

− PDSPGVX: General real symmetric eigensystem solver w/selected eigenvectors and
eigenvalues

− PDSPEV: Standard real symmetric eigensystem solver

− PDSPEVX: Standard real symmetric eigensystem solver w/selected eigenvectors and
eigenvalues

− PDSPTRI: Symmetric tri-diagonal eigensystem solver

Level 2 drivers:

− CHOLESKI: submatrix Choleski factorization3.

− INVERSEL: the inverse of a lower triangular matrix in column distributed format.

− MXM*: a variety of matrix multiplication routines for matrices with different shapes
and column/row distributions.

− TRED2: column distributed Householder reduction of a symmetric matrix to tri-
diagonal form (only the C version).

− PSTEBZ: a parallel version of LAPACK’s DSTEBZ routine for computing the eigen-
values of real tridiagonal matrices using bisection.

− PSTEIN: a parallel subspace iteration method for finding eigenvectors of symmetric
tridiagonal matrices. Computations involving clusters are statically scheduled.

− TRESID: a parallel routine for computing the residual of the tridiagonal eigenproblem.

− RESID: a parallel routine for computing the residual of the standard eigenproblem.

− RESIDUAL: a parallel routine for computing the residual of the generalized eigenprob-
lem.

− ORTHO: a parallel routine for testing the orthogonality of eigenvectors

− BORTHO: a parallel routine for testing the B-orthogonality of eigenvectors for the
generalized eigenproblem

3.2 Data Layout

From the user’s point of view PeIGS’ data structure is essentially column(row) wrapping
according to a list. By this we mean that a matrix is partitioned into columns (rows) with
an integer array map describing which processor holds column (row) i. For example,
map(i) = p means that processor p stores column (row) i. When using MPI this definition
is changed slightly. See the subsection on using MPI for more details on this case.

The data layout is used in a compatible way in the PeIGS subroutines. The data struc-
ture for each routine can also be used as input to another PeIGS subroutine without remap-
ping. Of course, for optimal performance the user is advised to minimize communication.

The follow subsections describes how to input data from a given processor’s point of
view. We hope that the examples are informative.

3 Geist, G.A. and M.T. Heath, "Matrix Factorization on a Hypercube Multiprocessor", in Hypercube
Multiprocessors 1986, SIAM, Philadelphia, 1986, pp. 161-180

Chapter 3: Content: Code Functionalities and Data Structure 11

3.2.1 Fortran Data Structure

Let us show how the following 4 by 4 matrix can be row mapped on 2 processors (processor
0 and processor 1) in Fortran using our structure. Let mapA be the integer array describing
processor numbers for the distribution of the matrix.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

If we put row 1 and row 4 on processor 0 and row 2 and row 3 on processor 1, the
contents of the array mapA on both processors is

mapA : 0 1 1 0

The content of the one dimensional storage array for matrixA on processor 0 is

proc 0: matrixA: 1 2 3 4 13 14 15 16

The content of the one dimensional storage array for matrixA on processor 1 is

proc 1: matrixA: 5 6 7 8 9 10 11 12

This is the array storage that is expected as input by the Fortran drivers.

For symmetric matrices , we use the packed storage format. Here is an example of a
symmetric matrix A column decomposed and stored using its lower triangular part.

1

5 6

9 10 11

13 14 15 16

If we put columns 1 and 4 on processor 0 and columns 2 and 3 on processor 1, the
contents of the array mapA on both processors are

mapA : 0 1 1 0

The content of the one dimensional storage array for matrixA on processor 0 is

proc 0: matrixA: 1 5 9 13 16

The content of the one dimensional storage array for matrixA on processor 1 is

proc 1: matrixA: 6 10 14 11 15

This is the array storage format and the mapping format that is expected as input for the
symmetric matrices A and B in the the symmetric eigensystem solvers PDSPEV, PDSPGV,
PDSPEVX and PDSPGVX.

3.2.2 C Data Structure

The reader can disregard this section if Fortran is the language of choice. Since the C user
can call Fortran or C subroutines the information in the last section may be useful to the
C programmer.

All of the input parameters for C subroutines in PeIGS are pointers. For the matrix
A above, the input for the C subroutine requires that the matrix be presented as a one
dimenesional array of pointers ptr. Each pointer ptr[i] points to the storage address of the
first element of the i-th column owned by the processor. An example is given below.

12 PeIGS

Again consider the following matrix.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

If we distribute columns 1 and 4 on processor 0 and columns 2 and 3 on processor 1, the
contents of the array mapA on both processors are

mapA : 0 1 1 0

Let us use the notation mem-address(i) to denote the memory location of the first
element in column i. We assume that the data for column i are stored in consecutive
memory locations.

The content of the one dimensional array of pointers ptr on processor 0 is

proc0 : ptr : mem− addr(1) mem− addr(4)

and, the content of the one dimensional array of pointers ptr on processor 1 is is

proc1 : ptr : mem− addr(2) mem− addr(3)

Notice that ptr[0] stores the starting address of column 1 and ptr[1] stores the starting
address of column 4. This is because column 4 is the second column of A that processor 0
owns.

If we regard ptr[0] and ptr[1] as a C array then the contents of these arrays on processor
0 will be

proc0 : ptr[0] : 1 5 9 13

proc0 : ptr[1] : 4 8 12 16

For symmetric matrices , we use the packed storage format. Here is an example of the
input data for a column distributed symmetric matrix stored using only its lower triangular
part.

1

5 6

9 10 11

13 14 15 16

If we put columns 1 and 4 on processor 0 and columns 2 and 3 on processor 1, the
contents of the array mapA on both processors are

mapA : 0 1 1 0

The content of the one dimensional pointer array ptr array for matrixA on processor 0
is

proc0 : ptr : mem− addr(1) mem− addr(16)

Chapter 3: Content: Code Functionalities and Data Structure 13

The content of the one-dimensional pointer array ptr on processor 1 is

proc1 : ptr : mem− addr(6) mem− addr(11)

This is the content of the one-dimensional array of pointers that is expected as input by
the C subroutines. In particular, the matrix A and B in the general symmetric and regular
symmetric eigensolvers (PDSPEV and PDSPGV) are expected in this format as input.4

3.2.3 MPI Use

The reader can disregard this section if they are using TCGMSG or Intel NX for commu-
nication.

The PeIGS implementation of MPI does NOT support heterogeneous networks of com-
puters, but DOES support homogeneous networks of computers. In particular, MPI never
knows the real data type of the message, a generic MPI BYTE type is used by PeIGS,
hence MPI cannot correctly deal with different binary representations of data on different
computers.

PeIGS does not use MPI communicators explicitly. Instead, to use MPI one sim-
ply changes the definition of the map arrays slightly. In particular, when using MPI
map(i) = p means that column (row) i is stored on the processor which has rank p in the
MPI Comm World communicator. Everything else is identical to the non-MPI case. The
processors owning a matrix may be part of a communicator other than MPI Comm World,
but the ranks stored in the map arrays MUST be the ranks of the processors in the
MPI Comm World communicator. The PeIGS routines then do all communication us-
ing the MPI Comm World communicator, but restricting communication to only those
processors listed in one of the map arrays passed to the PeIGS routines.

4 Note: In the header files of our code we use the term "double pointer." This term is confusing and the
user should substitute this with a " 1-D array of pointers to double precision numbers."

15

4 Calling Syntax

4.1 Level I Subroutines

The PeIGS package has three main routines: PDSPGVX, PDSPEVX, and PDSPTRI, for
the generalized, standard, and tridiagonal, respectively, eigenproblems. These are the most
general solvers for the symmetric eigensystem problem – they solve for selected eigenvalues
and eigenvectors. If the user wants all the eigenvectors and all the eigenvectors we supply
the interface codes PDSPGV and PDSPEV over PDSPGVX and PDSPEVX, respectively.
All of these routines can be called from either fortran or C and do extensive checking of
input data. See section 6 for more about error handling.

The reduction algorithm, from the general symmetric eigensystem problem to the stan-
dard eigensystem used in this section, is to invert the Choleski factor L of B and perform
panel blocked matrix conjugation to arrive at L−1AL−t.

Since the scratch arrays are dependent on the distribution of matrix entries across the
processors PeIGS provides a subroutine, FMEMREQ in Fortran and memreq in C, which
returns the dimensions of the integer, double precision, and pointer arrays that are nec-
essary for the computation. The solver PDSPEV, PDSPEVX, PDSPTRI, PDSPGV, and
PDSPGVX are currently supported.1

The requested eigensystem is returned to the user in the following manner. Let’s say
that the dimension of the matrix is n and that the user allocates an array eval for the
eigenvalues, an array matrixZ for the eigenvector and an array mapZ for the distribution
of the eigenvectors across the processors. PeIGS returns all the requested eigenvalues to all
the processors in the list mapZ – including the dummy processors if one uses the selected
eigen-pair subroutines. PeIGS also returns the list mapZ, very likely to be different than
the input list, which informs the calling routine which processor stores which eigenvector.
Suppose that the i-th eigenvector of A is the j-th eigenvector of A stored on the current
processor. Then, the eigenpair for the i-th eigenvalue is given by (eval(i), (matrixZ(j*n+1),
matrixZ(j*n+2), ..., matrixZ((j+1)*n))).

The C user can replace matrixZ above as a one-dimensional array of pointers to double,
say vecZ. Then the i-th eigenpair (in C indexing) is returned as (eval[i], vecZ[j]) where the
i-th eigenvector of A is again the j-th eigenvector that is stored on this processor.

PeIGS provides a utility FIL MAPVEC (F77) and fil mapvec (C) which returns the i
and j correspondence between the global matrix index i and the local matrix storage index
j.

Here’s an example of how FMEMREQ and PDSPEV can be called in Fortran to solve
the standard symmetric eigensystem problem Ax = λx .

LetmapA andmapZ be integer arrays of dimension n which contain the data distribution
information. Let isize be the parameter holding the integer scratch array size. Let rsize be
the parameter holding the double precision scratch array size. Let ptr size be the parameter
holding the size of the 1 dimensional, double precision array which PDSPEV will convert
to a scratch array of pointers to double precision numbers. For this example, mapB can be

1 We are currently working on reducing the memory requirements for the selected eigensystem problem(see
section 7 Bug 1).

16 PeIGS

empty or just a dummy variable. An integer array iscratch(1:3*n) is used for integer scratch
space. On output, FMEMREQ returns the dimensions of the scratch memory necessary for
the calculations in the variables isize, rsize, ptr size. The parameter itype = 0 indicates that
PDSPGV or PDSPGVX is to be called, itype = 1 indicates that PDSPEV or PDSPEVX
is to be called, and itype = 2 indicates that PDSPTRI is to be called.

The eigenvalues are returned in an array eval on all the participating processors (those in
mapA or mapZ) with the eigenvectors returned using a one-dimensional array in the same
manner as the input matrices except that it is not in a symmetric format. It is important
to note that mapZ on exit from the various PeIGS routines will generally be different than
it was on entry (i.e., the output array will be a permutation of the input array).

integer isize, rsize, ptrsize, itype, info

integer iscratch(n)

integer iscrat(*)

integer mapA(*), mapZ(*)

double precision matrixA(*), matrixZ(*), eval(*)

double precision dblptr(*)

c

c see note on portability

c

itype = 1

call memreq(itype, n, mapA, mapB, mapZ, isize, rsize,

$ ptr_size, iscratch)

c

c make sure enough memory was allocated for the scratch space;

c at least as much as requested in isize, rsize, and ptr_size

c

call pdspev(n, matrixA, mapA, matrixZ, mapZ, eval, iscrat,

1 isize, dblptr, ptr_size, scratch, rsize, info)

c

c

c

Here’s an example of how PDSPGV can be called in C. Assume that mapA[0:n-1],
mapB[0:n-1] and mapZ[0:n-1] have been allocated and assigned values.

int itype, indx, info;

int n, isize, rsize, ptr_size;

int *mapA, *mapZ, *mapB;

int *iscratch;

double **matrixA, **matrixB, **matrixZ;

double *iptr, *scratch;

extern void memreq_(), pdspgv();

...

/*

Chapter 4: Calling Syntax 17

input matrixA, matrixB, matrixZ in the manner cited

in the C input section

*/

...

/*

allocate scratch space for the memory routine

*/

if ((itemp = (int *) malloc(n * sizeof(int))) == NULL) {

fprintf(stderr, " ERROR in memory allocation,

not enough memory for integer scratch space for memreq \n");

exit(-1);

}

/*

itype = 0 specifies memory for the general symmetric eigensystem problem

*/

itype = 0;

memreq_ (&itype, &n, mapA, mapB, mapZ, &isize, &rsize, &ptr_size, itemp);

free(itemp);

if ((iscratch = (int *) malloc(isize * sizeof(int))) == NULL){

fprintf(stderr, " ERROR in memory allocation,

not enough memory for integer scratch space \n");

exit(-1);

}

if ((scratch = (double *) malloc(rsize * sizeof(double))) == NULL){

fprintf(stderr, " ERROR in memory allocation,

not enough memory for double scratch space \n");

exit(-1);

}

if ((iptr = (double **) malloc(ptr_size * sizeof(double *))) == NULL){

fprintf(stderr, " ERROR in memory allocation,

not enough memory for pointer scratch space \n");

exit(-1);

}

/*

ifact = 1 specifies that matrix B contains B and should be Choleski factored

*/

18 PeIGS

ifact = 1;

pdspgv (&ifact, &n, matrixA, mapA, matrixB, mapB, matrixZ, mapZ, eval,

iscratch, &isize, iptr, &ptr_size ,scratch, &rsize, &info);

...

4.2 PDSPEV: Real Symmetric Eigensystem Solver

PDSPEV solves the standard real symmetric eigensystem problem: Given a real symmetric
matrix A, find all its eigen-pairs (λ, x) such that Ax = λx .

In Fortran 77 the calling sequences for PDSPEV and PDSPEVX are:

subroutine pdspev(n, vecA, mapA, vecZ, mapZ, eval, iscratch, iscsize,

$ dblptr, ibuffsize, scratch, ssize, info)

integer n, mapA, mapZ, iscratch, iscsize, ibuffsize, ssize, info

double precision eval(*), scratch(*), vecA(*), vecZ(*), dblptr(*)

c

c The input arguments are the same as in the C code

c pdspev except that one changes the arguments of type

c "1-D array of pointers to DoublePrecision", i.e.,

c vecA, vecZ and dblptr, to type

c "1-D array of double precision numbers" and store the data in

c these arrays using the packed storage format described previously.

c Also, when calling from fortran use FMEMREQ, rather than memreq_,

c to get the required size of workspace arrays.

c Finally, the C code describes arrays of length n with indices

c of 0 to n-1, for fortran usage the indices should be 1 to n.

c

subroutine pdspevx(ivector, irange, n, vecA, mapA,

$ lb, ub, ilb, iub, abstol,

$ meigval, vecZ, mapZ, eval, iscratch, iscsize,

$ dblptr, ibuffsize, scratch, ssize, info)

integer ivector, irange, n, mapA, ilb, iub, meigval,

$ mapZ, iscratch, iscsize, ibuffsize,

$ ssize, info

double precision lb, ub, abstol, eval(*), scratch(*)

$ vecA(*), vecZ(*), dblptr(*)

c

c The input arguments are the same as in the C code

c pdspevx except that one changes the arguments of type

c "1-D array of pointers to DoublePrecision", i.e.,

c vecA, vecZ and dblptr, to type

Chapter 4: Calling Syntax 19

c "1-D array of double precision numbers" and store the data in

c these arrays using the packed storage format described previously.

c Also, when calling from fortran use FMEMREQ, rather than memreq_,

c to get the required size of workspace arrays.

c Finally, the C code describes arrays of length n with indices

c of 0 to n-1, for fortran usage the indices should be 1 to n.

c

subroutine pdspevx(ivector, irange, n, vecA, mapA,

$ lb, ub, ilb, iub, abstol,

$ meigval, vecZ, mapZ, eval, iscratch, iscsize,

$ dblptr, ibuffsize, scratch, ssize, info)

integer ivector, irange, n, mapA, ilb, iub, meigval,

$ mapZ, iscratch, iscsize, ibuffsize,

$ ssize, info

double precision lb, ub, abstol, eval(*), scratch(*)

$ vecA(*), vecZ(*), dblptr(*)

c

c The input arguments are the same as in the C code

c pdspevx except that one changes the arguments of type

c

20 PeIGS

The calling sequence for PDSPEV in C is:

void pdspev(n, vecA, mapA, vecZ, mapZ, eval, iscratch, iscsize,

dblptr, ibuffsize, scratch, ssize, info)

Integer *n, *mapA, *mapZ, *iscratch, *iscsize,

*ibuffsize, *ssize, *info;

DoublePrecision **vecA, **vecZ, *eval, **dblptr, *scratch;

/*

* Our parallel version of LAPACK’s dspev.

* Purpose

* =======

* pdspev computes all of the eigenvalues and eigenvectors of a

* real symmetric eigenproblem, of the form

* A*x=(lambda) * x.

* Here A is assumed to be symmetric.

* A uses packed storage.

* Arguments

* =========

* The current code assumes mapA and mapZ each contain

* exactly the same set of processor id’s, though not necessarily

* in the same order.

* All arguments are POINTERS to date of the specified type unless

* otherwise mentioned. In particular, INTEGER = (Integer *) and

* DOUBLE PRECISION = (DoublePrecision *)

* In the following let:

* n = dimension of matrix A

* me = this processors id (= mxmynd_())

* nprocs = number of allocated processors (= mxnprc_())

* nvecsA = number of entries in mapA equal to me

* (= count_list(me, mapA, n))

* nvecsZ = number of entries in mapZ equal to me

* (= count_list(me, mapZ, n))

*---

Chapter 4: Calling Syntax 21

* n (input) INTEGER

* The number of rows and columns of the matrices A and B.

* N >= 0.

* vecA (input/workspace) array of pointers to DoublePrecision

* = (DoublePrecision **) dimension (nvecsA)

* On entry, vecA[i], i = 0 to nvecsA-1, points to an

* array containing the lower triangular part of the i-th

* column of A which is owned by this processor. The

* columns of A owned by this processer are determined by mapA

* (See below).

* On exit, the contents of matrixA are destroyed.

* mapA (input) INTEGER array, dimension (N)

* mapA(i) = the id of the processor which owns column i

* of the A matrix, i = 0 to n-1.

* vecZ (output) array of pointers to DoublePrecision (DoublePreci-

sion **)

* dimension (nvecsZ)

* On entry, vecZ[i], i = 0 to nvecsZ-1, should point to an

* array of length n.

* On exit:

* vecZ[i], i = 0 to nvecsZ-1, points to the i-th eigenvector

* (as determined by the exit values in mapZ) owned by this

* processor.

* The eigenvectors are normalized such that: Z’*Z = I.

* mapZ (input/output) INTEGER array, dimension (N)

* On entry:

* mapZ(i) = the id of a processor which has room for the

* i-th eigenvector, i = 0 to n-1.

* On exit:

* mapZ(i) = the id of the processor which actually owns the i-

th

* eigenvector, i = 0 to n-1.

* eval (output) DOUBLE PRECISION array, dimension (N)

* If INFO = 0, the eigenvalues of the matrix

* in no particular order.

22 PeIGS

* iscratch (workspace) INTEGER array, dimension

* Must be >= that returned from utility routine memreq_

* iscsize (input) INTEGER

* The number of usable elements in array "iscratch".

* Must be >= that returned from utility routine memreq_

* dblptr (workspace) DoublePrecision pointer to

* DoublePrecision (DoublePrecision **),

* dblprt[0] must point to the start of an array consising of

* pointers to DoublePrecision (DoublePrecision *).

* Must be >= that returned from utility routine memreq_

* ibuffsize(input) INTEGER

* The number of usable elements in array "dblptr".

* Must be >= that returned from utility routine memreq_

* scratch (workspace) DOUBLE PRECISION array, dimension

* Must be >= that returned from utility routine memreq_

* ssize (input) INTEGER

* The number of usable elements in array "scratch".

* Must be >= that returned in utility routine memreq_

* INFO (output) INTEGER

* = 0: successful exit.

* -50 <= INFO < 0, the -INFOth argument had an illegal value.

* INFO = -51, Input data which must be the same on all

* processors is NOT the same on all processors

* in mapZ.

* = 1, Error computing the eigenvalues of the

* tridiagonal eigenproblem. In this case

* ’pstebz_’ returned a non-zero info, whose

* value was printed to stderr.

* = 2, Error computing the eigenvectors of the

* tridiagonal eigenproblem. In this case

* ’pstein’ returned a non-zero info, whose

* value was printed to stderr.

* Any processor with a negative INFO stops program execution.

* If -50 <= INFO < 0, then bad data was passed to this routine

Chapter 4: Calling Syntax 23

* and no attempt is made to make sure that

* INFO is the same on all processors.

* All other INFO INFO should be the same on all processors in

* mapA,Z. If this routine calls a routine

* which returns a negative info, then info

* may not be the same on all processors.

* This, however, should never happen.

*---

*/

24 PeIGS

The calling sequence for PDSPEVX in C is:

void pdspevx (ivector, irange, n, vecA, mapA, lb, ub, ilb, iub, abstol,

meigval, vecZ, mapZ, eval, iscratch, iscsize,

dblptr, ibuffsize, scratch, ssize, info)

Integer *ivector, *irange, *n, *mapA, *ilb, *iub, *meigval;

Integer *mapZ, *iscratch, *iscsize, *ibuffsize, *ssize, *info;

DoublePrecision *lb, *ub, *abstol, *eval, *scratch;

DoublePrecision **vecA, **vecZ, **dblptr;

/*

* Our parallel version of LAPACK’s dspevx.

* Purpose

* =======

* pdspevx computes some or all of the eigenvalues and, optionally,

* eigenvectors of a real symmetric eigenproblem, of the form

* A*x=(lambda) * x.

* Here A is assumed to be symmetric.

* A uses packed storage.

* Arguments

* =========

* The current code assumes mapA and mapZ each contain

* exactly the same set of processor id’s, though not necessarily

* in the same order.

* All arguments are POINTERS to date of the specified type unless

* otherwise mentioned. In particular, INTEGER = (Integer *) and

* DOUBLE PRECISION = (DoublePrecision *)

* In the following let:

* n = dimension of matrix A

* me = this processors id (= mxmynd_())

* nprocs = number of allocated processors (= mxnprc_())

* nvecsA = number of entries in mapA equal to me

* (= count_list(me, mapA, n))

* nvecsZ = number of entries in mapZ equal to me

* (= count_list(me, mapZ, n))

Chapter 4: Calling Syntax 25

*---

* ivector (input) INTEGER

* = 0: Compute eigenvalues only;

* = 1: Compute eigenvalues and eigenvectors.

* irange (input) INTEGER

* = 1: all eigenvalues will be found;

* = 2: all eigenvalues in the half-open interval (lb, ub]

* will be found;

* = 3: the ilb-th through iub-th eigenvalues will be found.

* n (input) INTEGER

* The number of rows and columns of the matrices A and B.

* N >= 0.

* vecA (input/workspace) array of pointers to DoublePrecision (Dou-

blePrecision **)

* dimension (nvecsA)

* On entry, vecA[i], i = 0 to nvecsA-1, points to an

* array containing the lower triangular part of the i-th

* column of A which is owned by this processor. The

* columns of A owned by this processer are determined by mapA

* (See below).

* On exit, the contents of matrixA are destroyed.

* mapA (input) INTEGER array, dimension (N)

* mapA(i) = the id of the processor which owns column i

* of the A matrix, i = 0 to n-1.

* lb (input) DOUBLE PRECISION

* If IRANGE=2, the lower bound of the interval to be searched

* for eigenvalues. Not referenced if IRANGE = 1 or 3, but

* must not be a pointer to NULL.

* ub (input) DOUBLE PRECISION

* If IRANGE=2, the upper bound of the interval to be searched

* for eigenvalues. Not referenced if IRANGE = 1 or 3, but

* must not be a pointer to NULL.

* ilb (input) INTEGER

* If IRANGE=3, the index (from smallest to largest) of the

* smallest eigenvalue to be returned. ilb >= 1.

* Not referenced if IRANGE = 1 or 2, but

* must not be a pointer to NULL.

26 PeIGS

* iub (input) INTEGER

* If RANGE=3, the index (from smallest to largest) of the

* largest eigenvalue to be returned. min(ilb,N) <= iub <= N.

* Not referenced if IRANGE = 1 or 2, but

* must not be a pointer to NULL.

* abstol (input) DOUBLE PRECISION

* The absolute error tolerance for the eigenvalues.

* An approximate eigenvalue is accepted as converged

* when it is determined to lie in an interval [a,b]

* of width less than or equal to

* ABSTOL + EPS * max(|a|,|b|) ,

* where EPS is the machine precision. If ABSTOL is less than

* or equal to zero, then EPS*|T| will be used in its place,

* where |T| is the 1-norm of the tridiagonal matrix obtained

* by reducing matrix A to tridiagonal form.

* See "Computing Small Singular Values of Bidiagonal Matrices

* with Guaranteed High Relative Accuracy," by Demmel and

* Kahan, LAPACK Working Note #3.

* meigval (output) INTEGER

* The total number of eigenvalues found. 0 <= meigval <= N.

* If IRANGE = 1, M = N, and if RANGE = 3, M = IUB-ILB+1.

* vecZ (output) array of pointers to DoublePrecision (DoublePreci-

sion **)

* dimension (nvecsZ)

* On entry, vecZ[i], i = 0 to nvecsZ-1, should point to an

* array of length n.

* On exit:

* vecZ[i], i = 0 to nvecsZ-1, points to the i-th eigenvector

* (as determined by the exit values in mapZ) owned by this

* processor.

* The eigenvectors are normalized such that: Z’*Z = I.

* mapZ (input/output) INTEGER array, dimension (N)

* On entry:

* mapZ(i) = the id of a processor which has room for the

* i-th eigenvector, i = 0 to n-1 (current code

* requires this even when computing only some eigenvalues.

Chapter 4: Calling Syntax 27

* On exit:

* mapZ(i) = the id of the processor which actually owns the i-

th

* eigenvector, i = 0 to n-1.

* eval (output) DOUBLE PRECISION array, dimension (N)

* If INFO = 0, the eigenvalues of the matrix

* in no particular order.

* iscratch (workspace) INTEGER array, dimension

* Must be >= that returned from utility routine memreq_

* iscsize (input) INTEGER

* The number of usable elements in array "iscratch".

* Must be >= that returned from utility routine memreq_

* dblptr (workspace) DoublePrecision pointer to

* DoublePrecision (DoublePrecision **),

* dblprt[0] must point to the start of an array consising of

* pointers to DoublePrecision (DoublePrecision *).

* Must be >= that returned from utility routine memreq_

* ibuffsize(input) INTEGER

* The number of usable elements in array "dblptr".

* Must be >= that returned from utility routine memreq_

* scratch (workspace) DOUBLE PRECISION array, dimension

* Must be >= that returned from utility routine memreq_

* ssize (input) INTEGER

* The number of usable elements in array "scratch".

* Must be >= that returned in utility routine memreq_

* INFO (output) INTEGER

* = 0: successful exit.

* -50 <= INFO < 0, the -INFOth argument had an illegal value.

* INFO = -51, Input data which must be the same on all

* processors is NOT the same on all processors

* in mapZ.

* = 1, Error computing the eigenvalues of the

* tridiagonal eigenproblem. In this case

* ’pstebz_’ returned a non-zero info, whose

* value was printed to stderr.

28 PeIGS

* = 2, Error computing the eigenvectors of the

* tridiagonal eigenproblem. In this case

* ’pstein’ returned a non-zero info, whose

* value was printed to stderr.

* Any processor with a negative INFO stops program execution.

* If -50 <= INFO < 0, then bad data was passed to this routine

* and no attempt is made to make sure that

* INFO is the same on all processors.

* All other INFO INFO should be the same on all processors in

* mapA,Z. If this routine calls a routine

* which returns a negative info, then info

* may not be the same on all processors.

* This, however, should never happen.

*---

*/

Chapter 4: Calling Syntax 29

4.3 PDSPGV and PDSPGVX: Generalized Symmetric
Eigensystem Solver

This is the real general symmetric eigensystem problem: Given a real symmetric matrix
A and a positive definite real symmetric matrix B, find all its eigen-pairs (λ, x) such that
Ax = λBx .

For one processor we use the standard algorithm (c.f. Wilkinson, J. H., The Algebraic
Eigenvalue Problem, page 337-339). For multi-processors we perform the reduction to the
standard eigensystem problem by computing the inverse of the lower triangular matrix from
the Choleski factorization, and then perform matrix conjugation to obtain LTAL−T . Cur-
rently, the multi-processor reduction algorithm is used even when using only one processor.

In some applications, the matrix B may already have been factored and the inverse of
the choleski factor is stored in B. A parameter ifact = 0 is used as an input to pdspgv to
skip the choleski factorization (for serial) and its inverse computations (for parallel). A
value ifact = 1 is used to specify that B is not the Choleski factor of B or its inverse.

In Fortran 77 the calling sequences for PDSPGV and PDSPGVX are:

subroutine pdspgv (ifact, n, matrixA, mapA,

matrixB, mapB, matZ, mapZ, eval,

iscratch, iscsize, dblptr, ibuffsz,

scratch, rsize, info)

integer ifact, n, mapA(*), mapB(*), mapZ(*), iscratch(*), iscsize,

ibuffsz, rsize, info;

double precision matrixA(*), matrixB(*), matZ(*), eval(*), scratch(*);

double precision dblptr(*)

c The input arguments are the same as in the C code

c pdspgv except that one changes the arguments of type

c "1-D array of pointers to DoublePrecision", i.e.,

c vecA, vecB, vecZ and dblptr, to type

c "1-D array of double precision numbers" and store the data in

c these arrays using the packed storage format described previously.

c Also, when calling from fortran use FMEMREQ, rather than memreq_,

c to get the required size of workspace arrays.

c Finally, the C code describes arrays of length n with indices

c of 0 to n-1, for fortran usage the indices should be 1 to n.

c

subroutine pdspgvx (ifact, ivector, irange, n, matrixA, mapA,

matrixB, mapB, matZ, mapZ, eval,

iscratch, iscsize, dblptr, ibuffsz,

scratch, rsize, info)

integer ifact, n, mapA(*), mapB(*), mapZ(*), iscratch(*), iscsize,

ibuffsz, rsize, info;

double precision matrixA(*), matrixB(*), matZ(*), eval(*), scratch(*);

30 PeIGS

double precision dblptr(*)

c The input arguments are the same as in the C code

c pdspgvx except that one changes the arguments of type

c "1-D array of pointers to DoublePrecision", i.e.,

c vecA, vecB, vecZ and dblptr, to type

c "1-D array of double precision numbers" and store the data in

c these arrays using the packed storage format described previously.

c Also, when calling from fortran use FMEMREQ, rather than memreq_,

c to get the required size of workspace arrays.

c Finally, the C code describes arrays of length n with indices

c of 0 to n-1, for fortran usage the indices should be 1 to n.

c

In C the calling sequence for PDSPGV is:

void pdspgv(ifact, n, vecA, mapA, vecB, mapB, vecZ, mapZ,

eval, iscratch, iscsize, dblptr, ibuffsize, scratch, ssize, info)

Integer *ifact, *n, *mapA, *mapB, *mapZ, *iscratch,

*iscsize, *ibuffsize, *ssize, *info;

DoublePrecision **vecA, **vecB, **vecZ, *eval, **dblptr, *scratch;

/*

* Our parallel version of LAPACK’s dspgv.

* Purpose

* =======

* pdspgv computes all of the eigenvalues and eigenvectors of a

* real generalized symmetric-definite eigenproblem, of the form

* A*x=(lambda)*B*x.

* Here A and B are assumed to be symmetric and B is also

* positive definite. The matrices A and B use packed storage.

* Arguments

* =========

* NOTE: The current code assumes mapA, mapB and mapZ each contain

* exactly the same set of processor id’s, though not necessarily

* in the same order.

* All arguments are POINTERS to date of the specified type unless

* otherwise mentioned. In particular, INTEGER = (Integer *) and

* DOUBLE PRECISION = (DoublePrecision *)

Chapter 4: Calling Syntax 31

* In the following let:

* n = dimension of matrices A and B

* me = this processors id (= mxmynd_())

* nprocs = number of allocated processors (= mxnprc_())

* nvecsA = number of entries in mapA equal to me

* (= count_list(me, mapA, n))

* number of columns of A this processor has

* nvecsB = number of entries in mapB equal to me

* (= count_list(me, mapB, n))

* number of vectors this processor has

* nvecsZ = number of entries in mapZ equal to me

* (= count_list(me, mapZ, n))

*---

* ifact (input) INTEGER

* Specifies whether or not to factor the B matrix.

* = 0: Don’t factor B, vecB is already the L in B = L*L’.

* (for serial) or L**(-1) for parallel

* which was computed on a previous call to pdspgv.

* = 1: Factor B

* n (input) INTEGER

* The number of rows and columns of the matrices A and B.

* N >= 0.

* vecA (input/workspace) array of pointers to DoublePrecision (Dou-

blePrecision **)

* dimension (nvecsA)

* On entry, vecA[i], i = 0 to nvecsA-1, points to an

* array containing the lower triangular part of the i-th

* column of A which is owned by this processor. The

* columns of A owned by this processer are determined by mapA

* (See below).

* On exit, the contents of matrixA are destroyed.

* mapA (input) INTEGER array, dimension (N)

* mapA(i) = the id of the processor which owns column i

* of the A matrix, i = 0 to n-1.

* vecB (input/output) array of pointers to DoublePrecision (Dou-

blePrecision **)

* dimension (nvecsB)

32 PeIGS

* On entry, vecB[i], i = 0 to nvecsB-1, points to an

* array containing the lower triangular part of the i-th

* column of B which is owned by this processor. The

* columns of B owned by this processer are determined by mapB

* (See below).

* On exit

* Let L be the triangular factor L from the Choleski

* factorization B = L*L’, then

* if (nprocs = 1): vecB contains L, same storage as B

* else : vecB contains (L inverse), same storage as B

* mapB (input) INTEGER array, dimension (N)

* mapB(i) = the id of the processor which owns column i

* of the B matrix, i = 0 to n-1.

* vecZ (output) array of pointers to DoublePrecision (DoublePre-

cision **)

* dimension (nvecsZ)

* On entry, vecZ[i], i = 0 to nvecsZ-1, should point to an

* array of length n.

* On exit:

* vecZ[i], i = 0 to nvecsZ-1, points to the i-th eigenvector

* (as determined by the exit values in mapZ) owned by this

* processor.

* The eigenvectors are normalized such that: Z’*B*Z = I.

* mapZ (input/output) INTEGER array, dimension (N)

* On entry:

* mapZ(i) = the id of a processor which has room for the

* i-th eigenvector, i = 0 to n-1.

* On exit:

* mapZ(i) = the id of the processor which actually owns the i-

th

* eigenvector, i = 0 to n-1.

* eval (output) DOUBLE PRECISION array, dimension (N)

* If INFO = 0, the eigenvalues of the matrix

* in no particular order.

* iscratch (workspace) INTEGER array, dimension (??)

Chapter 4: Calling Syntax 33

* iscsize (input) INTEGER

* The number of usable elements in array "iscratch".

* Must be >= ???.

* dblptr (workspace) DoublePrecision pointer to DoublePrecision (Dou-

blePrecision **),

* dblprt[0] must point to the start of an array consising of

* ??? pointers to DoublePrecision.

* ibuffsize(input) INTEGER

* The number of usable elements in array "dblptr".

* Must be >= ???.

* scratch (workspace) DOUBLE PRECISION array, dimension (??)

* ssize (input) INTEGER

* The number of usable elements in array "scratch".

* Must be >= ???.

* INFO (output) INTEGER

* = 0: successful exit.

* -50 <= INFO < 0, the -INFOth argument had an illegal value.

* INFO = -51, Input data which must be the same on all

* processors is NOT the same on all processors

* in mapZ.

* = 1, Error choleski factoring B. In this case

* ’choleski’ returned a non-zero info, whose

* value was printed to stderr.

* = 2, Error computing inverse of L, the choleski

* factor of B. In this case

* ’inverseL’ returned a non-zero info, whose

* value was printed to stderr.

* = 3, Error solving the standard eigenproblem.

* In this case

* ’pdspevx’ returned a non-zero info, whose

* value was printed to stderr.

* Any processor with a negative INFO stops program execution.

* If -50 <= INFO < 0, then bad data was passed to this routine

34 PeIGS

* and no attempt is made to make sure that

* INFO is the same on all processors.

* All other INFO INFO should be the same on all proces-

sors in

* mapA,B,Z. If this routine calls a routine

* which returns a negative info, then info

* may not be the same on all processors.

* This, however, should never happen.

* --

*/

In C the calling sequence for PDSPGVX is:

void pdspgvx(ifact, ivector, irange, n, vecA, mapA, vecB, mapB,

lb, ub, ilb, iub, abstol, meigval, vecZ, mapZ, eval,

iscratch, iscsize, dblptr, ibuffsize, scratch, ssize, info)

Integer *ifact, *ivector, *irange, *n, *mapA, *mapB, *ilb,

*iub, *meigval, *mapZ, *iscratch, *iscsize,

*ibuffsize, *ssize, *info;

DoublePrecision *lb, *ub, *abstol, *eval, *scratch;

DoublePrecision **vecA, **vecB, **vecZ, **dblptr;

/*

* A parallel version of LAPACK’s dspgv, but extended to allow for

* the computation of selected eigenvalues and, optionally, eigenvectors.

* Purpose

* =======

* pdspgvx computes some or all of the eigenvalues and, optionally,

* eigenvectors of a real generalized symmetric-definite eigenproblem,

* of the form

* A*x=(lambda)*B*x.

* Here A and B are assumed to be symmetric and B is also

* positive definite. The matrices A and B use packed storage.

* Arguments

* =========

Chapter 4: Calling Syntax 35

* NOTE: The current code assumes mapA, mapB and mapZ each contain

* exactly the same set of processor id’s, though not necessarily

* in the same order.

* All arguments are POINTERS to date of the specified type unless

* otherwise mentioned. In particular, INTEGER = (Integer *) and

* DOUBLE PRECISION = (DoublePrecision *)

* In the following let:

* n = dimension of matrices A and B

* me = this processors id (= mxmynd_())

* nprocs = number of allocated processors (= mxnprc_())

* nvecsA = number of entries in mapA equal to me

* (= count_list(me, mapA, n))

* number of columns of A this processor has

* nvecsB = number of entries in mapB equal to me

* (= count_list(me, mapB, n))

* number of vectors this processor has

* nvecsZ = number of entries in mapZ equal to me

* (= count_list(me, mapZ, n))

*---

* ifact (input) INTEGER

* Specifies whether or not to factor the B matrix.

* = 0: Don’t factor B, vecB is already the L in B = L*L’.

* (for serial) or L**(-1) for parallel

* which was computed on a previous call to pdspgvx.

* = 1: Factor B

* ivector (input) INTEGER

* = 0: Compute eigenvalues only;

* = 1: Compute eigenvalues and eigenvectors.

* irange (input) INTEGER

* = 1: all eigenvalues will be found;

* = 2: all eigenvalues in the half-open interval (lb, ub]

* will be found;

* = 3: the ilb-th through iub-th eigenvalues will be found.

* n (input) INTEGER

* The number of rows and columns of the matrices A and B.

* N >= 0.

36 PeIGS

* vecA (input/workspace) array of pointers to DoublePrecision (Dou-

blePrecision **)

* dimension (nvecsA)

* On entry, vecA[i], i = 0 to nvecsA-1, points to an

* array containing the lower triangular part of the i-th

* column of A which is owned by this processor. The

* columns of A owned by this processer are determined by mapA

* (See below).

* On exit, the contents of matrixA are destroyed.

* mapA (input) INTEGER array, dimension (N)

* mapA(i) = the id of the processor which owns column i

* of the A matrix, i = 0 to n-1.

* vecB (input/output) array of pointers to DoublePrecision (Double-

Precision **)

* dimension (nvecsB)

* On entry, vecB[i], i = 0 to nvecsB-1, points to an

* array containing the lower triangular part of the i-th

* column of B which is owned by this processor. The

* columns of B owned by this processer are determined by mapB

* (See below).

* On exit

* Let L be the triangular factor L from the Cholesky

* factorization B = L*L’, then

* if (nprocs = 1): vecB contains L, same storage as B

* else : vecB contains (L inverse), same storage as B

* mapB (input) INTEGER array, dimension (N)

* mapB(i) = the id of the processor which owns column i

* of the B matrix, i = 0 to n-1.

* lb (input) DOUBLE PRECISION

* If IRANGE=2, the lower bound of the interval to be searched

* for eigenvalues. Not referenced if IRANGE = 1 or 3, but

* must not be a pointer to NULL.

* ub (input) DOUBLE PRECISION

* If IRANGE=2, the upper bound of the interval to be searched

* for eigenvalues. Not referenced if IRANGE = 1 or 3, but

* must not be a pointer to NULL.

* ilb (input) INTEGER

Chapter 4: Calling Syntax 37

* If IRANGE=3, the index (from smallest to largest) of the

* smallest eigenvalue to be returned. ilb >= 1.

* Not referenced if IRANGE = 1 or 2, but

* must not be a pointer to NULL.

* iub (input) INTEGER

* If RANGE=3, the index (from smallest to largest) of the

* largest eigenvalue to be returned. min(ilb,N) <= iub <= N.

* Not referenced if IRANGE = 1 or 2, but

* must not be a pointer to NULL.

* abstol (input) DOUBLE PRECISION

* The absolute error tolerance for the eigenvalues.

* An approximate eigenvalue is accepted as converged

* when it is determined to lie in an interval [a,b]

* of width less than or equal to

* ABSTOL + EPS * max(|a|,|b|) ,

* where EPS is the machine precision. If ABSTOL is less than

* or equal to zero, then EPS*|T| will be used in its place,

* where |T| is the 1-norm of the tridiagonal matrix obtained

* by reducing matrix A to tridiagonal form.

* See "Computing Small Singular Values of Bidiagonal Matrices

* with Guaranteed High Relative Accuracy," by Demmel and

* Kahan, LAPACK Working Note #3.

* meigval (output) INTEGER

* The total number of eigenvalues found. 0 <= meigval <= N.

* If IRANGE = 1, M = N, and if RANGE = 3, M = IUB-ILB+1.

* vecZ (output) array of pointers to DoublePrecision (DoublePreci-

sion **)

* dimension (nvecsZ)

* On entry, vecZ[i], i = 0 to nvecsZ-1, should point to an

* array of length n.

* On exit:

* vecZ[i], i = 0 to nvecsZ-1, points to the i-th eigenvector

* (as determined by the exit values in mapZ) owned by this

* processor.

* The eigenvectors are normalized such that: Z’*B*Z = I.

* mapZ (input/output) INTEGER array, dimension (N)

38 PeIGS

* On entry:

* mapZ(i) = the id of a processor which has room for the

* i-th eigenvector, i = 0 to n-1.

* On exit:

* mapZ(i) = the id of the processor which actually owns the i-

th

* eigenvector, i = 0 to n-1.

* eval (output) DOUBLE PRECISION array, dimension (N)

* If INFO = 0, the eigenvalues of the matrix

* in no particular order.

* iscratch (workspace) INTEGER array, dimension (??)

* iscsize (input) INTEGER

* The number of usable elements in array "iscratch".

* Must be >= ???.

* dblptr (workspace) DoublePrecision pointer to DoublePrecision (Dou-

blePrecision **),

* dblprt[0] must point to the start of an array consising of

* ??? pointers to DoublePrecision.

* ibuffsize(input) INTEGER

* The number of usable elements in array "dblptr".

* Must be >= ???.

* scratch (workspace) DOUBLE PRECISION array, dimension (??)

* ssize (input) INTEGER

* The number of usable elements in array "scratch".

* Must be >= ???.

* INFO (output) INTEGER

* = 0: successful exit.

* -50 <= INFO < 0, the -INFOth argument had an illegal value.

* INFO = -51, Input data which must be the same on all

* processors is NOT the same on all processors

* in mapZ.

* = 1, Error choleski factoring B. In this case

* ’choleski’ returned a non-zero info, whose

* value was printed to stderr.

Chapter 4: Calling Syntax 39

* = 2, Error computing inverse of L, the choleski

* factor of B. In this case

* ’inverseL’ returned a non-zero info, whose

* value was printed to stderr.

* = 3, Error solving the standard eigenproblem.

* In this case

* ’pdspevx’ returned a non-zero info, whose

* value was printed to stderr.

* Any processor with a negative INFO stops program execution.

* If -50 <= INFO < 0, then bad data was passed to this routine

* and no attempt is made to make sure that

* INFO is the same on all processors.

* All other INFO INFO should be the same on all processors in

* mapA,B,Z. If this routine calls a routine

* which returns a negative info, then info

* may not be the same on all processors.

* This, however, should never happen.

*---

*/

4.4 PDSPTRI: Real Symmetric Tridiagonal Eigensystem
Solver

PDSPTRI solves the tridiagonal real symmetric eigensystem problem: Given a real sym-
metric tridiagonal matrix A, find some or all its eigen-pairs (λ, x) such that Ax = λx .

In Fortran 77 the calling sequences for PDSPTRI is:

subroutine pdsptri(ivector, irange, n, dd, ee, lb, ub, ilb, iub,

$ abstol, meigval, vecZ, mapZ, eval, iscratch,

$ iscsize, dblptr, ibuffsize, scratch, ssize, info)

integer ivector, irange, n, ilb, iub, meigval,

$ mapZ(*), iscratch(*), iscsize, ibuffsize,

$ ssize, info;

double precision dd(*), ee(*), lb, ub, abstol, eval(*), scratch(*);

double precision vecZ(*), dblptr(*);

c

c The input arguments are the same as in the C code

c pdsptri except that one changes the arguments of type

c "1-D array of pointers to DoublePrecision", i.e.,

40 PeIGS

c vecZ and dblptr, to type

c "1-D array of double precision numbers" and store the data in

c these arrays using the packed storage format described previously.

c Also, when calling from fortran use FMEMREQ, rather than memreq_,

c to get the required size of workspace arrays.

c Finally, the C code describes arrays of length n with indices

c of 0 to n-1, for fortran usage the indices should be 1 to n.

c

In C the calling sequences for PDSPTRI is:

void pdsptri(ivector, irange, n, dd, ee, lb, ub, ilb, iub, abstol,

meigval, vecZ, mapZ, eval, iscratch, iscsize,

dblptr, ibuffsize, scratch, ssize, info)

Integer *ivector, *irange, *n, *ilb, *iub, *meigval,

*mapZ, *iscratch, *iscsize, *ibuffsize,

*ssize, *info;

DoublePrecision *dd, *ee, *lb, *ub, *abstol, *eval, *scratch;

DoublePrecision **vecZ, **dblptr;

/*

* Purpose

* =======

* pdsptri computes some or all of the eigenvalues and, optionally,

* eigenvectors of a real tri-diagonal eigenproblem of the form

* A*x=(lambda) * x.

* Here A is assumed to be symmetric, tri-diagonal.

* Arguments

* =========

* All arguments are POINTERS to date of the specified type unless

* otherwise mentioned. In particular, INTEGER = (Integer *) and

* DOUBLE PRECISION = (DoublePrecision *)

* In the following let:

* n = dimension of matrix A

* me = this processors id (= mxmynd_())

* nprocs = number of allocated processors (= mxnprc_())

* nvecsZ = number of entries in mapZ equal to me

* (= count_list(me, mapZ, n))

Chapter 4: Calling Syntax 41

*---

* ivector (input) INTEGER

* = 0: Compute eigenvalues only;

* = 1: Compute eigenvalues and eigenvectors.

* irange (input) INTEGER

* = 1: all eigenvalues will be found;

* = 2: all eigenvalues in the half-open interval (lb, ub]

* will be found;

* = 3: the ilb-th through iub-th eigenvalues will be found.

* n (input) INTEGER

* The number of rows and columns of the matrix A.

* N >= 0.

* dd (input) DOUBLE PRECISION array, dimension (n)

* The diagonal elements of A.

* ee (input) DOUBLE PRECISION array, dimension (n)

* The off-diagonal elements of A. ee[0] is junk, the

* actual off-diagonal starts at ee[1].

* lb (input) DOUBLE PRECISION

* If IRANGE=2, the lower bound of the interval to be searched

* for eigenvalues. Not referenced if IRANGE = 1 or 3, but

* must not be a pointer to NULL.

* ub (input) DOUBLE PRECISION

* If IRANGE=2, the upper bound of the interval to be searched

* for eigenvalues. Not referenced if IRANGE = 1 or 3, but

* must not be a pointer to NULL.

* ilb (input) INTEGER

* If IRANGE=3, the index (from smallest to largest) of the

* smallest eigenvalue to be returned. ilb >= 1.

* Not referenced if IRANGE = 1 or 2, but

* must not be a pointer to NULL.

* iub (input) INTEGER

* If RANGE=3, the index (from smallest to largest) of the

* largest eigenvalue to be returned. min(ilb,N) <= iub <= N.

* Not referenced if IRANGE = 1 or 2, but

* must not be a pointer to NULL.

* abstol (input) DOUBLE PRECISION

42 PeIGS

* The absolute error tolerance for the eigenvalues.

* An approximate eigenvalue is accepted as converged

* when it is determined to lie in an interval [a,b]

* of width less than or equal to

* ABSTOL + EPS * max(|a|,|b|) ,

* where EPS is the machine precision. If ABSTOL is less than

* or equal to zero, then EPS*|A| will be used in its place,

* where |A| is the 1-norm of A.

* See "Computing Small Singular Values of Bidiagonal Matrices

* with Guaranteed High Relative Accuracy," by Demmel and

* Kahan, LAPACK Working Note #3.

* meigval (output) INTEGER

* The total number of eigenvalues found. 0 <= meigval <= N.

* If IRANGE = 1, M = N, and if RANGE = 3, M = IUB-ILB+1.

* vecZ (output) array of pointers to DoublePrecision (DoublePreci-

sion **)

* dimension (nvecsZ)

* On entry, vecZ[i], i = 0 to nvecsZ-1, should point to a

* DOUBLE PRECISION array of length n.

* On exit:

* vecZ[i], i = 0 to nvecsZ-1, points to the i-th eigenvector

* (as determined by the exit values in mapZ) owned by this

* processor.

* The eigenvectors are normalized such that: Z’*Z = I.

* mapZ (input/output) INTEGER array, dimension (N)

* On entry:

* mapZ(i) = the id of a processor which has room for the

* i-th eigenvector, i = 0 to n-1 (current code

* requires this even when computing only some eigenvalues.

* On exit:

* mapZ(i) = the id of the processor which actually owns the i-

th

* eigenvector, i = 0 to n-1.

* eval (output) DOUBLE PRECISION array, dimension (N)

* If INFO = 0, the eigenvalues of the matrix

* in no particular order.

Chapter 4: Calling Syntax 43

* iscratch (workspace) INTEGER array,

* Length must be >= that returned from utility routine memreq_

* iscsize (input) INTEGER

* The number of usable elements in array "iscratch".

* Must be >= that returned from utility routine memreq_

* dblptr (workspace) DoublePrecision pointer to DoublePrecision (Dou-

blePrecision **),

* Length must be >= that returned from utility routine memreq_

* ibuffsize(input) INTEGER

* The number of usable elements in array "dblptr".

* Must be >= that returned from utility routine memreq_

* scratch (workspace) DOUBLE PRECISION array

* Length must be >= that returned from utility routine memreq_

* ssize (input) INTEGER

* The number of usable elements in array "scratch".

* Must be >= that returned in utility routine memreq_

* INFO (output) INTEGER

* = 0: successful exit.

* -50 <= INFO < 0, the -INFOth argument had an illegal value.

* INFO = -51, Input data which must be the same on all

* processors is NOT the same on all processors

* in mapZ.

* = 1, Error computing eigenvalues. PSTEBZ returned

* a non-zero info, whose value was printed to

* stderr.

* = 2, Error computing eigenvectors. PSTEIN returned

* a non-zero info, whose value was printed to

* stderr.

* Any processor with a negative INFO stops program execution.

* If -50 <= INFO < 0, then bad data was passed to this routine

* and no attempt is made to make sure that

* INFO is the same on all processors.

* All other INFO INFO should be the same on all processors in

44 PeIGS

* mapZ. If this routine calls a routine

* which returns a negative info, then info

* may not be the same on all processors.

* This, however, should never happen.

*---

*/

4.5 Level II Subroutines

This section describes the level 2 subroutines. As of this writing we present a brief summary
of what each routine does. These routines are called in support of the eigensystem solvers
but they can be useful for other calculations too.

Many of the level II routines do little or no checking of input data, hence are not as
robust against input errors as the level I routines. Also, some of the routines described in
this section cannot currently be called directly from fortran (only because the fortran-C
interface routines have not yet been tested).

The level II routines which can currently be called from fortran are: bortho, mxm25,
mxm5x, mxm88, ortho, pstebz, resid, residual, and tresid.

The memory requirements for the level II routines are desribed in the headers for the
various routines. The listed memory requirements are believed to be as large or somewhat
larger than what the various routines actually use. However, this has not currently been
tested.

Finally, before calling any of PeIGS routines, except the level I routines, one must call
the fortran routine mxinit() (mxinit () from C) to initialize the communication package.

4.5.1 Choleski Factorization of Positive Definite Symmetric
Matrix

This subroutine performs a submatrix Choleski factorization of a symmetric positive matrix
with a column wrap using a list of processors. This code originated from Mike Heath
(Geist, G. A., and M. T. Heath, “Matrix Factorization on a Hypercube Multiprocessor,” in
Hypercube Multiprocessors 1986, SIAM, Philadelphia, 1986, pp. 161-180). We modified it
for our purposes and are fully responsible for any bugs.

The C syntax is:

void choleski(n, vecA, mapA, iscratch, scratch, info)

Integer *n, *mapA, *iscratch, *info;

DoublePrecision *scratch;

DoublePrecision **vecA;

/*

* ==

Chapter 4: Calling Syntax 45

* The original code is due to Mike Heath. George Fann

* bastardized it for our code. We thank Mike

* for his generosity. Any bugs and problems are introduced

* by us.

* Currently, this procedure only handles the case where the

* lower triangular part of A is distributed to processors by columns.

* Purpose

* =======

* choleski computes the Cholesky factorization of a real symmetric

* positive definite matrix A in packed storage format.

* The factorization has the form

* A = L * L’

* where L is lower triangular. On output the matrix A is overwrit-

ten by

* the Choleski factor L.

* Arguments

* =========

* In the following let:

* me = The id of this processor

* nvecsA = The number of columns of A owned by this processor.

* In particular, nvecsA = count_list(me, mapA, n).

* nprocsA = Number of distinct processor id’s in "mapA". In

* particular, nprocs = reduce_list(n, mapA, iscratch)

* n (input) (Integer *) scaler

* The order of the matrix A. n >= 0.

* vecA (input/output) (DoublePrecision **) array, length (nvecsA)

* On entry, the portion of the lower triangular part of the

* symmetric matrix A owned by this processor.

* vecA[i] points to an array containing the lower triangular

* part of the i-th column of A which is owned by this

* processor, i = 0 to nvecsA.

46 PeIGS

* On exit, if *info = 0, the factor L from the Cholesky

* factorization A = L*L^(T).

* mapA (input) (Integer *) array, length (*n)

* mapA[i] = the id of the processor which owns column i of A,

* i = 0 to *n - 1.

* iscratch (integer workspace) (Integer *) array, length (2 n + 1)

* scratch (DoublePrecision workspace) (DoublePrecision *) array, length (n+1)

* scratch must contain at least bufsiz bytes (see cmbbrf.h)

* info (output) (Integer *) scaler

* = 0: successful exit

* < 0: if info = -k, the k-th argument had an illegal value

* > 0: if info = k, 1<= k <= n, the leading minor of order

* k is not positive definite, and the factorization

* could not be completed.

* ==

*/

4.5.2 Inverse of Lower Triangular Matrix

The subroutine inverseL computes the inverse of a lower triangular matrix in column
wrapped form(according to a list). On output the input matrix is overwritten with its
output.

The C syntax is:

void inverseL (msize, col, map, iwork, buffer, info)

Integer *msize, *map, *iwork, *info;

DoublePrecision **col, *buffer;

/*

This routine computes the inverse of a lower triangular matrix.

On output, the lower triangular matrix is overwritten by its inverse.

The matrix is assume to be column wrapped and distributed according

to the array map. Thus, map[i] = processor id which holds column

i of the matrix.

Arguments:

msize = (input) integer, size of the matrix

col = (input/1-D array of pointers to DoublePrecision numbers)

col[j] -> the address of the j-th vector that this processor owns

Chapter 4: Calling Syntax 47

map = (input/integer array) integer array, length n, such that for

the i-th column,

map[i] = real processor id holding this column

iscratch = (scratch/integer) integer scratch space of size nprocs

buffer = (scratch) DoublePrecision precision array

info = (output/integer)

if info == 0 normal

if info == i > 0 then the i-th diagonal element

(in Fortran notation) is smaller than

dlamch("s"), the safe inverse limit: overflow

may have occurred.

*/

4.5.3 Matrix Multiplication

There are several different matrix multiplication routines depending on how the data is
distributed and the shape of the matrix. The Fortran 77 calling syntax is given in very
little detail. Most of the detail and descriptions of the routines are included with the C
calling syntax.

The Fortran 77 syntax is:

SUBROUTINE mxm25 (n1, n2, rowQ, mapQ, m, colW, mapW, colZ, iwork, work)

INTEGER n1, n2, mapQ(*), m, mapW(*), iwork(*)

Double Precision rowQ(*), colW(*), colZ(*), work(*)

SUBROUTINE mxm5x(n, rowU, mapU, m, colF, mapF, iscratch, scratch)

Integer n, mapU(*), mapF(*), m, iscratch(*)

Double Precision colF(*), rowU(*), scratch(*)

SUBROUTINE mxm88 (n, colQ, mapQ, m, colW, mapW, iwork, work)

Integer n, mapQ(*), m, mapW(*), iwork(*)

Double Precision colQ(*), colW(*), work(*)

C Note that the C routine mxm88 has one more argument, iptr, than the

C Fortran 77 call syntax listed here.

The input arguments for the above routines are the same as in the C codes listed below
except that one changes the arguments of type "1-D array of pointers to DoublePrecision",
i.e., rowQ, colW, etc, to type "1-D array of double precision numbers" and store the data
in these arrays using the packed storage format described previously. The C code describes
arrays of length n with indices of 0 to n-1, for fortran usage the indices should be 1 to n.

The double precision work arrays for the Fortran 77 codes must be somewhat larger than
listed below in the C calling syntax. In particular, let ME, be the id of a processor, and
let nvecsX be the number of entries in array mapX equal to ME, where X = Q,W,U, or F.
Then, on processor ME the extra memory requirements for the Fortran 77 routines are:

− MXM25: increase size of work by nvecsQ+nvecsW+nvecsZ

48 PeIGS

− MXM5x: increase size of scratch by nvecsU+nvecsF+2

− MXM88: increase size of work by nvecsQ+2*nvecsW+3

The C syntax is:

void mxm25 (n1, n2, rowQ, mapQ, m, colW, mapW, colZ, iwork, work)

Integer *n1, *n2, *mapQ, *m, *mapW, *iwork;

DoublePrecision **rowQ, **colW, **colZ, *work;

/**

*

* Subroutine mxm25

*

This subroutine does the matrix multiplication Z <- Q*W

where matrix Q is a n1 x n2 general matrix in packed storage format,

distributed by rows,

matrix W is a general n2 x m matrix in packed storage format,

distributed by columns.

and matrix Z is the n1 x m product Q*W, distributed the same as W.

In this version we assume that Q and W share the same processors

(perhaps different data distributions)

It is ok to have colZ = colW. However, in this

case each colZ[i]=colW[i] must point to a vector of

length = MAX n1, n2 .

ARGUMENTS

In the following:

INTEGER = "pointer to Integer"

DOUBLE PRECISION = "pointer to DoublePrecision"

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsW = number of entries in mapW equal to me

(= count_list(me, mapW, m))

nvecsQ = number of entries in mapQ equal to me

(= count_list(me, mapQ, n1))

nvecsQ_max = maximum number of entries in mapQ equal to i,

i = 0 to nprocs-1

(= max over i of count_list(i, mapQ, n1))

sDP = sizeof(DoublePrecision)

Chapter 4: Calling Syntax 49

n1 (input) INTEGER

The number of rows in matrix Q

n2 (input) INTEGER

The number of columns in matrix Q

and the number of rows in matrix W

rowQ ... (input) array of pointers to DoublePrecision,

length (nvecsQ)

The part of matrix Q owned by this processer stored

in packed format, i.e., rowQ[i] points to the start

of the i-th row of Q

owned by this processor, i = 0 to nvecsQ-1.

mapQ ... (input) INTEGER array, length (n1)

The i-th row of Q is owned by processor

mapQ[i], i = 0 to n1-1.

m (input) INTEGER

The number of columns in W.

colW ... (input) array of pointers to DoublePrecision,

length (nvecsW)

The part of matrix W owned by this processer stored

in packed format by columns, i.e., colW[i] points

to the first element of the i-th column of W

owned by this processor, i = 0 to nvecsW-1.

mapW ... (input) INTEGER array, length (m)

The i-th column of W is

owned by processor mapW[i], i = 0 to m-1.

colZ ... (output) array of pointers to DoublePrecision,

length (nvecsW)

The result matrix Z = Q * W stored identical to W.

It is ok to have colZ = colW. However, in this

case each colZ[i]=colW[i] must point to a vector of

length = MAX n1, n2 .

iwork .. (workspace) INTEGER array, length (3 * n1 + 2 * m)

work ... (workspace) DOUBLE PRECISION array,

length (maximum (n1 + m, (nvecsW + 2 * nvecsQ_max) * n2)

*/

50 PeIGS

void mxm5x(n, rowU, mapU, m, colF, mapF, iscratch, scratch)

Integer *n, *mapU, *mapF, *m, *iscratch;

DoublePrecision **colF, **rowU, *scratch;

/**

*

* Subroutine mxm5x

*

This subroutine does the matrix multiplication F <- U * F

where U is a n x n upper trianguler matrix in packed storage format,

and row distributed,

and matrix F is a general n x m matrix distributed by columns.

ARGUMENTS

In the following:

INTEGER = "pointer to Integer"

DOUBLE PRECISION = "pointer to DoublePrecision"

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsU = number of entries in mapU equal to me

(= count_list(me, mapU, n))

neleU_max = maximum number of elements of U owned by any

processor.

(= max over i of ci_size_(i, n, mapU))

nvecsF = number of entries in mapF equal to me

(= count_list(me, mapF, m))

sDP = sizeof(DoublePrecision)

n (input) INTEGER

The number of rows and columns of U, and the number

of rows of F.

rowU ... (input) array of pointers to DoublePrecision,

length (nvecsU)

The part of matrix U owned by this processer stored

in packed format, i.e., rowU[i] points to the diagonal

element of the i-th row of U

owned by this processor, i = 0 to nvecsU-1.

mapU ... (input) INTEGER array, length (n)

The i-th row of U is

owned by processor mapU[i], i = 0 to n-1.

Chapter 4: Calling Syntax 51

m (input) INTEGER

m is the number of columns in F.

colF ... (input/output) array of pointers to DoublePrecision,

length (nvecsF)

On Entry:

The part of matrix F owned by this processer stored

in packed format by columns, i.e., colF[i] points

to the first element of the i-th column of F

owned by this processor, i = 0 to nvecsF-1.

On Exit:

The result matrix U * F stored in the same manner as

F on entry.

mapF ... (input) INTEGER array, length (m)

The i-th column of F is

owned by processor mapF[i], i = 0 to m-1.

iscratch .. (workspace) INTEGER array, length (3*n+2*m +1)

scratch.... (workspace) DOUBLE PRECISION array,

length (maximum (n+m, mxlbuf_()/sDP + 1,

(nvecsF * n + 2 * neleU_max)

*/

void mxm88 (n, colQ, mapQ, m, colW, mapW, iwork, work, iptr)

Integer *n, *mapQ, *m, *mapW, *iwork;

DoublePrecision **colQ, **colW, *work, **iptr;

/**

*

* Subroutine mxm88

*

This subroutine does the matrix multiplication W <- Q * W

where Q is a n x n symmetric matrix in packed storage format,

and row (or equivalently column) distributed,

and matrix W is a general n x m matrix distributed by columns.

ARGUMENTS

In the following:

INTEGER = "pointer to Integer"

DOUBLE PRECISION = "pointer to DoublePrecision"

52 PeIGS

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsW = number of entries in mapW equal to me

(= count_list(me, mapW, m))

nvecsQ = number of entries in mapQ equal to me

(= count_list(me, mapQ, n))

sDP = sizeof(DoublePrecision)

n (input) INTEGER

n is the dimension of the symmetric matrix Q

colQ ... (input) array of pointers to DoublePrecision,

length (nvecsQ)

The part of matrix Q owned by this processer stored

in packed format, i.e., colQ[i] points to the diagonal

element of the i-th column (or equivalently row) of Q

owned by this processor, i = 0 to nvecsQ-1.

mapQ ... (input) INTEGER array, length (n)

The i-th column (or equivalently row) of Q is

owned by processor mapQ[i], i = 0 to n-1.

m (input) INTEGER

m is the number of columns in W.

colW ... (input/output) array of pointers to DoublePrecision,

length (nvecsW)

On Entry:

The part of matrix W owned by this processer stored

in packed format by columns, i.e., colW[i] points

to the first element of the i-th column of W

owned by this processor, i = 0 to nvecsW-1.

On Exit:

The result matrix Q * W stored in the same manner as

W on entry.

mapW ... (input) INTEGER array, length (m)

The i-th column of W is

owned by processor mapW[i], i = 0 to m-1.

iwork .. (workspace) INTEGER array, length (2*(n+m)+nvecsW+nvecsQ)

work ... (workspace) DOUBLE PRECISION array,

Chapter 4: Calling Syntax 53

length (maximum ((nvecsW+1)*n, mxlbuf_()/sDP + 1)

iptr ... (workspace) array of pointers to DoublePrecision,

length (nvecsW)

*/

4.5.4 TRED2: Householder reduction of a symmetric matrix to
tridiagonal form

Let A be a symmetric matrix stored in packed. Then subroutine TRED2 computes the
Householder transformation matrix Q and the tridiagonal matrix T such that A = QTQT

This code originates from Shirish Chinchalkar. We have modified it to suit our purpose.
We are responsible for introducing any bugs or errors.

int tred2 (n, vecA, mapA, Q, mapQ, diag, upperdiag, iwork, work)

double **vecA, /* matrix to be reduced */

**Q, /* Householder matrix */

diag, / diagonal elements of tri-diagonal matrix */

upperdiag, / upper diagonal elements of tri-diagonal ma-

trix */

work; / Householder vector (temp space of size n dou-

bles) */

int *n, /* problem size */

*mapA,

*mapQ,

iwork; / integer scratch work space */

/*

TRED2 : reduction of a real symmetric matrix to tri-diagonal form

Uses Householder reductions.

INPUT:

n -> integer , matrix size.

**A -> (1-D array of pointers to doubles) input matrix to be reduced.

mapA -> (integer array/ input) integer array of length n

distribution the

**Q -> (1-D array of pointers to doubles) Householder matrix to be stored

in packed storage format as discussed in section 3.2.

currently assumes that mapA[i] = mapQ[i] for all i

mapQ -> (integer array/ input) integer array of length n

distribution the same as mapA

54 PeIGS

OUTPUT:

diag[0:n-1] -> diagonal elements of the tri-diagonal matrix

obtained from A

upperdiag[1:n-1] -> upper diagonal elements of the tri-diagonal matrix

obtained from A. upperdiag[0] is set to 0.0 and

upperdiag[1] to upperdiag[n-1] contains the desired

result

**Q -> Householder matrix (generated by Householder reflections)

distributed by rows(or columns) in a wrap fashion (compact)

same distribution as mapA

mapQ (integer array of length n) current returns a copy of mapA,

same distribution as matrixA

*/

4.5.5 PSTEBZ eigenvalues of real symmetric tridiagonal matrix

Given a real symmetric tridiagonal matrix T. The subroutine PSTEBZ computes the spec-
ified eigenvalues of T by bisection using Sturm sequence. The syntax used is not quit that
of current LAPACK dstebz (notice that the e-array is different).

subroutine pstebz(job, n, lb, ub, jjjlb, jjjub, abstol, d, e,

$ mapZ, neigval, nsplit, eval, iblock, isplit,

$ work, iwork, info)

Integer job, n, jjjlb, jjjub, mapZ(*), neigval, nsplit,

$ iblock(*), isplit(*), iwork(*), info

Double Precision lb, ub, abstol, d(*), e(*), eval(*), work(*)

c

c Arguments are the same as for the C call sequence, but any

c reference to "pointer to data type" should be interpreted as

c "array of data type". Also, C routine indexing "from 0 to k-1" should

c be interpreted as indexing "from 1 to k" in fortran.

c

void pstebz_(job, n, lb, ub, jjjlb, jjjub, abstol, d, e, mapZ, neigval,

nsplit, eval, iblock, isplit, work, iwork, info)

Integer *job, *n, *jjjlb, *jjjub, *mapZ, *neigval, *nsplit,

*iblock, *isplit, *iwork, *info;

DoublePrecision *lb, *ub, *abstol, *d, *e, *eval, *work;

/*

* Parallel version of LAPACK’s DSTEBZ.

Chapter 4: Calling Syntax 55

* This routine is directly callable from both FORTRAN and C.

* The documentation below always uses FORTRAN array indexing,

* i.e., 1 to N, rather then C array indexing, i.e., 0 to N-1.

* This should be kept in mind when calling this routine from C.

* Also when calling this routine from C

* INTEGER (array) means "pointer to Integer" and

* DOUBLE PREICISION (array) means "pointer to DoublePrecision"

* Purpose

* =======

* PSTEBZ computes the eigenvalues of a symmetric tridiagonal

* matrix T. The user may ask for all eigenvalues, all eigenvalues

* in the half-open interval (LB, UB], or the JJJLB-th through JJJUB-th

* eigenvalues.

* To avoid overflow, the matrix must be scaled so that its

* largest element is no greater than overflow**(1/2) *

* underflow**(1/4) in absolute value, and for greatest

* accuracy, it should not be much smaller than that.

* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal

* Matrix", Report CS41, Computer Science Dept., Stanford

* University, July 21, 1966.

* Arguments

* =========

* JOB (input) INTEGER

* = 1 : ("All") all eigenvalues will be found.

* = 2 : ("Value") all eigenvalues in the half-open interval

* (LB, UB] will be found.

* = 3 : ("Index") the JJJLB-th through JJJUB-th eigenvalues (of the

* entire matrix) will be found.

* N (input) INTEGER

* The order of the tridiagonal matrix T. N >= 0.

* LB (input) DOUBLE PRECISION

* UB (input) DOUBLE PRECISION

* If JOB=2, the lower and upper bounds of the interval to

* be searched for eigenvalues. Eigenvalues less than or equal

* to LB, or greater than UB, will not be returned. LB < UB.

* Not referenced if JOB = 1 or 3.

56 PeIGS

* JJJLB (input) INTEGER

* JJJUB (input) INTEGER

* If JOB=3, the indices (in ascending order) of the

* smallest and largest eigenvalues to be returned.

* 1 <= JJJLB <= JJJUB <= N, if N > 0.

* Not referenced if JOB = 1 or 2.

* ABSTOL (input) DOUBLE PRECISION

* The absolute tolerance for the eigenvalues. An eigenvalue

* (or cluster) is considered to be located if it has been

* determined to lie in an interval whose width is ABSTOL or

* less. If ABSTOL is less than or equal to zero, then ULP*|T|

* will be used, where |T| means the 1-norm of T.

* Eigenvalues will be computed most accurately when ABSTOL is

* set to twice the underflow threshold 2*DLAMCH(’S’), not zero.

* D (input) DOUBLE PRECISION array, dimension (N)

* The n diagonal elements of the tridiagonal matrix T.

* E (input) DOUBLE PRECISION array, dimension (N)

* The first element of E, E(1), is junk, the rest of E, E(2:N),

* contains the (n-1) off-diagonal elements of the tridiagonal

* matrix T.

* MAPZ (input) INTEGER array, dimension (N)

* A list of the ids of the processors which are to participate

* in the eigenvalue computation.

* NEIGVAL (output) INTEGER

* The actual number of eigenvalues found. 0 <= NEIGVAL <= N.

* NSPLIT (output) INTEGER

* The number of diagonal blocks in the matrix T.

* 1 <= NSPLIT <= N.

* EVAL (output) DOUBLE PRECISION array, dimension (N)

* On exit, the first NEIGVAL elements of EVAL will contain the

* eigenvalues. (PSTEBZ may use the remaining N-NEIGVAL elements as

* workspace.)

* The eigenvalues will be grouped by split-off block (see IBLOCK,

* ISPLIT) and ordered from smallest to largest within the block.

* IBLOCK (output) INTEGER array, dimension (N)

* At each row/column j where E(j) is zero or small, the

* matrix T is considered to split into a block diagonal

* matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which

Chapter 4: Calling Syntax 57

* block (from 1 to the number of blocks) the eigenvalue EVAL(i)

* belongs. (DSTEBZ may use the remaining N-NEIGVAL elements as

* workspace.)

* ISPLIT (output) INTEGER array, dimension (N)

* The splitting points, at which T breaks up into submatrices.

* The first submatrix consists of rows/columns 1 to ISPLIT(1),

* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),

* etc., and the NSPLIT-th consists of rows/columns

* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.

* (Only the first NSPLIT elements will actually be used, but

* since the user cannot know a priori what value NSPLIT will

* have, N words must be reserved for ISPLIT.)

* WORK (workspace) DOUBLE PRECISION array, dimension ()

* IWORK (workspace) INTEGER array, dimension ()

* INFO (output) INTEGER

* PSTEBZ attempts to return the same INFO on all processors in MAPZ.

* Currently, however, if the input data is invalid, -50 < INFO < 0,

* then INFO will be different on different processors.

* = 0: successful exit

* < 0 &

* > -50: if INFO = -i, the i-th argument had an illegal value

* = -51: Then the input data was not the same on all processors in MAPZ

* > 0: some or all of the eigenvalues failed to converge or

* were not computed, or they were computed incorrectly:

* =1: routine DSTEBZ3 returned a non-zero info. Meaning

* that on one or more processors some or all of the

* eigenvalues failed to converge or were not computed

* In this case the processor with a non-zero info from

* DSETBZ3 prints and error message to stderr.

* =2: NSPLIT and/or ISPLIT were not the same on all processors

* =3: Relative processor i computed an eigenvalue larger than

* the smallest eigenvalue computed by relative pro-

cessor i+1

* for some i. This should not occur using the cur-

rent algorithms.

58 PeIGS

* =4: The number of eigenvalues found in a block of T is bigger

* then the dimension of the block.

* In theory INFO = 2, 3, or 4 should never occur. If they do occur

* then DSTEBZ3 failed to correctly compute the requested eigenvalues.

* Note that DSTEBZ3 is a modification of LAPACK’s DSTEBZ. The

* modifications had to be made to avoid gettings INFOs like 3 and 4.

*/

4.5.6 PSTEIN: eigenvectors of real symmetric tridiagonal matrix

Given a real symmetric tridiagonal matrix T and some of its eigenvalues. The subroutine
PSTEBZ computes the specified eigenvectors of T. The syntax used is not quit that of
current LAPACK dstein (notice that the e-array is different).

void pstein (n, dd, ee, meigval, eval, iblock, nsplit, isplit,

mapZ, vecZ, ddwork, iiwork, ppiwork, info)

Integer *n, *meigval, *iblock, *nsplit, *isplit, *mapZ,

*iiwork, *info, **ppiwork;

DoublePrecision *dd, *ee, *eval, **vecZ, *ddwork;

/*

* Driver to compute eigenvectors of a symmetric tridiagonal matrix.

* Basically a parallel version of LAPACK’s DSTEIN.

* n The dimension of the matrix.

* dd The diagonal of the matrix.

* ee The off-diagonal of the matrix. ee[0] is junk, the

* actual off-diagonal starts at ee[1].

* meigval ... (input) Integer

* The number of eigenvalues found

* eval (input) DoublePrecision array, length (neigval)

* The actual eigenvalues. Sorted by split of block,

* and within a block sorted by value.

* iblock (input) Integer array, length (neigval)

* Array from pstebz.

Chapter 4: Calling Syntax 59

* nsplit (input) Integer

* The number of split points in the tridiagonal matrix.

* From pstebz.

* isplit (input) Integer array, length (nsplit)

* Array from pstebz.

* mapZ (input/output) INTEGER array, dimension (meigval)

* On entry:

* mapZ(i) = the id of a processor which has room for the

* i-th eigenvector, i = 0 to meigval-1

* On exit:

* mapZ(i) = the id of the processor which actually owns the i-

th

* eigenvector, i = 0 to meigval-1.

* The value of mapZ on exit may be different then on entry.

* vecZ (output) array of pointers to DoublePrecision (DoublePre-

cision **)

* dimension (nvecsZ)

* On entry:

* vecZ[i], i = 0 to nvecsZ-1, should point to an array of length n.

* On exit:

* vecZ[i], i = 0 to nvecsZ-1, points to the i-th eigenvector

* (as determined by the exit values in mapZ) owned by this

* processor.

* The eigenvectors are normalized such that: Z’* Z = I.

* ddwork (workspace) DoublePrecision array

* iiwork (workspace) Integer array,

* ppiwork ... (workspace) array of pointers to Integer,

* INFO ... (output) INTEGER

* PSTEIN attempts to return the same INFO on all processors in MAPZ.

* Currently, however, if the input data is invalid, -50 < INFO < 0,

* then INFO will be different on different processors.

* = 0: successful exit

60 PeIGS

* -50 <= INFO < 0:

* Then the (-INFO)-th argument had an illegal value

* = -51: Then the input data was not the same on all proces-

sors in MAPZ

* 0 < INFO <= MEIGVAL:

* Then the INFO-th eigenvector failed to converge, but all

* lower numbered eigenvectors did converge.

* N < INFO:

* Then the residual,

* res == (max_i |T z_i-lamba_i z_i | /(eps |T|)),

* for the tridiagonal eigenproblem was excessively large.

* In particular, INFO = N + (Integer) log10(res)

*/

4.5.7 Residual and Orthogonality checks

This section describes routines for computing residuals for the various eigenproblems, and
for testing the orthogonality of computed eigenvectors. The Fortran 77 calling syntax is
given in very little detail. Most of the detail and descriptions of the routines are included
with the C calling syntax.

The Fortran 77 syntax is:

SUBROUTINE tresid(n, m, d, e, colZ, mapZ, eval, iwork, work, res, info)

Integer n, m, mapZ(*), iwork(*), info

DoublePrecision d(*), e(*), colZ(*), eval(*), work(*), res

SUBROUTINE resid(n, colA, mapA, m, colZ, mapZ, eval, iwork, work,

res, info)

Integer n, mapA(*), m, mapZ(*), iwork(*), info

DoublePrecision colA(*), colZ(*), eval(*), work(*), res

C Note that the C routine resid has one more argument, ibuffptr, than the

C Fortran 77 call syntax listed here.

SUBROUTINE residual(n, colA, mapA, colB, mapB, m, colZ, mapZ, eval,

iwork, work, res, info)

Integer n, mapA(*), mapB(*), m, mapZ(*), iwork(*), info

DoublePrecision colA(*), colB(*), colZ(*), eval(*), work(*), res

C Note that the C routine residual has one more argument, ibuffptr, than the

C Fortran 77 call syntax listed here.

SUBROUTINE ortho(n, m, colZ, mapZ, iwork, work, ort, info)

Integer n, m, mapZ(*), iwork(*), info

DoublePrecision colZ(*), work(*), ort

C Note that the C routine ortho has one more argument, ibuffptr, than the

Chapter 4: Calling Syntax 61

C Fortran 77 call syntax listed here.

SUBROUTINE bortho(n, colB, mapB, m, colZ, mapZ, iwork, work, ort, info)

Integer n, mapB(*), m, mapZ(*), iwork(*), info

DoublePrecision colB(*), colZ(*), work(*), ort

C Note that the C routine bortho has one more argument, ibuffptr, than the

C Fortran 77 call syntax listed here.

The input arguments for the above routines are the same as in the C codes listed below
except that one changes the arguments of type "1-D array of pointers to DoublePrecision",
i.e., rowQ, colW, etc, to type "1-D array of double precision numbers" and store the data
in these arrays using the packed storage format described previously. The C code describes
arrays of length n with indices of 0 to n-1, for fortran usage the indices should be 1 to n.

The work arrays for the Fortran 77 codes must be somewhat larger than listed below in
the C calling syntax. In particular, let ME, be the id of a processor, and let nvecsX be the
number of entries in array mapX equal to ME, where X = Q,W,U, or F. Then, on processor
ME the extra memory requirements for the Fortran 77 routines are:

− TRESID: increase size of work by nvecsZ+1

− RESID: increase size of work by nvecsA+3*nvecsZ+4

− RESIDUAL: increase size of work by nvecsA+nvecsB+4*nvecsZ+6

− ORTHO: increase size of work by 2*nvecsZ+2

− BORTHO: increase size of work by nvecsB+4*nvecsZ+5

The C syntax is:

void tresid(n, m, d, e, colZ, mapZ, eval, iwork, work, res, info)

Integer *n, *m, *mapZ, *iwork, *info;

DoublePrecision *d, *e, **colZ, *eval, *work, *res;

/*

this subroutine computes the residual

res = max_i | T z_i - \lambda_i z_i |/(| T | * ulp)

where T is an n-by-n tridiagonal matrix,

(\lambda_i , z_i) is a standard eigen-pair, and

ULP = (machine precision) * (machine base)

|T| is the 1-norm of T

|T z_i | is the infinity-norm

res is reasonable if it is of order about 50 or less.

Arguments

In the following:

INTEGER = "pointer to Integer"

62 PeIGS

DOUBLE PRECISION = "pointer to DoublePrecision"

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsZ = number of entries in mapZ equal to me

(= count_list(me, mapZ, n))

sDP = sizeof(DoublePrecision)

n....... (input) INTEGER

dimension of the matrix T

m....... (input) INTEGER

number of eigenvalues/eigenvectors

d....... (input) DOUBLE PRECISION array, length (n)

diagonal of T

e....... (input) DOUBLE PRECISION array, length (n)

e[0] = junk,

e[1:n-1] = sub-diagonal of T

= super-diagonal of T

colZ ... (input) array of pointers to DoublePrecision,

length (nvecsZ)

The part of matrix Z owned by this processer, stored

in packed format, i.e., colZ[i] points to the start

of the i-th column of matrix Z owned by this

processor, i = 0 to nvecsZ-1.

mapZ ... (input) INTEGER array, length (m)

The i-th column of matrix Z is owned by processor

mapZ[i], i = 0 to m-1.

eval.... (input) DOUBLE PRECISION array, length (m)

the eigenvalues

iwork... (workspace) INTEGER array, length(m)

work.... (workspace) DOUBLE PRECISION array,

length(mxlbuf_() / sDP + 1)

res..... (output) INTEGER

the residual described above.

info.... (output) INTEGER

= 0, not currently used

Chapter 4: Calling Syntax 63

*/

void resid(n, colA, mapA, m, colZ, mapZ, eval, ibuffptr, iwork, work,

res, info)

Integer *n, *mapA, *m, *mapZ, *iwork, *info;

DoublePrecision **colA, **colZ, *eval, **ibuffptr, *work, *res;

/*

this subroutine computes the residual

res = max_i | A z_i - \lambda_i z_i |/(| A | * ulp)

where

A is an n-by-n symmetric matrix, in packed storage format,

column (or equivalently row) distributed

(lambda_i, z_i) is a standard eigen-pair of A and

Z is an n-by-m matrix of eigenvectors, in packed storage format,

column distributed

ULP = (machine precision) * (machine base)

|A z_i ... | is the infinity-norm,

|A| is the 1-norm of A,

res is reasonable if it is of order about 50 or less.

Arguments

In the following:

INTEGER = "pointer to Integer"

DOUBLE PRECISION = "pointer to DoublePrecision"

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsA = number of entries in mapA equal to me

(= count_list(me, mapA, n))

nvecsZ = number of entries in mapZ equal to me

(= count_list(me, mapZ, m))

sDP = sizeof(DoublePrecision)

n....... (input) INTEGER

dimension of the matrix A

colA ... (input) array of pointers to DoublePrecision,

length (nvecsA)

64 PeIGS

The part of matrix A owned by this processer stored

in packed format, i.e., colA[i] points to the diagonal

element of the i-th column (or equivalently row) of A

owned by this processor, i = 0 to nvecsA-1.

mapA ... (input) INTEGER array, length (n)

The i-th column (or equivalently row) of A is

owned by processor mapA[i], i = 0 to n-1.

m....... (input) INTEGER

number of columns of Z, i.e. # of eigenvalues/eigenvectors

colZ ... (input) array of pointers to DoublePrecision,

length (nvecsZ)

The part of matrix Z owned by this processer, stored

in packed format, i.e., colZ[i] points to the start

of the i-th column of matrix Z owned by this

processor, i = 0 to nvecsZ-1.

mapZ ... (input) INTEGER array, length (m)

The i-th column of matrix Z is owned by processor

mapZ[i], i = 0 to m-1.

eval.... (input) DOUBLE PRECISION array, length (m)

the eigenvalues

ibuffptr (workspace) array of pointers to DoublePrecision,

length (2 * nvecsZ + 1)

iwork... (workspace) INTEGER array,

length(m + maximum(nprocs, n+nvecsA, i_mxm88))

where i_mxm88 = 2*(n+m)+nvecsA+nvecsZ

work.... (workspace) DOUBLE PRECISION array,

length(nvecsZ * n + maximum(d_mxm88,

n + 1 + mxlbuf_() / sDP + 1)

where d_mxm88 = maximum ((nvecsZ+1)*n,

mxlbuf_()/sDP + 1)

res..... (output) DOUBLE PRECISION

the residual described above.

info.... (output) INTEGER

= 0, not currently used

*/

Chapter 4: Calling Syntax 65

void residual(n, colA, mapA, colB, mapB, m, colZ, mapZ, eval,

ibuffptr, iwork, work, res, info)

Integer *n, *mapA, *mapB, *m, *mapZ, *iwork, *info;

DoublePrecision **colA, **colB, **colZ, *eval, **ibuffptr, *work, *res;

/*

This subroutine computes the residual

res = max_i | A z_i - \lambda_i B z_i |/(| A | * ulp)

where

A is an n-by-n symmetric matrix, in packed storage format,

column (or equivalently row) distributed

B is an n-by-n symmetric matrix, in packed storage format,

column (or equivalently row) distributed

(lambda_i, z_i) is a generalized eigen-pair and

Z is an n-by-m matrix of eigenvectors, in packed storage format,

column distributed

ULP = (machine precision) * (machine base)

|A z_i ... | is the infinity-norm,

|A| is the 1-norm of A,

res is reasonable if it is of order about 50 or less.

Arguments

In the following:

INTEGER = "pointer to Integer"

DOUBLE PRECISION = "pointer to DoublePrecision"

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsA = number of entries in mapA equal to me

(= count_list(me, mapA, n))

nvecsB = number of entries in mapB equal to me

(= count_list(me, mapB, n))

nvecsZ = number of entries in mapZ equal to me

(= count_list(me, mapZ, m))

sDP = sizeof(DoublePrecision)

66 PeIGS

n....... (input) INTEGER

size of the symmetric matrices A and B,

and the number of rows in Z.

colA ... (input) array of pointers to DoublePrecision,

length (nvecsA)

The part of matrix A owned by this processer stored

in packed format, i.e., colA[i] points to the diagonal

element of the i-th column (or equivalently row) of A

owned by this processor, i = 0 to nvecsA-1.

mapA ... (input) INTEGER array, length (n)

The i-th column (or equivalently row) of A is

owned by processor mapA[i], i = 0 to n-1.

colB ... (input) array of pointers to DoublePrecision,

length (nvecsB)

The part of matrix B owned by this processer stored

in packed format, i.e., colB[i] points to the diagonal

element of the i-th column (or equivalently row) of B

owned by this processor, i = 0 to nvecsB-1.

mapB ... (input) INTEGER array, length (n)

The i-th column (or equivalently row) of B is

owned by processor mapB[i], i = 0 to n-1.

m....... (input) INTEGER

number of columns of Z, i.e., # of eigenvalues/eigenvectors

colZ ... (input) array of pointers to DoublePrecision,

length (nvecsZ)

The part of matrix Z owned by this processer, stored

in packed format, i.e., colZ[i] points to the start

of the i-th column of matrix Z owned by this

processor, i = 0 to nvecsZ-1.

mapZ ... (input) INTEGER array, length (m)

The i-th column of matrix Z is owned by processor

mapZ[i], i = 0 to m-1.

eval.... (input) DOUBLE PRECISION array, length (m)

the eigenvalues

ibuffptr (workspace) array of pointers to DoublePrecision,

length (3 * nvecsZ + 3)

Chapter 4: Calling Syntax 67

iwork... (workspace) INTEGER array,

length(m + nvecsA+nvecsB+nvecsZ+

MAX(i_mxm88, nprocs, nvecsA + n)

where i_mxm88 = 2*(n+m)+nvecsA+nvecsZ+nvecsB

work.... (workspace) DOUBLE PRECISION array,

length(2*nvecsZ * n + maximum(d_mxm88,

n + 1 + mxlbuf_() / sDP + 1)

where d_mxm88 = maximum ((nvecsZ+1)*n,

mxlbuf_()/sDP + 1)

res..... (output) INTEGER

the residual described above.

info.... (output) INTEGER

= 0, not currently used

*/

void ortho(n, m, colZ, mapZ, ibuffptr, iwork, work, ort, info)

Integer *n, *m, *mapZ, *iwork, *info;

DoublePrecision **colZ, **ibuffptr, *work, *ort;

/*

This subroutine computes the infinity-norm measure:

ort = max_i | (Z^t.Z)_i - I_i | / ULP,

for the standard symmetric eigensystem problem where

Z is N-by-M

I is M-by-M.

Z_i is an eigenvector,

(Z^t.Z)_i is the i-th column of Z^t.Z

I_i is the i-th column of the m-by-m identity matrix

ULP = (machine precision) * (machine base)

|.| is the infinity-norm.

res is reasonable if it is of order about 50 or less.

MUST have M <= N. If M > N then program exits.

This is not a limitation of this subroutine as M > N

implies the columns of Z are linearly dependent, which

implies "ort" will always be large in this case.

68 PeIGS

Arguments

In the following:

INTEGER = "pointer to Integer"

DOUBLE PRECISION = "pointer to DoublePrecision"

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsZ = number of entries in mapZ equal to me

(= count_list(me, mapZ, m))

nvecsZ_max = maximum number of entries in mapZ equal to i,

i = 0 to nprocs-1

(= max over i of count_list(i, mapZ, m))

sDP = sizeof(DoublePrecision)

n....... (input) INTEGER

Number of rows in Z

m....... (input) INTEGER

number of columns in Z (i.e., # of

eigenvalues/eigenvectors).

Must have m <= n.

colZ ... (input) array of pointers to DoublePrecision,

length (nvecsZ)

The part of matrix Z owned by this processer, stored

in packed format, i.e., colZ[i] points to the start

of the i-th column of matrix Z owned by this

processor, i = 0 to nvecsZ-1.

mapZ ... (input) INTEGER array, length (m)

The i-th column of matrix Z is owned by processor

mapZ[i], i = 0 to m-1.

ibuffptr (workspace) array of pointers to DoublePrecision,

length(nvecsZ)

iwork... (workspace) INTEGER array, length(7 * m)

work.... (workspace) DOUBLE PRECISION array,

length(nvecsZ * n + maximum(d_mxm25,

mxlbuf_() / sDP + 1)

where d_mxm25 = maximum (2*m,

(nvecsZ + 2*nvecsZ_max)*n)

Chapter 4: Calling Syntax 69

ort..... (output) INTEGER

the residual described above.

info.... (output) INTEGER

= 0, not currently used

*/

void b_ortho (n, colB, mapB, m, colZ, mapZ, ibuffptr, iwork, work, ort, info)

Integer *n, *mapB, *m, *mapZ, *iwork, *info;

DoublePrecision **colB, **colZ, **ibuffptr, *work, *ort;

/*

This subroutine computes the infinity-norm measure:

ort = max_i | (Z^t.B.Z)_i - I_i | / ULP,

for the generalized symmetric eigensystem problem where

Z is N-by-M and distributed by columns

B is N-by-N symmetric and in packed storage

I is M-by-M.

Z_i is an eigenvector,

(Z^t.B.Z)_i is the i-th column of Z^t.B.Z

I_i is the i-th column of the m-by-m identity matrix

ULP = (machine precision) * (machine base)

|.| is the infinity-norm.

res is reasonable if it is of order about 50 or less.

MUST have M <= N. If M > N then program exits.

This is not a limitation of this subroutine as M > N

implies the columns of Z are linearly dependent, which

implies "ort" will always be large in this case.

Arguments

In the following:

INTEGER = "pointer to Integer"

DOUBLE PRECISION = "pointer to DoublePrecision"

me = this processor’s id (= mxmynd_())

nprocs = number of allocated processors (= mxnprc_())

nvecsZ = number of entries in mapZ equal to me

(= count_list(me, mapZ, n))

nvecsZ_max = maximum number of entries in mapZ equal to i,

70 PeIGS

i = 0 to nprocs-1

(= max over i of count_list(i, mapZ, n))

sDP = sizeof(DoublePrecision)

n....... (input) INTEGER

Number of rows and columns in B, and

the number of rows in Z

colB ... (input) array of pointers to DoublePrecision,

length (nvecsB)

The part of matrix B owned by this processer stored

in packed format, i.e., colB[i] points to the diagonal

element of the i-th column (or equivalently row) of B

owned by this processor, i = 0 to nvecsB-1.

mapB ... (input) INTEGER array, length (n)

The i-th column (or equivalently row) of B is

owned by processor mapB[i], i = 0 to n-1.

m....... (input) INTEGER

number of columns in Z (i.e., # of

eigenvalues/eigenvectors).

Must have m <= n.

colZ ... (input) array of pointers to DoublePrecision,

length (nvecsZ)

The part of matrix Z owned by this processer, stored

in packed format, i.e., colZ[i] points to the start

of the i-th column of matrix Z owned by this

processor, i = 0 to nvecsZ-1.

mapZ ... (input) INTEGER array, length (m)

The i-th column of matrix Z is owned by processor

mapZ[i], i = 0 to m-1.

ibuffptr (workspace) array of pointers to DoublePrecision,

length(3*nvecsZ + 1)

iwork... (workspace) INTEGER array,

length(n+m + MAXnprocs, 3*n+2*m+nvecsB+nvecsZ

work.... (workspace) DOUBLE PRECISION array,

length(nvecsZ * (n+m) + maximum(d_mxm25, d_mxm88,

mxlbuf_() / sDP + 1)

where d_mxm25 = maximum(n+m,

(nvecsZ + 2*nvecsZ_max)*n)

Chapter 4: Calling Syntax 71

d_mxm88 = maximum ((nvecsZ+1)*n,

mxlbuf_()/sDP + 1)

ort..... (output) INTEGER

the residual described above.

info.... (output) INTEGER

= 0, not currently used

*/

73

5 Utilites

PeIGS has a few utilites that may assist you in allocating scratch space, find array index of
matrix elements stored in 1-D arrays.

5.1 FMEMREQ and memreq : Scratch Memory Size

Since scratch space may vary depending on data distribution of the matrices, PeIGS provides
a subroutine FMEMREQ and memreq for determining on each processor the amount of
scratch storage space that is required to complete the computation safely.

Currently, FMEMREQ and memreq only provide the scratch memory space requirment
information for the general, the standard, and the tridiagonal symmetric eigensystem drivers
(i.e., the level I routines).

The F77 calling syntax for FMEMREQ is:

subroutine FMEMREQ (type, n, mapA, mapB, mapZ, isize,

$ rsize, ptrsize, iwork)

integer type, n, isize, rsize, ptrsize

integer mapA(*), mapB(*), mapZ(*), iwork(*)

c

c input:

c ------

c type (input/integer)

c return memory requirements for:

c = 0 the generalized eigensystem problem (pdspgvx or pdspgv)

c = 1 the standard eigensystem problem (pdspevx or pdspev)

c = 2 the tri-diagonal standard eigensystem problem (pdsptri)

c n: size of the A and B matrices

c mapA : integer array of size n;

c mapA[i], 0< i <= n, is the processor holding this vector

c mapB : integer array of size n;

c mapB[i], 0< i <= n, is the processor holding this vector

c not used unless type = 0.

c mapZ : integer array of size n

c mapZ[i], 0< i <= n, is the processor holding this vector

c output:

c isize = size of integer workspace required

c rsize = size of Double precision workspace required

c ptr_size = size of secondary Double precision workspace required

c this will be converted to an array of

c "pointers to double precision"

74 PeIGS

c

c iscratch ... integer scratch space of length 3*n

The C calling syntax for memreq is:

void memreq_(type, n, mapA, mapB, mapZ, isize, rsize, ptr_size, iscratch)

Integer *type, *n, *mapA, *mapB, *mapZ, *isize, *rsize, *ptr_size, *iscratch;

/*

this subroutine computes the memory requirements for this processor to

safely setup the eigensystem problem. On output, isize, risize, and

ptr_size

are the sizes (in the respective data types) of the data needed

by the eigensystem

program. It performs the basic error checks and assumes that the user has

input the correct information into type, n, mapA, mapB, mapZ

input:

memory for

*type = 0 the generalized eigensystem problem (pdspgvx or pdspgv)

= 1 the standard eigensystem problem (pdspevx or pdspev)

= 2 the tri-diagonal standard eigensystem problem (pdsptri)

n: size of the matrix

mapA : integer array of size n;

mapA[i], 0<= i < n, is the processor holding this vector

mapB : integer array of size n;

mapB[i], 0<= i < n, is the processor holding this vector

not used unless type = 0

mapZ : integer array of size n

mapZ[i], 0<= i < n, is the processor holding this vector

output:

isize = size of integer workspace required

rsize = size of Double precision workspace required

ptr_size= size of array of "pointer to DoublePrecision" workspace

iscratch ... integer scratch space of length 3*n

at this point one can allocate the required memory using C

or using off-sets from Fortran arrays

*/

Chapter 5: Utilites 75

5.2 General Utilities

There are 3 general utilities that may be of use. In F77: CI ENTRY, CI SIZE,
FIL MAPVEC. In C, ci entry, ci size , and fil mapvec .

Their use is listed below for the fortran version. The analogous description applies to
the C version.

− CI ENTRY :returns index a(i,j) in Fortran for a 1-D data array storing the lower
triangular part of a symmetric matrix

− CI SIZE: returns the total memory required for "standard" column wrapping of a
symmetric matrix

− FIL MAPVEC: from map construct a correspondance mapvec: the real column/row
index that the matrix on this processor owns

5.2.1 CI ENTRY and ci entry

integer function ci_entry (me, n, i, j, map)

integer me, n, i, j, map(*)

c

c PeIGS utility routine

c

c this routine returns the F77 index of the a(i,j)

c for a symmetric matrix with i >= j

c on processor me stored using a 1-D array

c

c if (processor = me)

c doesn’t own this element -1 is returned

c

c Argument:

c

c me = (input/integer) processor id

c

c n = (input/integer) dimension of the matrix

c

c i = (input/integer) the row index of the element a[j][i]

c

c j = (input/integer) the column index of the element a[j][i]

c

c map = (input/integer array) integer array of length n

c map[j] = the processor id holding column j

c

int ci_entry (me, n, i, j, map)

int *me, *n, *i, *j, *map;

/*

PeIGS utility routine

this routine returns the C index of the a(i,j)

for a symmetric matrix with i >= j

76 PeIGS

on processor me stored using a 1-D array

if (processor = me)

doesn’t own this element -1 is returned

Argument:

me = (input/integer) processor id

n = (input/integer) dimension of the matrix

i = (input/integer) the row index of the element a[j][i]

j = (input/integer) the column index of the element a[j][i]

map = (input/integer array) integer array of length n

map[j] = the processor id holding column j

*/

integer function ci_size_ (me, n, map)

integer me, n, map(*)

c

c Fortran and C callable (not very portable)

c

c returns the total number of double precision

c storage location required for storing the lower

c triangular part of a symmetric matrix distributed

c according the map

c

c me = (input/integer) processor id

c

c n = (input/integer) dimension of the matrix and also

c the length of the array map

c

c map(*) = (input/integer array) length n array of processor ids

c

int ci_size_ (me, n, map)

int *me, *n, *map;

/*

Fortran and C callable

returns the total number of double precision

storage location required for storing the lower

triangular part of a symmetric matrix distributed

according the map

Chapter 5: Utilites 77

me = (input/integer) processor id

n = (input/integer) dimension of the matrix and also

the length of the array map

map(*) = (input/integer array) length n array of processor ids

*/

integer function fil_mapvec (me, n, map, mapvec)

integer me, n, map, mapvec(*)

c

c from the map array construct a shorter

c array with information about the vectors stored on this processor

c

c may be compatibility problems between C and fortran

c

c mapvec(i) = j

c i = the i-th vector stored on this processor

c j = the real column/row indx of the i-th vector

c

c returns the number of vectors on this processor given

c by map and also the mapvec list

c

c argument:

c

c me = (input/integer) node id

c

c n = (input/integer) dimension of the matrix

c

c map = (input/integer array) distribution of the columns of the matrix

c length n

c

c mapvec = (output/integer array) length n

c

int fil_mapvec_ (me, n, map, mapvec)

int *me, *n, *map, *mapvec;

/*

from the map array construct a shorter

array with information about the vectors stored on this processor

mapvec[i] = j

i = the i-th vector stored on this processor

j = the real column/row indx of the i-th vector

returns the number of vectors on this processor given

by map and also the mapvec list

78 PeIGS

argument:

me = (input/integer) node id

n = (input/integer) dimension of the matrix

map = (input/integer array) distribution of the columns of the matrix

length n

mapvec = (output/integer array) length n

*/

void sfnorm(n, colA, mapA, norm, iwork, work, info)

Integer *n, *mapA, *iwork, *info;

DoublePrecision **colA, *work, *norm;

/*

computes the F-norm of a symmetric n-by-n matrix A, where

F-norm(A) = sqrt(sum_i,j a_i,j^2)

n = size of the matrix

colA = DoublePrecision pointer to the columns

mapA = distribution of the columns

iwork = integer scratch space

work = DoublePrecision precision scratch space

*/

79

6 Error Handling

Since the PeIGS routines are designed to work with lists of processors, and this list of
processors may not be all the processors allocated – there may two PeIGS routines running
on two different sets of processors simultaneously – global checking of data does not work.
Instead, the set of processor ids appearing in mapA, mapB, and/or mapZ are used to
determine a "master" processor list. PeIGS then tries to have all processors in this "master"
list return the same INFO whenever possible.

All of the level 1 and some of the level 2 routines do extensive checking of the input data.
In particular, they make sure that the input data on a processor is "vaild". If any input
data is invalid on a processor, then that processor prints a negative value of INFO to the
standard error output unit and terminates program execution. In this case other processors
are not informed of the error and may continue program execution. If some processors have
invalid data and some have valid data, then some of the processors will continue running
and will have to be killed by the user.

If all of the input data on each processor is valid, then the processors in the "master"
processor list compare their data to make sure it is consistent across the processors. If the
input data is not consistent on all processors, then the processors with incosisent data print
a negative INFO and an error message to the standard error output unit indicating the
nature of the problem to standard error. With inconsistent data all processors in the "mas-
ter" list try to return the same value of INFO and terminate program execution together.
However, with some types of data inconsistencies it is not possible to exit gracefully and
some processors will continue running. These processors must be killed by the user.

All PeIGS routines return a positive INFO error code if something goes wrong in the
computation. The value of INFO should be the same on all participating processors and
can be used to determine what went wrong. Program execution is not stopped for positive
INFOs.

81

7 BUGS

In this chapter we describe some possible problems associated with our implementation of
the PeIGS eigensolver.

• 1) If the user wishes to solve only for a fraction of the eigen-pairs the current code asks
for (but needs only the minimum memory space) the same memory space as for a full
eigen-system solve to satisfy the error checking routines and to prevent race condition.
We are working on elimanating this restriction.

• 2) The inverse iteration with modified Gram Schmidt current does a fixed number of
combined iterations. This process can theoretically fail to converge to an eigenvector
on a degenerate eigen-sub-space.

• 3) The error reporting is being done on all processors. One should just make processor
0 report errors.

• 4) The C codes calling C code needs a fortran driver so that the mxsubs.cpp codes get
initialized correctly...SUN common block is ...

• 5) When solving a tridiagonal problem with n = 2053 on four processors of an Intel
PARAGON we sporadically get large residuals. The problem is in mxm25, the eigen-
vector back-transformation. We have not been able to find any problems with the
PeIGS code, and believe that the errors occuring here are caused by a system problem
having to do with the use of "virtual" memory on the nodes (this problem exceeds the
physical memory available on a node).

We appreciate any advice and reports of bugs. We ask the user to mail us all of the
input parameters and the parallel (or serial) environment (as well as) operating
system version number.

There are likely to be unknown bugs in the code and we strongly recommend that
the user run the residual and orthogonality checking routines to check the results of
computations whenever practical.

83

Index

B
BUGS . 81

C
C code: b ortho . 69
C code: choleski . 44
C code: ci entry . 75
C code: ci size . 76
C code: fil mapvec . 77
C code: inverseL . 46
C code: memreq . 74
C code: mxm25 . 48
C code: mxm5x . 49
C code: mxm88 . 51
C code: ortho . 67
C code: pdspev . 18, 20
C code: pdspevx . 24
C code: pdspgv . 30
C code: pdspgvx . 34
C code: pdsptri . 39, 40
C code: pstebz . 54
C code: pstein . 58
C code: resid . 63
C code: residual . 64
C code: sfnorm . 78
C code: tred2 . 53
C code: tresid . 61
C input . 11
C routine choleski . 44
choleski factorization . 44

E
eigensystem:regular symmetric 18
eigensystem:tridiagonal symmetric 39
error handling . 79

F
F77 code: bortho . 61
F77 code: ci size . 76
F77 code: CI ENTRY . 75
F77 code: FIL MAPVEC . 77
F77 code: FMEMREQ . 73
F77 code: mxm25 . 47
F77 code: mxm5x . 47
F77 code: mxm88 . 47
F77 code: ortho . 60

F77 code: pdspevx . 18, 19
F77 code: PDSPEV . 18
F77 code: pdspgv . 29
F77 code: PDSPGVX . 29
F77 code: PDSPTRI . 39
F77 code: PSTEBZ . 54
F77 code: resid . 60
F77 code: residual . 60
F77 code: tresid . 60
fortran input . 11

G
generalized symmetrix eigensolver 29

I
inverse of lower triangular matrix 46

M
matrix multiplication . 47
MPI Use . 13

O
overview . 3

P
pstebz . 54
pstein . 58

R
residual and orthogonality checks 60

S
symmetric input . 11

T
tred2 . 53

i

Table of Contents

1 PeIGS: an overview . 3
1.1 Problems that PeIGS can Solve . 3
1.2 Computers for which PeIGS is Suitable . 3
1.3 BLAS and Floating Point Computations . 3
1.4 Algorithms . 3
1.5 Portability . 4
1.6 Support . 5
1.7 Thanks . 5

2 Installation . 7

3 Content: Code Functionalities
and Data Structure . 9
3.1 Summary . 9
3.2 Data Layout . 10

3.2.1 Fortran Data Structure . 11
3.2.2 C Data Structure . 11
3.2.3 MPI Use . 13

4 Calling Syntax . 15
4.1 Level I Subroutines . 15
4.2 PDSPEV: Real Symmetric Eigensystem Solver 18
4.3 PDSPGV and PDSPGVX: Generalized
Symmetric Eigensystem Solver . 29

4.4 PDSPTRI: Real Symmetric Tridiagonal Eigensystem Solver 39
4.5 Level II Subroutines . 44

4.5.1 Choleski Factorization of Positive Definite Symmetric Matrix . . 44
4.5.2 Inverse of Lower Triangular Matrix . 46
4.5.3 Matrix Multiplication . 47
4.5.4 TRED2: Householder reduction of a
symmetric matrix to tridiagonal form . 53

4.5.5 PSTEBZ eigenvalues of real symmetric tridiagonal matrix . . 54
4.5.6 PSTEIN: eigenvectors of real symmetric tridiagonal matrix . . 58
4.5.7 Residual and Orthogonality checks . 60

5 Utilites . 73
5.1 FMEMREQ and memreq : Scratch Memory Size 73
5.2 General Utilities . 75

5.2.1 CI ENTRY and ci entry . 75

6 Error Handling . 79

ii

7 BUGS . 81

Index . 83

	1 PeIGS: an overview
	Problems that PeIGS can Solve
	Computers for which PeIGS is Suitable
	BLAS and Floating Point Computations
	Algorithms
	Portability
	Support
	Thanks

	2 Installation
	3 Content: Code Functionalities and Data Structure
	Summary
	Data Layout
	Fortran Data Structure
	C Data Structure
	MPI Use

	4 Calling Syntax
	Level I Subroutines
	PDSPEV: Real Symmetric Eigensystem Solver
	PDSPGV and PDSPGVX: Generalized Symmetric Eigensystem Solver
	PDSPTRI: Real Symmetric Tridiagonal Eigensystem Solver
	Level II Subroutines
	Choleski Factorization of Positive Definite Symmetric Matrix
	Inverse of Lower Triangular Matrix
	Matrix Multiplication
	TRED2: Householder reduction of a symmetric matrix to tridiagonal form
	PSTEBZ eigenvalues of real symmetric tridiagonal matrix
	PSTEIN: eigenvectors of real symmetric tridiagonal matrix
	Residual and Orthogonality checks

	5 Utilites
	FMEMREQ and memreq_: Scratch Memory Size
	General Utilities
	CI_ENTRY and ci_entry_

	6 Error Handling
	7 BUGS
	Index

