patch-2.4.20 linux-2.4.20/Documentation/DocBook/journal-api.tmpl

Next file: linux-2.4.20/Documentation/DocBook/kernel-hacking.tmpl
Previous file: linux-2.4.20/Documentation/DocBook/Makefile
Back to the patch index
Back to the overall index

diff -urN linux-2.4.19/Documentation/DocBook/journal-api.tmpl linux-2.4.20/Documentation/DocBook/journal-api.tmpl
@@ -0,0 +1,297 @@
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V3.1//EN"[]>
+<book id="LinuxJBDAPI">
+ <bookinfo>
+  <title>The Linux Journalling API</title>
+  <authorgroup>
+  <author>
+     <firstname>Roger</firstname>
+     <surname>Gammans</surname>
+     <affiliation>
+     <address>
+      <email>rgammans@computer-surgery.co.uk</email>
+     </address>
+    </affiliation>
+     </author> 
+  </authorgroup>
+  
+  <authorgroup>
+   <author>
+    <firstname>Stephen</firstname>
+    <surname>Tweedie</surname>
+    <affiliation>
+     <address>
+      <email>sct@redhat.com</email>
+     </address>
+    </affiliation>
+   </author>
+  </authorgroup>
+
+  <copyright>
+   <year>2002</year>
+   <holder>Roger Gammans</holder>
+  </copyright>
+
+<legalnotice>
+   <para>
+     This documentation is free software; you can redistribute
+     it and/or modify it under the terms of the GNU General Public
+     License as published by the Free Software Foundation; either
+     version 2 of the License, or (at your option) any later
+     version.
+   </para>
+      
+   <para>
+     This program is distributed in the hope that it will be
+     useful, but WITHOUT ANY WARRANTY; without even the implied
+     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+     See the GNU General Public License for more details.
+   </para>
+      
+   <para>
+     You should have received a copy of the GNU General Public
+     License along with this program; if not, write to the Free
+     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+     MA 02111-1307 USA
+   </para>
+      
+   <para>
+     For more details see the file COPYING in the source
+     distribution of Linux.
+   </para>
+  </legalnotice>
+ </bookinfo>
+
+<toc></toc>
+
+  <chapter id="Overview">
+     <title>Overview</title>
+  <sect1>
+     <title>Details</title>
+<para>
+The journalling layer is  easy to use. You need to 
+first of all create a journal_t data structure. There are
+two calls to do this dependent on how you decide to allocate the physical
+media on which the journal resides. The journal_init_inode() call 
+is for journals stored in filesystem inodes, or the journal_init_dev()
+call can be use for journal stored on a raw device (in a continuous range 
+of blocks). A journal_t is a typedef for a struct pointer, so when
+you are finally finished make sure you call journal_destroy() on it
+to free up any used kernel memory.
+</para>
+
+<para>
+Once you have got your journal_t object you need to 'mount' or load the journal
+file, unless of course you haven't initialised it yet - in which case you
+need to call journal_create().
+</para>
+
+<para>
+Most of the time however your journal file will already have been created, but
+before you load it you must call journal_wipe() to empty the journal file.
+Hang on, you say , what if the filesystem wasn't cleanly umount()'d . Well, it is the 
+job of the client file system to detect this and skip the call to journal_wipe().
+</para>
+
+<para>
+In either case the next call should be to journal_load() which prepares the
+journal file for use. Note that journal_wipe(..,0) calls journal_skip_recovery() 
+for you if it detects any outstanding transactions in the journal and similarly
+journal_load() will call journal_recover() if necessary.
+I would advise reading fs/ext3/super.c for examples on this stage.
+[RGG: Why is the journal_wipe() call necessary - doesn't this needlessly 
+complicate the API. Or isn't a good idea for the journal layer to hide 
+dirty mounts from the client fs]
+</para>
+
+<para>
+Now you can go ahead and start modifying the underlying 
+filesystem. Almost.
+</para>
+
+
+<para>
+
+You still need to actually journal your filesystem changes, this
+is done by wrapping them into transactions. Additionally you
+also need to wrap the modification of each of the the buffers
+with calls to the journal layer, so it knows what the modifications
+you are actually making are. To do this use  journal_start() which
+returns a transaction handle.
+</para>
+
+<para>
+journal_start()
+and its counterpart journal_stop(), which indicates the end of a transaction
+are nestable calls, so you can reenter a transaction if necessary,
+but remember you must call journal_stop() the same number of times as
+journal_start() before the transaction is completed (or more accurately
+leaves the the update phase). Ext3/VFS makes use of this feature to simplify 
+quota support.
+</para>
+
+<para>
+Inside each transaction you need to wrap the modifications to the
+individual buffers (blocks). Before you start to modify a buffer you
+need to call journal_get_{create,write,undo}_access() as appropriate,
+this allows the journalling layer to copy the unmodified data if it
+needs to. After all the buffer may be part of a previously uncommitted
+transaction. 
+At this point you are at last ready to modify a buffer, and once
+you are have done so you need to call journal_dirty_{meta,}data().
+Or if you've asked for access to a buffer you now know is now longer 
+required to be pushed back on the device you can call journal_forget()
+in much the same way as you might have used bforget() in the past.
+
+</para>
+
+
+
+<para>
+A journal_flush() may be called at any time to commit and checkpoint
+all your transactions.
+</para>
+<para>
+
+Then at umount time , in your put_super() (2.4) or write_super() (2.5)
+you can then call journal_destroy() to clean up your in-core journal object.
+</para>
+
+
+<para>
+Unfortunately there a couple of ways the journal layer can cause a deadlock.
+The first thing to note is that each task can only have
+a single outstanding transaction at any one time, remember nothing
+commits until the outermost journal_stop(). This means
+you must complete the transaction at the end of each file/inode/address
+etc. operation you perform, so that the journalling system isn't re-entered
+on another journal. Since transactions can't be nested/batched 
+across differing journals, and another filesystem other than
+yours (say ext3) may be modified in a later syscall.
+</para>
+<para>
+
+The second case to bear in mind is that journal_start() can 
+block if there isn't enough space in the journal for your transaction 
+(based on the passed nblocks param) - when it blocks it merely(!) needs to
+wait for transactions to complete and be committed from other tasks, 
+so essentially we are waiting for journal_stop(). So to avoid 
+deadlocks you must treat journal_start/stop() as if they
+were semaphores and include them in your semaphore ordering rules to prevent 
+deadlocks. Note that journal_extend() has similar blocking behaviour to
+journal_start() so you can deadlock here just as easily as on journal_start().
+</para>
+<para>
+
+Try to reserve the right number of blocks the first time. ;-).
+</para>
+<para>
+Another wriggle to watch out for is your on-disk block allocation strategy.
+why? Because, if you undo a delete, you need to ensure you haven't reused any
+of the freed blocks in a later transaction. One simple way of doing this
+is make sure any blocks you allocate only have checkpointed transactions
+listed against them. Ext3 does this in ext3_test_allocatable(). 
+</para>
+
+<para>
+Lock is also providing through journal_{un,}lock_updates(),
+ext3 uses this when it wants a window with a clean and stable fs for a moment.
+eg. 
+<programlisting>
+
+	journal_lock_updates() //stop new stuff happening..
+	journal_flush()        // checkpoint everything.
+	..do stuff on stable fs
+	journal_unlock_updates() // carry on with filesystem use.
+</programlisting>
+
+The opportunities for abuse and DOS attacks with this should be obvious,
+if you allow unprivileged userspace to trigger codepaths containing these
+calls.
+
+<para>
+</sect1>
+<sect1>
+<title>Summary</title>
+<para>
+Using the journal is a matter of wrapping the different context changes,
+being each mount, each modification (transaction) and each changed buffer
+to tell the journalling layer about them.
+
+Here is a some pseudo code to give you an idea of how it works, as
+an example.
+<programlisting>
+  journal_t* my_jnrl = journal_create();
+  journal_init_{dev,inode}(jnrl,...)
+  if (clean) journal_wipe();
+  journal_load();
+
+   foreach(transaction) { /*transactions must be 
+                            completed before
+                            a syscall returns to 
+                            userspace*/
+
+          handle_t * xct=journal_start(my_jnrl);
+          foreach(bh) {
+                journal_get_{create,write,undo}_access(xact,bh);
+                if ( myfs_modify(bh) ) { /* returns true 
+                                        if makes changes */
+                           journal_dirty_{meta,}data(xact,bh);
+                } else {
+                           journal_forget(bh);
+                }
+          }
+          journal_stop(xct);
+   }
+   journal_destroy(my_jrnl);
+</programlisting>
+
+</chapter>
+
+  <chapter id="adt">
+     <title>Data Types</title>
+     <para>	
+	The journalling layer uses typedefs to 'hide' the concrete definitions
+	of the structures used. As a client of the JBD layer you can
+	just rely on the using the pointer as a magic cookie  of some sort.
+	
+	Obviously the hiding is not enforced as this is 'C'.
+	</para>
+	<sect1><title>Structures</title>
+!Iinclude/linux/jbd.h
+	</sect1>
+</chapter>
+
+  <chapter id="calls">
+     <title>Functions</title>
+     <para>	
+	The functions here are split into two groups those that
+	affect a journal as a whole, and those which are used to
+	manage transactions
+</para>
+	<sect1><title>Journal Level</title>
+!Efs/jbd/journal.c
+!Efs/jbd/recovery.c
+	</sect1>
+	<sect1><title>Transasction Level</title>
+!Efs/jbd/transaction.c	
+	</sect1>
+</chapter>
+<chapter>
+     <title>See also</title>
+	<para>
+	<citation>
+	   <ulink url="ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/journal-design.ps.gz">
+	   	Journaling the Linux ext2fs Filesystem,LinuxExpo 98, Stephen Tweedie
+	   </ulink>
+	   </citation>
+	   </para>
+	   <para>
+	   <citation>
+	   <ulink url="http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html">
+	   	Ext3 Journalling FileSystem , OLS 2000, Dr. Stephen Tweedie
+	   </ulink>
+	   </citation>
+	   </para>
+</chapter>
+
+</book>

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)