patch-2.3.32 linux/kernel/sched.c
Next file: linux/kernel/timer.c
Previous file: linux/kernel/module.c
Back to the patch index
Back to the overall index
- Lines: 839
- Date:
Fri Dec 10 14:57:11 1999
- Orig file:
v2.3.31/linux/kernel/sched.c
- Orig date:
Tue Dec 7 09:32:52 1999
diff -u --recursive --new-file v2.3.31/linux/kernel/sched.c linux/kernel/sched.c
@@ -1,20 +1,15 @@
/*
* linux/kernel/sched.c
*
+ * Kernel scheduler and related syscalls
+ *
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
- * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
- * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
- * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
- * serialize accesses to xtime/lost_ticks).
- * Copyright (C) 1998 Andrea Arcangeli
* 1998-12-28 Implemented better SMP scheduling by Ingo Molnar
- * 1999-03-10 Improved NTP compatibility by Ulrich Windl
*/
/*
@@ -25,69 +20,27 @@
*/
#include <linux/mm.h>
-#include <linux/kernel_stat.h>
-#include <linux/fdreg.h>
-#include <linux/delay.h>
-#include <linux/interrupt.h>
-#include <linux/smp_lock.h>
#include <linux/init.h>
+#include <linux/smp_lock.h>
+#include <linux/interrupt.h>
+#include <linux/kernel_stat.h>
-#include <asm/io.h>
#include <asm/uaccess.h>
-#include <asm/pgtable.h>
#include <asm/mmu_context.h>
-#include <linux/timex.h>
+
+extern void timer_bh(void);
+extern void tqueue_bh(void);
+extern void immediate_bh(void);
/*
- * kernel variables
+ * scheduler variables
*/
unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
-long tick = (1000000 + HZ/2) / HZ; /* timer interrupt period */
-
-/* The current time */
-volatile struct timeval xtime __attribute__ ((aligned (16)));
-
-/* Don't completely fail for HZ > 500. */
-int tickadj = 500/HZ ? : 1; /* microsecs */
-
-DECLARE_TASK_QUEUE(tq_timer);
-DECLARE_TASK_QUEUE(tq_immediate);
-DECLARE_TASK_QUEUE(tq_scheduler);
-
-/*
- * phase-lock loop variables
- */
-/* TIME_ERROR prevents overwriting the CMOS clock */
-int time_state = TIME_OK; /* clock synchronization status */
-int time_status = STA_UNSYNC; /* clock status bits */
-long time_offset = 0; /* time adjustment (us) */
-long time_constant = 2; /* pll time constant */
-long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
-long time_precision = 1; /* clock precision (us) */
-long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
-long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
-long time_phase = 0; /* phase offset (scaled us) */
-long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC; /* frequency offset (scaled ppm) */
-long time_adj = 0; /* tick adjust (scaled 1 / HZ) */
-long time_reftime = 0; /* time at last adjustment (s) */
-
-long time_adjust = 0;
-long time_adjust_step = 0;
-
-unsigned long event = 0;
-
-extern int do_setitimer(int, struct itimerval *, struct itimerval *);
-unsigned int * prof_buffer = NULL;
-unsigned long prof_len = 0;
-unsigned long prof_shift = 0;
-
extern void mem_use(void);
-unsigned long volatile jiffies=0;
-
/*
* Init task must be ok at boot for the ix86 as we will check its signals
* via the SMP irq return path.
@@ -398,139 +351,6 @@
wake_up_process(p);
}
-/*
- * Event timer code
- */
-#define TVN_BITS 6
-#define TVR_BITS 8
-#define TVN_SIZE (1 << TVN_BITS)
-#define TVR_SIZE (1 << TVR_BITS)
-#define TVN_MASK (TVN_SIZE - 1)
-#define TVR_MASK (TVR_SIZE - 1)
-
-struct timer_vec {
- int index;
- struct timer_list *vec[TVN_SIZE];
-};
-
-struct timer_vec_root {
- int index;
- struct timer_list *vec[TVR_SIZE];
-};
-
-static struct timer_vec tv5 = { 0 };
-static struct timer_vec tv4 = { 0 };
-static struct timer_vec tv3 = { 0 };
-static struct timer_vec tv2 = { 0 };
-static struct timer_vec_root tv1 = { 0 };
-
-static struct timer_vec * const tvecs[] = {
- (struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
-};
-
-#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))
-
-static unsigned long timer_jiffies = 0;
-
-static inline void insert_timer(struct timer_list *timer,
- struct timer_list **vec, int idx)
-{
- if ((timer->next = vec[idx]))
- vec[idx]->prev = timer;
- vec[idx] = timer;
- timer->prev = (struct timer_list *)&vec[idx];
-}
-
-static inline void internal_add_timer(struct timer_list *timer)
-{
- /*
- * must be cli-ed when calling this
- */
- unsigned long expires = timer->expires;
- unsigned long idx = expires - timer_jiffies;
-
- if (idx < TVR_SIZE) {
- int i = expires & TVR_MASK;
- insert_timer(timer, tv1.vec, i);
- } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
- int i = (expires >> TVR_BITS) & TVN_MASK;
- insert_timer(timer, tv2.vec, i);
- } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
- insert_timer(timer, tv3.vec, i);
- } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
- insert_timer(timer, tv4.vec, i);
- } else if ((signed long) idx < 0) {
- /* can happen if you add a timer with expires == jiffies,
- * or you set a timer to go off in the past
- */
- insert_timer(timer, tv1.vec, tv1.index);
- } else if (idx <= 0xffffffffUL) {
- int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
- insert_timer(timer, tv5.vec, i);
- } else {
- /* Can only get here on architectures with 64-bit jiffies */
- timer->next = timer->prev = timer;
- }
-}
-
-spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;
-
-void add_timer(struct timer_list *timer)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&timerlist_lock, flags);
- if (timer->prev)
- goto bug;
- internal_add_timer(timer);
-out:
- spin_unlock_irqrestore(&timerlist_lock, flags);
- return;
-
-bug:
- printk("bug: kernel timer added twice at %p.\n",
- __builtin_return_address(0));
- goto out;
-}
-
-static inline int detach_timer(struct timer_list *timer)
-{
- struct timer_list *prev = timer->prev;
- if (prev) {
- struct timer_list *next = timer->next;
- prev->next = next;
- if (next)
- next->prev = prev;
- return 1;
- }
- return 0;
-}
-
-void mod_timer(struct timer_list *timer, unsigned long expires)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&timerlist_lock, flags);
- timer->expires = expires;
- detach_timer(timer);
- internal_add_timer(timer);
- spin_unlock_irqrestore(&timerlist_lock, flags);
-}
-
-int del_timer(struct timer_list * timer)
-{
- int ret;
- unsigned long flags;
-
- spin_lock_irqsave(&timerlist_lock, flags);
- ret = detach_timer(timer);
- timer->next = timer->prev = 0;
- spin_unlock_irqrestore(&timerlist_lock, flags);
- return ret;
-}
-
signed long schedule_timeout(signed long timeout)
{
struct timer_list timer;
@@ -944,549 +764,9 @@
void scheduling_functions_end_here(void) { }
-static inline void cascade_timers(struct timer_vec *tv)
-{
- /* cascade all the timers from tv up one level */
- struct timer_list *timer;
- timer = tv->vec[tv->index];
- /*
- * We are removing _all_ timers from the list, so we don't have to
- * detach them individually, just clear the list afterwards.
- */
- while (timer) {
- struct timer_list *tmp = timer;
- timer = timer->next;
- internal_add_timer(tmp);
- }
- tv->vec[tv->index] = NULL;
- tv->index = (tv->index + 1) & TVN_MASK;
-}
-
-static inline void run_timer_list(void)
-{
- spin_lock_irq(&timerlist_lock);
- while ((long)(jiffies - timer_jiffies) >= 0) {
- struct timer_list *timer;
- if (!tv1.index) {
- int n = 1;
- do {
- cascade_timers(tvecs[n]);
- } while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
- }
- while ((timer = tv1.vec[tv1.index])) {
- void (*fn)(unsigned long) = timer->function;
- unsigned long data = timer->data;
- detach_timer(timer);
- timer->next = timer->prev = NULL;
- spin_unlock_irq(&timerlist_lock);
- fn(data);
- spin_lock_irq(&timerlist_lock);
- }
- ++timer_jiffies;
- tv1.index = (tv1.index + 1) & TVR_MASK;
- }
- spin_unlock_irq(&timerlist_lock);
-}
-
-
-static inline void run_old_timers(void)
-{
- struct timer_struct *tp;
- unsigned long mask;
-
- for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
- if (mask > timer_active)
- break;
- if (!(mask & timer_active))
- continue;
- if (time_after(tp->expires, jiffies))
- continue;
- timer_active &= ~mask;
- tp->fn();
- sti();
- }
-}
-
-spinlock_t tqueue_lock = SPIN_LOCK_UNLOCKED;
-
-void tqueue_bh(void)
-{
- run_task_queue(&tq_timer);
-}
-
-void immediate_bh(void)
-{
- run_task_queue(&tq_immediate);
-}
-
-unsigned long timer_active = 0;
-struct timer_struct timer_table[32];
-
-/*
- * Hmm.. Changed this, as the GNU make sources (load.c) seems to
- * imply that avenrun[] is the standard name for this kind of thing.
- * Nothing else seems to be standardized: the fractional size etc
- * all seem to differ on different machines.
- */
-unsigned long avenrun[3] = { 0,0,0 };
-
-/*
- * Nr of active tasks - counted in fixed-point numbers
- */
-static unsigned long count_active_tasks(void)
-{
- struct task_struct *p;
- unsigned long nr = 0;
-
- read_lock(&tasklist_lock);
- for_each_task(p) {
- if ((p->state == TASK_RUNNING ||
- (p->state & TASK_UNINTERRUPTIBLE) ||
- (p->state & TASK_SWAPPING)))
- nr += FIXED_1;
- }
- read_unlock(&tasklist_lock);
- return nr;
-}
-
-static inline void calc_load(unsigned long ticks)
-{
- unsigned long active_tasks; /* fixed-point */
- static int count = LOAD_FREQ;
-
- count -= ticks;
- if (count < 0) {
- count += LOAD_FREQ;
- active_tasks = count_active_tasks();
- CALC_LOAD(avenrun[0], EXP_1, active_tasks);
- CALC_LOAD(avenrun[1], EXP_5, active_tasks);
- CALC_LOAD(avenrun[2], EXP_15, active_tasks);
- }
-}
-
-/*
- * this routine handles the overflow of the microsecond field
- *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
- *
- */
-static void second_overflow(void)
-{
- long ltemp;
-
- /* Bump the maxerror field */
- time_maxerror += time_tolerance >> SHIFT_USEC;
- if ( time_maxerror > NTP_PHASE_LIMIT ) {
- time_maxerror = NTP_PHASE_LIMIT;
- time_status |= STA_UNSYNC;
- }
-
- /*
- * Leap second processing. If in leap-insert state at
- * the end of the day, the system clock is set back one
- * second; if in leap-delete state, the system clock is
- * set ahead one second. The microtime() routine or
- * external clock driver will insure that reported time
- * is always monotonic. The ugly divides should be
- * replaced.
- */
- switch (time_state) {
-
- case TIME_OK:
- if (time_status & STA_INS)
- time_state = TIME_INS;
- else if (time_status & STA_DEL)
- time_state = TIME_DEL;
- break;
-
- case TIME_INS:
- if (xtime.tv_sec % 86400 == 0) {
- xtime.tv_sec--;
- time_state = TIME_OOP;
- printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
- }
- break;
-
- case TIME_DEL:
- if ((xtime.tv_sec + 1) % 86400 == 0) {
- xtime.tv_sec++;
- time_state = TIME_WAIT;
- printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
- }
- break;
-
- case TIME_OOP:
- time_state = TIME_WAIT;
- break;
-
- case TIME_WAIT:
- if (!(time_status & (STA_INS | STA_DEL)))
- time_state = TIME_OK;
- }
-
- /*
- * Compute the phase adjustment for the next second. In
- * PLL mode, the offset is reduced by a fixed factor
- * times the time constant. In FLL mode the offset is
- * used directly. In either mode, the maximum phase
- * adjustment for each second is clamped so as to spread
- * the adjustment over not more than the number of
- * seconds between updates.
- */
- if (time_offset < 0) {
- ltemp = -time_offset;
- if (!(time_status & STA_FLL))
- ltemp >>= SHIFT_KG + time_constant;
- if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
- ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
- time_offset += ltemp;
- time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
- } else {
- ltemp = time_offset;
- if (!(time_status & STA_FLL))
- ltemp >>= SHIFT_KG + time_constant;
- if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
- ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
- time_offset -= ltemp;
- time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
- }
-
- /*
- * Compute the frequency estimate and additional phase
- * adjustment due to frequency error for the next
- * second. When the PPS signal is engaged, gnaw on the
- * watchdog counter and update the frequency computed by
- * the pll and the PPS signal.
- */
- pps_valid++;
- if (pps_valid == PPS_VALID) { /* PPS signal lost */
- pps_jitter = MAXTIME;
- pps_stabil = MAXFREQ;
- time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
- STA_PPSWANDER | STA_PPSERROR);
- }
- ltemp = time_freq + pps_freq;
- if (ltemp < 0)
- time_adj -= -ltemp >>
- (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
- else
- time_adj += ltemp >>
- (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
-
-#if HZ == 100
- /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
- * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
- */
- if (time_adj < 0)
- time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
- else
- time_adj += (time_adj >> 2) + (time_adj >> 5);
-#endif
-}
-
-/* in the NTP reference this is called "hardclock()" */
-static void update_wall_time_one_tick(void)
-{
- if ( (time_adjust_step = time_adjust) != 0 ) {
- /* We are doing an adjtime thing.
- *
- * Prepare time_adjust_step to be within bounds.
- * Note that a positive time_adjust means we want the clock
- * to run faster.
- *
- * Limit the amount of the step to be in the range
- * -tickadj .. +tickadj
- */
- if (time_adjust > tickadj)
- time_adjust_step = tickadj;
- else if (time_adjust < -tickadj)
- time_adjust_step = -tickadj;
-
- /* Reduce by this step the amount of time left */
- time_adjust -= time_adjust_step;
- }
- xtime.tv_usec += tick + time_adjust_step;
- /*
- * Advance the phase, once it gets to one microsecond, then
- * advance the tick more.
- */
- time_phase += time_adj;
- if (time_phase <= -FINEUSEC) {
- long ltemp = -time_phase >> SHIFT_SCALE;
- time_phase += ltemp << SHIFT_SCALE;
- xtime.tv_usec -= ltemp;
- }
- else if (time_phase >= FINEUSEC) {
- long ltemp = time_phase >> SHIFT_SCALE;
- time_phase -= ltemp << SHIFT_SCALE;
- xtime.tv_usec += ltemp;
- }
-}
-
-/*
- * Using a loop looks inefficient, but "ticks" is
- * usually just one (we shouldn't be losing ticks,
- * we're doing this this way mainly for interrupt
- * latency reasons, not because we think we'll
- * have lots of lost timer ticks
- */
-static void update_wall_time(unsigned long ticks)
-{
- do {
- ticks--;
- update_wall_time_one_tick();
- } while (ticks);
-
- if (xtime.tv_usec >= 1000000) {
- xtime.tv_usec -= 1000000;
- xtime.tv_sec++;
- second_overflow();
- }
-}
-
-static inline void do_process_times(struct task_struct *p,
- unsigned long user, unsigned long system)
-{
- unsigned long psecs;
-
- psecs = (p->times.tms_utime += user);
- psecs += (p->times.tms_stime += system);
- if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
- /* Send SIGXCPU every second.. */
- if (!(psecs % HZ))
- send_sig(SIGXCPU, p, 1);
- /* and SIGKILL when we go over max.. */
- if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
- send_sig(SIGKILL, p, 1);
- }
-}
-
-static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
-{
- unsigned long it_virt = p->it_virt_value;
-
- if (it_virt) {
- if (it_virt <= ticks) {
- it_virt = ticks + p->it_virt_incr;
- send_sig(SIGVTALRM, p, 1);
- }
- p->it_virt_value = it_virt - ticks;
- }
-}
-
-static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
-{
- unsigned long it_prof = p->it_prof_value;
-
- if (it_prof) {
- if (it_prof <= ticks) {
- it_prof = ticks + p->it_prof_incr;
- send_sig(SIGPROF, p, 1);
- }
- p->it_prof_value = it_prof - ticks;
- }
-}
-
-void update_one_process(struct task_struct *p,
- unsigned long ticks, unsigned long user, unsigned long system, int cpu)
-{
- p->per_cpu_utime[cpu] += user;
- p->per_cpu_stime[cpu] += system;
- do_process_times(p, user, system);
- do_it_virt(p, user);
- do_it_prof(p, ticks);
-}
-
-static void update_process_times(unsigned long ticks, unsigned long system)
-{
-/*
- * SMP does this on a per-CPU basis elsewhere
- */
-#ifndef __SMP__
- struct task_struct * p = current;
- unsigned long user = ticks - system;
- if (p->pid) {
- p->counter -= ticks;
- if (p->counter <= 0) {
- p->counter = 0;
- p->need_resched = 1;
- }
- if (p->priority < DEF_PRIORITY)
- kstat.cpu_nice += user;
- else
- kstat.cpu_user += user;
- kstat.cpu_system += system;
- }
- update_one_process(p, ticks, user, system, 0);
-#endif
-}
-
-volatile unsigned long lost_ticks = 0;
-static unsigned long lost_ticks_system = 0;
-
-/*
- * This spinlock protect us from races in SMP while playing with xtime. -arca
- */
-rwlock_t xtime_lock = RW_LOCK_UNLOCKED;
-
-static inline void update_times(void)
-{
- unsigned long ticks;
-
- /*
- * update_times() is run from the raw timer_bh handler so we
- * just know that the irqs are locally enabled and so we don't
- * need to save/restore the flags of the local CPU here. -arca
- */
- write_lock_irq(&xtime_lock);
-
- ticks = lost_ticks;
- lost_ticks = 0;
-
- if (ticks) {
- unsigned long system;
- system = xchg(&lost_ticks_system, 0);
-
- calc_load(ticks);
- update_wall_time(ticks);
- write_unlock_irq(&xtime_lock);
-
- update_process_times(ticks, system);
-
- } else
- write_unlock_irq(&xtime_lock);
-}
-
-static void timer_bh(void)
-{
- update_times();
- run_old_timers();
- run_timer_list();
-}
-
-void do_timer(struct pt_regs * regs)
-{
- (*(unsigned long *)&jiffies)++;
- lost_ticks++;
- mark_bh(TIMER_BH);
- if (!user_mode(regs))
- lost_ticks_system++;
- if (tq_timer)
- mark_bh(TQUEUE_BH);
-}
-
-#if !defined(__alpha__) && !defined(__ia64__)
-
-/*
- * For backwards compatibility? This can be done in libc so Alpha
- * and all newer ports shouldn't need it.
- */
-asmlinkage unsigned long sys_alarm(unsigned int seconds)
-{
- struct itimerval it_new, it_old;
- unsigned int oldalarm;
-
- it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
- it_new.it_value.tv_sec = seconds;
- it_new.it_value.tv_usec = 0;
- do_setitimer(ITIMER_REAL, &it_new, &it_old);
- oldalarm = it_old.it_value.tv_sec;
- /* ehhh.. We can't return 0 if we have an alarm pending.. */
- /* And we'd better return too much than too little anyway */
- if (it_old.it_value.tv_usec)
- oldalarm++;
- return oldalarm;
-}
-
-#endif
-
#ifndef __alpha__
/*
- * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
- * should be moved into arch/i386 instead?
- */
-
-asmlinkage long sys_getpid(void)
-{
- /* This is SMP safe - current->pid doesn't change */
- return current->pid;
-}
-
-/*
- * This is not strictly SMP safe: p_opptr could change
- * from under us. However, rather than getting any lock
- * we can use an optimistic algorithm: get the parent
- * pid, and go back and check that the parent is still
- * the same. If it has changed (which is extremely unlikely
- * indeed), we just try again..
- *
- * NOTE! This depends on the fact that even if we _do_
- * get an old value of "parent", we can happily dereference
- * the pointer: we just can't necessarily trust the result
- * until we know that the parent pointer is valid.
- *
- * The "mb()" macro is a memory barrier - a synchronizing
- * event. It also makes sure that gcc doesn't optimize
- * away the necessary memory references.. The barrier doesn't
- * have to have all that strong semantics: on x86 we don't
- * really require a synchronizing instruction, for example.
- * The barrier is more important for code generation than
- * for any real memory ordering semantics (even if there is
- * a small window for a race, using the old pointer is
- * harmless for a while).
- */
-asmlinkage long sys_getppid(void)
-{
- int pid;
- struct task_struct * me = current;
- struct task_struct * parent;
-
- parent = me->p_opptr;
- for (;;) {
- pid = parent->pid;
-#if __SMP__
-{
- struct task_struct *old = parent;
- mb();
- parent = me->p_opptr;
- if (old != parent)
- continue;
-}
-#endif
- break;
- }
- return pid;
-}
-
-asmlinkage long sys_getuid(void)
-{
- /* Only we change this so SMP safe */
- return current->uid;
-}
-
-asmlinkage long sys_geteuid(void)
-{
- /* Only we change this so SMP safe */
- return current->euid;
-}
-
-asmlinkage long sys_getgid(void)
-{
- /* Only we change this so SMP safe */
- return current->gid;
-}
-
-asmlinkage long sys_getegid(void)
-{
- /* Only we change this so SMP safe */
- return current->egid;
-}
-
-/*
* This has been replaced by sys_setpriority. Maybe it should be
* moved into the arch dependent tree for those ports that require
* it for backward compatibility?
@@ -1739,47 +1019,6 @@
t.tv_nsec = 150000;
if (copy_to_user(interval, &t, sizeof(struct timespec)))
return -EFAULT;
- return 0;
-}
-
-asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
-{
- struct timespec t;
- unsigned long expire;
-
- if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
- return -EFAULT;
-
- if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
- return -EINVAL;
-
-
- if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
- current->policy != SCHED_OTHER)
- {
- /*
- * Short delay requests up to 2 ms will be handled with
- * high precision by a busy wait for all real-time processes.
- *
- * Its important on SMP not to do this holding locks.
- */
- udelay((t.tv_nsec + 999) / 1000);
- return 0;
- }
-
- expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
-
- current->state = TASK_INTERRUPTIBLE;
- expire = schedule_timeout(expire);
-
- if (expire) {
- if (rmtp) {
- jiffies_to_timespec(expire, &t);
- if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
- return -EFAULT;
- }
- return -EINTR;
- }
return 0;
}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)