patch-2.2.8 linux/include/asm-arm/arch-ebsa285/time.h
Next file: linux/include/asm-arm/arch-ebsa285/timex.h
Previous file: linux/include/asm-arm/arch-ebsa285/system.h
Back to the patch index
Back to the overall index
- Lines: 426
- Date:
Sat May 8 11:06:57 1999
- Orig file:
v2.2.7/linux/include/asm-arm/arch-ebsa285/time.h
- Orig date:
Fri Jan 8 22:36:21 1999
diff -u --recursive --new-file v2.2.7/linux/include/asm-arm/arch-ebsa285/time.h linux/include/asm-arm/arch-ebsa285/time.h
@@ -10,116 +10,346 @@
* 21-Mar-1998 RMK Created
* 27-Aug-1998 PJB CATS support
* 28-Dec-1998 APH Made leds optional
+ * 20-Jan-1999 RMK Started merge of EBSA285, CATS and NetWinder
+ * 16-Mar-1999 RMK More support for EBSA285-like machines with RTCs in
*/
-#define RTC_PORT(x) (0x72+(x))
-#define RTC_ALWAYS_BCD 1
+#define RTC_PORT(x) (rtc_base+(x))
+#define RTC_ALWAYS_BCD 0
#include <linux/config.h>
+#include <linux/mc146818rtc.h>
+
+#include <asm/dec21285.h>
#include <asm/leds.h>
#include <asm/system.h>
-#include <linux/mc146818rtc.h>
-extern __inline__ unsigned long gettimeoffset (void)
+static int rtc_base;
+static unsigned long (*gettimeoffset)(void);
+static int (*set_rtc_mmss)(unsigned long nowtime);
+static long last_rtc_update = 0; /* last time the cmos clock got updated */
+
+#ifdef CONFIG_LEDS
+static void do_leds(void)
+{
+ static unsigned int count = 50;
+ static int last_pid;
+
+ if (current->pid != last_pid) {
+ last_pid = current->pid;
+ if (last_pid)
+ leds_event(led_idle_end);
+ else
+ leds_event(led_idle_start);
+ }
+
+ if (--count == 0) {
+ count = 50;
+ leds_event(led_timer);
+ }
+}
+#else
+#define do_leds()
+#endif
+
+#define mSEC_10_from_14 ((14318180 + 100) / 200)
+
+static unsigned long isa_gettimeoffset(void)
+{
+ int count;
+
+ static int count_p = (mSEC_10_from_14/6); /* for the first call after boot */
+ static unsigned long jiffies_p = 0;
+
+ /*
+ * cache volatile jiffies temporarily; we have IRQs turned off.
+ */
+ unsigned long jiffies_t;
+
+ /* timer count may underflow right here */
+ outb_p(0x00, 0x43); /* latch the count ASAP */
+
+ count = inb_p(0x40); /* read the latched count */
+
+ /*
+ * We do this guaranteed double memory access instead of a _p
+ * postfix in the previous port access. Wheee, hackady hack
+ */
+ jiffies_t = jiffies;
+
+ count |= inb_p(0x40) << 8;
+
+ /* Detect timer underflows. If we haven't had a timer tick since
+ the last time we were called, and time is apparently going
+ backwards, the counter must have wrapped during this routine. */
+ if ((jiffies_t == jiffies_p) && (count > count_p))
+ count -= (mSEC_10_from_14/6);
+ else
+ jiffies_p = jiffies_t;
+
+ count_p = count;
+
+ count = (((mSEC_10_from_14/6)-1) - count) * tick;
+ count = (count + (mSEC_10_from_14/6)/2) / (mSEC_10_from_14/6);
+
+ return count;
+}
+
+static void isa_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+ if (machine_is_netwinder())
+ do_leds();
+
+ do_timer(regs);
+
+ /* If we have an externally synchronized linux clock, then update
+ * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
+ * called as close as possible to 500 ms before the new second starts.
+ */
+ if ((time_status & STA_UNSYNC) == 0 &&
+ xtime.tv_sec > last_rtc_update + 660 &&
+ xtime.tv_usec > 50000 - (tick >> 1) &&
+ xtime.tv_usec < 50000 + (tick >> 1)) {
+ if (set_rtc_mmss(xtime.tv_sec) == 0)
+ last_rtc_update = xtime.tv_sec;
+ else
+ last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
+ }
+}
+
+static struct irqaction isa_timer_irq = {
+ isa_timer_interrupt,
+ 0,
+ 0,
+ "timer",
+ NULL,
+ NULL
+};
+
+__initfunc(static unsigned long
+get_isa_cmos_time(void))
+{
+ unsigned int year, mon, day, hour, min, sec;
+ int i;
+
+ // check to see if the RTC makes sense.....
+ if ((CMOS_READ(RTC_VALID) & RTC_VRT) == 0)
+ return mktime(1970, 1, 1, 0, 0, 0);
+
+ /* The Linux interpretation of the CMOS clock register contents:
+ * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
+ * RTC registers show the second which has precisely just started.
+ * Let's hope other operating systems interpret the RTC the same way.
+ */
+ /* read RTC exactly on falling edge of update flag */
+ for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
+ if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
+ break;
+
+ for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
+ if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
+ break;
+
+ do { /* Isn't this overkill ? UIP above should guarantee consistency */
+ sec = CMOS_READ(RTC_SECONDS);
+ min = CMOS_READ(RTC_MINUTES);
+ hour = CMOS_READ(RTC_HOURS);
+ day = CMOS_READ(RTC_DAY_OF_MONTH);
+ mon = CMOS_READ(RTC_MONTH);
+ year = CMOS_READ(RTC_YEAR);
+ } while (sec != CMOS_READ(RTC_SECONDS));
+
+ if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+ BCD_TO_BIN(sec);
+ BCD_TO_BIN(min);
+ BCD_TO_BIN(hour);
+ BCD_TO_BIN(day);
+ BCD_TO_BIN(mon);
+ BCD_TO_BIN(year);
+ }
+ if ((year += 1900) < 1970)
+ year += 100;
+ return mktime(year, mon, day, hour, min, sec);
+}
+
+static int
+set_isa_cmos_time(unsigned long nowtime)
+{
+ int retval = 0;
+ int real_seconds, real_minutes, cmos_minutes;
+ unsigned char save_control, save_freq_select;
+
+ save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
+ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
+
+ save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
+ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
+
+ cmos_minutes = CMOS_READ(RTC_MINUTES);
+ if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
+ BCD_TO_BIN(cmos_minutes);
+
+ /*
+ * since we're only adjusting minutes and seconds,
+ * don't interfere with hour overflow. This avoids
+ * messing with unknown time zones but requires your
+ * RTC not to be off by more than 15 minutes
+ */
+ real_seconds = nowtime % 60;
+ real_minutes = nowtime / 60;
+ if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
+ real_minutes += 30; /* correct for half hour time zone */
+ real_minutes %= 60;
+
+ if (abs(real_minutes - cmos_minutes) < 30) {
+ if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+ BIN_TO_BCD(real_seconds);
+ BIN_TO_BCD(real_minutes);
+ }
+ CMOS_WRITE(real_seconds,RTC_SECONDS);
+ CMOS_WRITE(real_minutes,RTC_MINUTES);
+ } else
+ retval = -1;
+
+ /* The following flags have to be released exactly in this order,
+ * otherwise the DS12887 (popular MC146818A clone with integrated
+ * battery and quartz) will not reset the oscillator and will not
+ * update precisely 500 ms later. You won't find this mentioned in
+ * the Dallas Semiconductor data sheets, but who believes data
+ * sheets anyway ... -- Markus Kuhn
+ */
+ CMOS_WRITE(save_control, RTC_CONTROL);
+ CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
+
+ return retval;
+}
+
+
+
+static unsigned long __ebsa285_text timer1_gettimeoffset (void)
{
unsigned long value = LATCH - *CSR_TIMER1_VALUE;
return (tick * value) / LATCH;
}
-extern __inline__ int reset_timer (void)
+static void __ebsa285_text timer1_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
*CSR_TIMER1_CLR = 0;
-#ifdef CONFIG_LEDS
- /*
- * Do the LEDs thing on EBSA-285 hardware.
+ /* Do the LEDs things on non-CATS hardware.
*/
- if (!machine_is_cats()) {
- static unsigned int count = 50;
- static int last_pid;
-
- if (current->pid != last_pid) {
- last_pid = current->pid;
- if (last_pid)
- leds_event(led_idle_end);
- else
- leds_event(led_idle_start);
- }
-
- if (--count == 0) {
- count = 50;
- leds_event(led_timer);
- }
+ if (!machine_is_cats())
+ do_leds();
+
+ do_timer(regs);
+
+ /* If we have an externally synchronized linux clock, then update
+ * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
+ * called as close as possible to 500 ms before the new second starts.
+ */
+ if ((time_status & STA_UNSYNC) == 0 &&
+ xtime.tv_sec > last_rtc_update + 660 &&
+ xtime.tv_usec > 50000 - (tick >> 1) &&
+ xtime.tv_usec < 50000 + (tick >> 1)) {
+ if (set_rtc_mmss(xtime.tv_sec) == 0)
+ last_rtc_update = xtime.tv_sec;
+ else
+ last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
}
-#endif
-
- return 1;
}
-/*
- * We don't have a RTC to update!
- */
-#define update_rtc()
+static struct irqaction __ebsa285_data timer1_irq = {
+ timer1_interrupt,
+ 0,
+ 0,
+ "timer",
+ NULL,
+ NULL
+};
+
+static int
+set_dummy_time(unsigned long secs)
+{
+ return 1;
+}
/*
* Set up timer interrupt, and return the current time in seconds.
*/
-extern __inline__ unsigned long setup_timer (void)
+extern __inline__ void setup_timer(void)
{
- int year, mon, day, hour, min, sec;
+ switch(machine_arch_type) {
+ case MACH_TYPE_CO285:
+ /*
+ * Add-in 21285s shouldn't access the RTC
+ */
+ rtc_base = 0;
+ break;
- /*
- * Default the date to 1 Jan 1970 0:0:0
- */
- year = 1970; mon = 1; day = 1;
- hour = 0; min = 0; sec = 0;
+ default:
+ rtc_base = 0x70;
+ break;
+ }
+
+ if (rtc_base) {
+ int reg_d, reg_b;
+
+ reg_d = CMOS_READ(RTC_REG_D);
- *CSR_TIMER1_CLR = 0;
- *CSR_TIMER1_LOAD = LATCH;
- *CSR_TIMER1_CNTL = TIMER_CNTL_ENABLE | TIMER_CNTL_AUTORELOAD | TIMER_CNTL_DIV16;
-
- if (machine_is_cats())
- {
- int i;
/*
- * Read the real time from the Dallas chip. (Code borrowed
- * from arch/i386/kernel/time.c).
+ * make sure the divider is set
*/
-
- /* The Linux interpretation of the CMOS clock register contents:
- * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
- * RTC registers show the second which has precisely just started.
- * Let's hope other operating systems interpret the RTC the same way.
+ CMOS_WRITE(RTC_REF_CLCK_32KHZ, RTC_REG_A);
+
+ /*
+ * Set control reg B
+ * (24 hour mode, update enabled)
*/
+ reg_b = CMOS_READ(RTC_REG_B) & 0x7f;
+ reg_b |= 2;
+ CMOS_WRITE(reg_b, RTC_REG_B);
+
+ if ((CMOS_READ(RTC_REG_A) & 0x7f) == RTC_REF_CLCK_32KHZ &&
+ CMOS_READ(RTC_REG_B) == reg_b) {
+
+ /*
+ * Check the battery
+ */
+ if ((reg_d & 0x80) == 0)
+ printk(KERN_WARNING "RTC: *** warning: CMOS battery bad\n");
+
+ xtime.tv_sec = get_isa_cmos_time();
+ set_rtc_mmss = set_isa_cmos_time;
+ } else
+ rtc_base = 0;
+ }
- /* read RTC exactly on falling edge of update flag */
- for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
- if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
- break;
- for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
- if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
- break;
- do { /* Isn't this overkill ? UIP above should guarantee consistency */
- sec = CMOS_READ(RTC_SECONDS);
- min = CMOS_READ(RTC_MINUTES);
- hour = CMOS_READ(RTC_HOURS);
- day = CMOS_READ(RTC_DAY_OF_MONTH);
- mon = CMOS_READ(RTC_MONTH);
- year = CMOS_READ(RTC_YEAR);
- } while (sec != CMOS_READ(RTC_SECONDS));
- if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
- {
- BCD_TO_BIN(sec);
- BCD_TO_BIN(min);
- BCD_TO_BIN(hour);
- BCD_TO_BIN(day);
- BCD_TO_BIN(mon);
- BCD_TO_BIN(year);
- }
- if ((year += 1900) < 1970)
- year += 100;
+ if (!rtc_base) {
+ /*
+ * Default the date to 1 Jan 1970 0:0:0
+ */
+ xtime.tv_sec = mktime(1970, 1, 1, 0, 0, 0);
+ set_rtc_mmss = set_dummy_time;
}
- return mktime(year, mon, day, hour, min, sec);
+ if (machine_is_ebsa285()) {
+ gettimeoffset = timer1_gettimeoffset;
+
+ *CSR_TIMER1_CLR = 0;
+ *CSR_TIMER1_LOAD = LATCH;
+ *CSR_TIMER1_CNTL = TIMER_CNTL_ENABLE | TIMER_CNTL_AUTORELOAD | TIMER_CNTL_DIV16;
+
+ setup_arm_irq(IRQ_TIMER1, &timer1_irq);
+ } else {
+ /* enable PIT timer */
+ /* set for periodic (4) and LSB/MSB write (0x30) */
+ outb(0x34, 0x43);
+ outb((mSEC_10_from_14/6) & 0xFF, 0x40);
+ outb((mSEC_10_from_14/6) >> 8, 0x40);
+
+ gettimeoffset = isa_gettimeoffset;
+
+ setup_arm_irq(IRQ_ISA_TIMER, &isa_timer_irq);
+ }
}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)