patch-2.2.14 linux/arch/sparc64/math-emu/op-1.h

Next file: linux/arch/sparc64/math-emu/op-2.h
Previous file: linux/arch/sparc64/math-emu/math.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.2.13/linux/arch/sparc64/math-emu/op-1.h linux/arch/sparc64/math-emu/op-1.h
@@ -1,245 +0,0 @@
-/*
- * Basic one-word fraction declaration and manipulation.
- */
-
-#define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f
-#define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f)
-#define _FP_FRAC_SET_1(X,I)	(X##_f = I)
-#define _FP_FRAC_HIGH_1(X)	(X##_f)
-#define _FP_FRAC_LOW_1(X)	(X##_f)
-#define _FP_FRAC_WORD_1(X,w)	(X##_f)
-
-#define _FP_FRAC_ADDI_1(X,I)	(X##_f += I)
-#define _FP_FRAC_SLL_1(X,N)			\
-  do {						\
-    if (__builtin_constant_p(N) && (N) == 1)	\
-      X##_f += X##_f;				\
-    else					\
-      X##_f <<= (N);				\
-  } while (0)
-#define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N)
-
-/* Right shift with sticky-lsb.  */
-#define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz)
-
-#define __FP_FRAC_SRS_1(X,N,sz)						\
-   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\
-		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
-
-#define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f)
-#define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f)
-#define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f)
-
-/* Predicates */
-#define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0)
-#define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
-#define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs)
-#define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
-#define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
-#define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
-
-#define _FP_ZEROFRAC_1		0
-#define _FP_MINFRAC_1		1
-
-/*
- * Unpack the raw bits of a native fp value.  Do not classify or
- * normalize the data.
- */
-
-#define _FP_UNPACK_RAW_1(fs, X, val)				\
-  do {								\
-    union _FP_UNION_##fs _flo; _flo.flt = (val);		\
-								\
-    X##_f = _flo.bits.frac;					\
-    X##_e = _flo.bits.exp;					\
-    X##_s = _flo.bits.sign;					\
-  } while (0)
-
-
-/*
- * Repack the raw bits of a native fp value.
- */
-
-#define _FP_PACK_RAW_1(fs, val, X)				\
-  do {								\
-    union _FP_UNION_##fs _flo;					\
-								\
-    _flo.bits.frac = X##_f;					\
-    _flo.bits.exp  = X##_e;					\
-    _flo.bits.sign = X##_s;					\
-								\
-    (val) = _flo.flt;						\
-  } while (0)
-
-
-/*
- * Multiplication algorithms:
- */
-
-/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
-   multiplication immediately.  */
-
-#define _FP_MUL_MEAT_1_imm(fs, R, X, Y)					\
-  do {									\
-    R##_f = X##_f * Y##_f;						\
-    /* Normalize since we know where the msb of the multiplicands	\
-       were (bit B), we know that the msb of the of the product is	\
-       at either 2B or 2B-1.  */					\
-    _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\
-  } while (0)
-
-/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
-
-#define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit)				\
-  do {									\
-    _FP_W_TYPE _Z_f0, _Z_f1;						\
-    doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\
-    /* Normalize since we know where the msb of the multiplicands	\
-       were (bit B), we know that the msb of the of the product is	\
-       at either 2B or 2B-1.  */					\
-    _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\
-    R##_f = _Z_f0;							\
-  } while (0)
-
-/* Finally, a simple widening multiply algorithm.  What fun!  */
-
-#define _FP_MUL_MEAT_1_hard(fs, R, X, Y)				\
-  do {									\
-    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\
-									\
-    /* split the words in half */					\
-    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\
-    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
-    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\
-    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
-									\
-    /* multiply the pieces */						\
-    _z_f0 = _xl * _yl;							\
-    _a_f0 = _xh * _yl;							\
-    _a_f1 = _xl * _yh;							\
-    _z_f1 = _xh * _yh;							\
-									\
-    /* reassemble into two full words */				\
-    if ((_a_f0 += _a_f1) < _a_f1)					\
-      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\
-    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\
-    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\
-    _FP_FRAC_ADD_2(_z, _z, _a);						\
-									\
-    /* normalize */							\
-    _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs);	\
-    R##_f = _z_f0;							\
-  } while (0)
-
-
-/*
- * Division algorithms:
- */
-
-/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
-   division immediately.  Give this macro either _FP_DIV_HELP_imm for
-   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
-   choose will depend on what the compiler does with divrem4.  */
-
-#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\
-  do {							\
-    _FP_W_TYPE _q, _r;					\
-    X##_f <<= (X##_f < Y##_f				\
-	       ? R##_e--, _FP_WFRACBITS_##fs		\
-	       : _FP_WFRACBITS_##fs - 1);		\
-    doit(_q, _r, X##_f, Y##_f);				\
-    R##_f = _q | (_r != 0);				\
-  } while (0)
-
-/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
-   that may be useful in this situation.  This first is for a primitive
-   that requires normalization, the second for one that does not.  Look
-   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
-
-#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
-  do {									\
-    _FP_W_TYPE _nh, _nl, _q, _r;					\
-									\
-    /* Normalize Y -- i.e. make the most significant bit set.  */	\
-    Y##_f <<= _FP_WFRACXBITS_##fs - 1;					\
-									\
-    /* Shift X op correspondingly high, that is, up one full word.  */	\
-    if (X##_f <= Y##_f)							\
-      {									\
-	_nl = 0;							\
-	_nh = X##_f;							\
-      }									\
-    else								\
-      {									\
-	R##_e++;							\
-	_nl = X##_f << (_FP_W_TYPE_SIZE-1);				\
-	_nh = X##_f >> 1;						\
-      }									\
-    									\
-    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);				\
-    R##_f = _q | (_r != 0);						\
-  } while (0)
-
-#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\
-  do {							\
-    _FP_W_TYPE _nh, _nl, _q, _r;			\
-    if (X##_f < Y##_f)					\
-      {							\
-	R##_e--;					\
-	_nl = X##_f << _FP_WFRACBITS_##fs;		\
-	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\
-      }							\
-    else						\
-      {							\
-	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
-	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
-      }							\
-    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\
-    R##_f = _q | (_r != 0);				\
-  } while (0)
-  
-  
-/*
- * Square root algorithms:
- * We have just one right now, maybe Newton approximation
- * should be added for those machines where division is fast.
- */
- 
-#define _FP_SQRT_MEAT_1(R, S, T, X, q)			\
-  do {							\
-    while (q)						\
-      {							\
-        T##_f = S##_f + q;				\
-        if (T##_f <= X##_f)				\
-          {						\
-            S##_f = T##_f + q;				\
-            X##_f -= T##_f;				\
-            R##_f += q;					\
-          }						\
-        _FP_FRAC_SLL_1(X, 1);				\
-        q >>= 1;					\
-      }							\
-  } while (0)
-
-/*
- * Assembly/disassembly for converting to/from integral types.  
- * No shifting or overflow handled here.
- */
-
-#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f)
-#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r)
-
-
-/*
- * Convert FP values between word sizes
- */
-
-#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\
-  do {									\
-    D##_f = S##_f;							\
-    if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\
-      _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\
-		     _FP_WFRACBITS_##sfs);				\
-    else								\
-      D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\
-  } while (0)

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)